
TOTAL CROSS SECTIONS OF RARE EARTHS 463

complex potential of the form

V= —Vo(1+if) for r(E,
V= 0 for r& E.,

where Vs=19 Mev and /=0. 05. Comparison of the
measured cross sections with the calculated values
shown in the lower part of Fig. 2 shows that the gradual
change in cross section is reproduced by this theory.
In the region investigated in this experiment the broad

4

maximum at 1-Mev energy, evident in the Nd curve,
slowly disappears with increasing atomic weight, a
behavior which is predicted by the theory.

Ke wish to thank Dr. F. H. Spedding, Mr. David
Dennison, and Dr. Jack Powell of the Ames Laboratory
of the U. S. Atomic Energy Commission, Iowa State
College, for their interest in this work and for their
efforts in preparing the pure Nd and Er metal cylinders
and the Sm and Vb oxides used in this experiment.
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If it is assumed that the range of nuclear forces is small compared to the size of the deuteron and the
wavelength of the incoming particle ("zero-range" approximation) and something like the ™pulseapproxi-
mation is used, a connection between the cross sections for elastic and inelastic p-fg or g-df scattering is
derived.

The results of this simple theory are compared with available experimental data, and the agreement
between the two is much better than the crude assumptions of the theory merit.

An interesting consequence of the theory is that the connection between the elastic and inelastic scattering
cross sections is independent of the properties of the two-body forces. The elastic scattering cross section
depends hardly at all on the exchange properties of the two-body n-p potential (provided it gives the
binding energy of the deuteron correctly) and the n npoten-tial, and the connection suggests that the
same is true of the inelastic scattering cross section. This is in disagreement with more elaborate calculations
of Bransden and Burhop.

I. THE BORN APPROXIMATION FOR THE INELASTIC
SCATTERING CROSS SECTION

A FORMULATION of the Born approximation
for the inelastic scattering cross section has been

given in several papers. ' ' The initial and Anal states
are the following:

Initial State. A neutron (say)' is incident on a
deuteron. The wave vector of the neutron is k:

where v' and E' have the same meaning as v and E,
v" is the velocity of the neutron (say) belonging to the
deuteron in the center-of-mass system of the two
particles forming the deuteron, and E" is the excitation
energy of the deuteron. Thus, with the usual definition,

3f
cP=—Eg, (3)

52

M 4'
k= —V) k =——E)

3 5'

where E~ is the binding energy of the deuteron, conser-

(1) vation of energy
gl+g" =Q—gs

where v is the velocity of the neutron in the center of
mass system and E is the kinetic energy of both particles
in the center-of-mass system.

Final State. A neutron is ejected with wave vector k'

(the "scattered" neutron). A deuteron remains in an
excited (continuum) state described by a wave vector

N 4'
k'= —v',

3 k'

' R. L. Gluckstern and H. A. Bethe, Phys. Rev. Sl, 761 (1951).' Ta-You %u and Julius Ashkin, Phys. Rev. 78, 986 (1948).

gives
'ft'2+ (4/3) jP'2 —$2 (4/3)cr2 (5)

The diGerential cross section for the scattering
process corresponding to a transition from this initial
to this final state is Lreference 1, Eq. (13b)$:

do —
I
M I'da'dk",

4 (2sr)' 3trt' k

or, equivalently Lreference 2, after Eq. (51)),

1 1 4M2 1
dr=—

4 (2sr)' 3I'ts kk'

)&b (0 Lk (4/3) k (4/3)trsj')
I
M

I
'dk'dk", (7)
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where )reference 1, Eq. (25)] for S= 1/2, singlet continuum states:

3I= ((1—Pis)ffXg, LV (13)+V„(12)Q,~;}. (8)

Whereas for elastic scattering Eq. (g) leads to three
kinds of integrals, it now leads to six kinds of integrals,
because the deuteron wave function which appears in

P~ depends on the direction of k". These integrals are

13+=——('V +—'V )

~=—(—3V„„+—3V„„+1V ++1V —
)

8

Ji+= ~|33~ (23)f'(1)U(13) p(23) f(1)dridrsdr3p

J2+= ps (13)f'(2) U(13)y(23) f(1)dridrsdrs, (9)

P (1U + IU —
)

4

P — (1U ++1U —
)

4

(13)

J,+= "p3. (23)f'(1)U(13)p(12)f(3)dr,drsdr3~

v+= ——('U-++'U- ),
4

and three more, J&, J2, and J3, obtained by reversing
the argument of q ~", for example,

J2 —— I y3" (31)f'(2) U(13)y(23) f(1)dridrsdrs. (10)

Performing the spin sums in Eq. (8) and defining a+ to
be the coeKcient of Ji+, etc. , as in reference 3, Eq. (9)
and Eq. (10), we find for S=3/2, triplet continuum
states:

o+='U

( 3U ++3U —+1U + 1U —
)

8

and (compare reference 1, Eq. (31)]

~M~2=-32~&(5=3/2) ~2+3~M(5=1/2, triplet states) ~2

+-,'~ M (5= 1/2, singlet states)
~

2. (14)

Equations (11) and (12) can be compared with Eqs.
(9) and (10) of reference 3. Were the deuteron wave
function in P~ the ground-state wave function, inter-
changing the particles in its argument would make no
difference, so that for elastic scattering J~+=J~, for
example. In fact, comparing the two sets of equations,
we see that

13—=
2 VAP++ 2 Usga

PP ———2'V„„++2'U„3, ,

P = —2'V„„+—2'U„„,
3U

for 5=1/2, triplet continuum states:

for example, where n is given by Eq. (9) of reference 3.
11

II. COORDINATE SYSTEM

If 1 is the "incoming" neutron (say) and 2 and 3 are
the proton and neutron in the deuteron, respectively,
we use

rs —rs ——r, —ri+-,' (rs+rs) = q.

o+= -,31V„„++-,13 V„„,
=s'V~3++3 V~n—+s'U 3++s'U 3

P+——s' Vn3+ —3'Un3

p =pU„„+3'V„„,
(12)

' R. S. Christian and J. L. Gammel, Phys. Rev. 91, 100 (1953).
We follow the notation of this paper in the following.

III. CONTINUUM STATES OF THE DEUTERON

In the following, we use zero-range potentials for the
two-body potentials. As explained in reference 3, it is
not necessary to think of this as a strict zero-range
approximation. It is perhaps better to imagine that is
an approximate way of evaluating the integrals in
Eq. (9) in which it is assumed that the range of the
two-body nuclear forces is short compared to the size
of the deuteron and the wavelength of the incident
particle, and then it does not seem such a crude way
of proceeding.

Consistent with this approximation, we take for the
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wave function of the ground state of the deuteron

t
rr ) &exp( —nr)

V (r)=
I

—
I&2)

and for the triplet continuum states'

o2a-(r) =exp(ik" r)

(17)

Js+ ——
q g-*(r) exp( —ik' q) U(l q+-,'r l)

X 92(l q ——',r l) exp( —ik (-,'q+ oar))drdq.

The sig'n of the argument of qi," is changed for
J~, J2, J3 . With a zero-range potential,

U(l q+sr I)= Uo~(l q+srl) (22)

{exp(2iho (k"))}—1 exp (ik "r)
(18)

Equations (17) and (18) indicate that the wave func-
tions reach their asymptotic form at once. The condition
that yf" and q be orthogonal requires that

integration over r gives

1'= —2g,
so that

4m
&2+=~o'Uo 9 r."*(—2q)

3

(23)

peak»dl =0. (20)

A further assumption contained in Eq. (18) is that
in a two body rs pcollision -only the S-state interaction
is important and no interaction takes place in states
with /~&1. This is known to be very nearly the case,
especially for low energies.

It should be noted that we are not making the usual
assumption that the wave functions for continuum
states of the deuteron are plane waves.

IV. THE ZERO RANGE APPROXIMATION

With these coordinates and wave functions, we find

k" cotbp= —o.,

as may be calculated from Eqs. (17) and (18) by setting

4m.

&2+=—ro'Uo "o '*(—2q)
3

Xexp( —ik' q) o2(2q) exp(ik q)dq.
Since

is 6nite,

lim~p'Up
7Q~

limrp3Up
7Q—+P

(24)

(25)

vanishes, and J~+ and J3+ vanish. But

limro'i22q (ro)Uo ——limropq (ro) lim(ro'Uo)
7P-+P rQ~ 7~

Xexp( —ik' q)o2(2g) exp(ik q)dq,

42r
J,+= ro'—Uoo2~. (ro) exp(2ik'. q) o2(2q) exp(ik q)dq,

3

Jr+= I
q a"*(r) exp( —ik'. q)

{exp2ibo (k")}—1
limro'Uo (26).r~

x U(l q+-', rl)92(r) exp(ik q)drdq,
This is independent of the direction of k", so that in
this approximationA =J O2a"*(q+-,'r) expL —ik' (——',q+or)j

~ limrp'Up
ro~

4 Very accurate continuum wave functions for the deuteron
may be obtained for a Yukawa potential in this same way. For
the ground state a well-known approximation is Lsee for example
G. F. Chew, Phys. Rev. 74, 809 (1948))

~p(~+p) O (exp( or)) &exp—( pr)—)—
2~(P—n)' r

For the approximate continuum wave function,

222-(r) =exp(2k" q)

+ ~ .
' „((exp(2272"r))—(exp( Pr))), —

exp(2ik' q) q (2g) exp(ik q)dq, (27)

and all other integrals vanish.
For elastic scattering, instead of Eq. (27) we find,

in the same way,

42r t' a ) l
A= —

l

—
l

»mro'Uo
3 E22r) r~oEqs. (19) and (20) lead to

k" ts k"
r22++12 p2+p&&2 &yp 2p p2yp//2 ++pl/2t

which corresponds to a scattering length of 5.26)&10 ' cm as
compared to the accepted value 5.29~0.04' j.0 " cm. For the
90-Mev n-p scattering it gives a 35 phase shift of 54' as compared
to the accepted value 60'&5'.

exp(2ik' q) o2(2q) exp(ik q)dq. (28)

Using Eqs. (11), (12), (13), and (14), we find for the

42r {exp2ilo (k")}—1
X U(l q+ ',r l) o2(r-) exp(ik 'q)drdq, (21) y,+

3
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inelastic scattering effective range and, part of the time, the singlet scat-
tering length and effective range. Equation (33) written

» ~ '~ +~ "& ~
' ' g ~ ~ more fully, with Eq. (29) taken into account becomes

and for the elastic scattering 0 lk
(~0~ d

em k (k" cotfi)'&„ i,&+k'"

V. CONNECTION BETWEEN THE INELASTIC AND
ELASTIC SCATTERING CROSS SECTIONS

Equati, ons (27) and (28) are very much alike. The
k"s which appear in them are diferent, because in

Eq. (28) (elastic scattering)

(lg +)2

(k coQ) singiet+ k

or alternately, according to Eq. (7),

dk "dQ', (36a)

whereas for Eq. (27) (inelastic scattering), Eq. (5)
applies. However, following the procedures of the
impulse approximation, ' we overlook this, so that

J~(inelastic) t'2~) & (exp(2$i5p(k ))l 1
, (»)

J2(elastic) E n ) 2Q"

0'el
d|T1ll

4x'n kk'

&&5 (O' —Lk' —(4/3) k'"—(4/3)n')*') dk'dk". (36b)

VI. EMISSION OF NEUTRONS AND PROTONS
IN n-d INELASTIC SCATTERING

(37a)k',"scattered" neutron:

In ri-d inelastic scattering, two neutrons (a "scat-

!
tered" neutron and a neutron "ejected" from the

(32) deuteron) appear and one proton (a proton "ejected"

( J,(elastic) ~' n (k")' from the deuteron).
The wave-number vectors of these particles are, as

Then Eqs. (29) and (30) and Eq. (6) and the corre- follows:

sponding equation for elastic scattering give

2m k' 4x
do.; =o,i

——sin'8o(k") dk"dQ'.
n k (2s-)'

(33) "ejected" neutron:

"ejected" proton:

S„=—-', l '+1 ",

S„=——,'k' —k".
(37b)

(37c)

and

kf/2

sin'bo (k")=
t
k" cotbo(k")$'+k'"

1
k" cotbp(k") = ——i~o(k")',

8 2

(34)

where we use the best values of the scattering lengths
and effective range. Of course, in view of Eq. (29),
part of the time we use the triplet scattering length and

5 G. F. Chew and G. C. Wick, Phys. Rev. SS, 636 {1952).
~ Gluckstern and Bethe (reference 1, p. 770) also replace terms

occurring in a result calculated in Born approximation by observed
values wherever possible.

o,i depends on the angle between k' and k. The last
4n in the numerator comes from dk"=4n. k'"dk", and

the 1/(2s.)' comes from the fact that the cross section
for elastic scattering has a 1/(2s.)' instead of the

1/(2x) 5 in Eq. (6). Sometimes a 1/(27r) & is put in front
of Eq. (18) to make the equations corresponding to
Eq. (6) the same for elastic and inelastic scattering;
but, however we do it, we have the 1/(2m)' at the end.

Still following the ideas of the impulse approximation,
we proceed as follows. 6 To calculate an inelastic cross
section we put the experimental e-d angular distribution
into Eq. (33) and values of sin'8o(k") calculated from

k" may be eliminated from do. ;„, Eq. (36b), by the
use of one of Eqs. (37b) or (37c).

If we want the energy and angular distribution of
the "scattered" neutron (do„„«),we express Eq. (36b)
in terms of k' and S„(say) and integrate out the
directions of S„. LThe magnitude of S is 6xed by
Eq. (37b) and Eq. (5).] This is easy to do since it is
equivalent to putting k" and dk" from Eq. (5) into

Eq. (36a), which gives the energy and angular distri-

bution of the "scattered" neutrons at once.
Graphs of de„,««,d as functions of E„, the energy

of the scattered neutron in the laboratory system, and

0„, the angle through which it is scattered, are presented
ln Flg. j..

~ Transformation to the laboratory system is accomplished as
follows. First, we express Eq. (36a) in terms of energies by using
Eqs. (1)—(5). We find

1 o.i gZ'
(Lab —$~ —4Eb) ~

4+0 v +lab

Dtriplet 3 Dsinglet

D=—L(k" cotb)'+k'" j3f
and E&,b is the energy of the incident particle in the laboratory
system. This may be expressed in terms of laboratory energies
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H we want the energy and angular distribution of
the "ejected" neutron (do„„„d),we express Eq. (36b)
in terms of k' and S„and integrate out the directions
of k'

r the magnitude of k' is fixed by Eq. (37b) and
Eq. (5)). This time there is no easy way to do the
calculation. The procedure for carrying it through is
described in reference 2, paragraph C, p. 996.

Let E„be the energy of the ejected neutron and e„
the angle it makes with k (both measured in the
laboratory system). The wave-number vector of the
ejected neutron in the laboratory system is

tz)
il S~

(y)

20 9.66 mev

I8 Blab=»
Emax=6.08 mev

I6-

l4

l2-

IO

p„=S +-',k,

20
9.66 mev
elab=45

.Emox= 4967 mev

I6-

l2-

IO

(3g) FxG. 2. Coordinate system to which h' is referred in performing
the integrations to obtain angular and energy distributions of
ejected particles.

so that
p„'= (2M/ks) E„. (39)

In integrating out the directions of k', we refer to
S„as polar axis (io=cosk', S ), the azimuth, qr, being
measured from the plane of k and S„(see Fig. 2). The
angle between k', k which appears in o,& in Eq. (36b)
must be expressed in terms of variables appropriate to
this reference system.

p~

0 0.2 0.4 0.6
20

I4.I mev

I 8 jg lab= 32
Emax=99I5 mev

l6-

I4-

l2-

IO

0.8 1.0 0 02 0.4 0.6
IO

I4.I mev
elab=45
Emax=8. 247 mev

8-

cos(k', k) =sin(k, S ) (1—io')& cos8o+p cos(k,s )—=y. (40)
0.8 I.O

Actually, Eq. (37b) and Eq. (5) leave two values of k'

possible:

k ' = r
L
—S io+ (S„fo' 4S„+3k —4n )&) (4—1a)

k '=-,'I —S p, —(S sp' —4S '+3k' 4n')&) —(41b).

Only real positive values of k+' and k ' are permitted.
This restricts the allowed values of p, for a given 5„.For

0&5„'&4k' —n',

k+' is real and positive for all p. k ' is negative for all

p and thus is excluded. For

0 02 04 06 08 I.O 0 02 04 06 08 I.O

En/E max

FIG. 1. Energy distributions of inelastically scattered particles
at. two angles. The contributions of triplet deuteron continuum
states to the cross sections for emission of protons and scattering
of neutrons are labe/ed A and D, respectively. The corresponding
curves for singlet deuteron continuum states are labeled 8 and E.
The cross sections for emission of protons and neutrons are
labeled C and P, respectively.

and angles by using

2/E„cos8 —QEo
2(E + 'Eo—QEoE„cos-8 )&'

E'= os +iEo (EoE )& cos8 ), —

dE'd cos(h', h) =
i
J I dE„d cos8,

where Eo is 4E/gb/9 and J is the Jacobian of the transformation:

J fs

Numerically, with the energies in Mev,

D$1iPfet; =1.431 +0.455 (E&,b —1.5E' —1.5E&)+0.00782 ( )'
Dsinglet =0.0743+0.743{ )+0.0195 ( )'.

-'k -n'(S 'g k'- (4/3)n'

both k+' and k ' are real and positive when

( 3ks n—1&@&—2I 1—— +4s. s„ i

. (x)I=-
4or'n (k" cotb)s+ k'" (42)

where k" coth is given by Eq. (35) expressed in terms

and are either complex or negative when p;& —v. For

S.s& ks —(4/3)ns,

both k+' and k ' are complex for all y, and this region
is excluded. (This is an obvious consequence of conser-
vation of energy. )

Any function f(k') of k' labeled f+(k') or f (k')
means f(k+') or f(k ') in the following. Let
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50

f40
O

E 50
b

20 ()-"0

ns &2 Mev

energy disintegration protons

0

(all protons) = I 44 mb

0

(protons &2 Mev) =8I.6 mb

protons

The total cross section for the scattered neutrons
obtained by integrating do-„,«„,d over E„and o„must
be the same as the total cross section for the ejected
neutrons because every time a neutron is scattered one
is ejected. That we must get this result follows on a
moment's reflection. We have integrated Eq. (36b),
expressed in terms of k' and S„, in only two different
orders, so that we ought to get the same result from
them. This requirement serves as a useful check on the
numerical work.

Since two neutrons appear in the 6nal state,
1 /'

trinelastic, total 2 (trscattered, total+trejected, total)

gscattered, total gejected, total&

whereas the total cross section for emission of neutrons
is larger than this by a factor of two, whereas the cross
section for emission of protons is equal to it. The total
scattering cross section is

high energ

0 20 40 60

Glob

80 IOO I20

FIG. 3. Angular distribution of disintegration protons from
14.1-Mev inelastic n-d scattering.

of k' and S„ through Eq. (37b). Then Eqs. (55) and

(56) of reference 2 become

teetotal trejastic total+trinelastic total ~ (47)

do-s«««ed and daej««d cannot be observed separately,
of course )without auxiliary assumptions like
da. j,e«e(dPrOtOn) =do„ected(neutrOn) j.

In Sec. VII, the triplet and singlet cross sections are
combined by taking 'V „+=0.69 in Eq. (36), and the
scattered and ejected neutrons are combined by using
Eq. (45).

For

Mp„
do „„t,d =— I(E,O„)dE„dQ„.—

k2 k
(43)

VII. COMPARISON WITH EXPERIMENTS

A. 14.1 Mev

0&S 2&-3k2 —n

tI2e tsl
I(E„,8„)=— d gs djtJ,

The cross section for emission of protons is compared
with the results of Allred, Armstong, and Rosen' in
Fig. 3. The theoretical curve has been modified to take
account of the fact that only protons of energy greater
than 2 Mev were observed:

For

X I+. (44a)
(3k' —4n' —4S '+S 'jt')'*

p&max

a (0) = ' 0 (E,g)dE.
2 Mev

(4g)

dtrn dtrscattered+dtrejected (45)

4k' —n'(S„'(k' —(4/3)n',

3 p2gr p v k"
I(E„,8„)=- d gs dlj, I+

2&a ~ t (3k'—4n2 —4S '+S 'jt')*'

2' v k '2

+— ~ dg t djt I . (44b)
2&o ~ t (3k' 4n' 4—S„' +S—„' 'j)ts

Graphs of dg.„„t,d as a function of E„and tY„are
presented in Fig. 1. It can be seen that the energy and
angular distribution of the ejected neutron and ejected
proton are the same in the present theory because
Eq. (36b) depends only on the magnitude of k", so
that expressing (36b) in terms of k' and S„or k' and
S~ give the same result.

The cross section for the emission of neutrons is
composed of two parts:

o.(8)= i' o(E,0)dE. (49)

The total cross section at 14.j. Mev has been measured
with precision by the transmission method, and is
802 mb. ' It is extremely doubtful that the total cross

' Allred, Armstrong, and Rosen, Phys. Rev. 91, 90 (1953).' Poss, Salant, Snow, and Yuan, Phys. Rev. 87, 116 (1952).

Allred, Armstrong, and Rosen also observed high-
energy disintegration protons (protons whose range in
the emulsion is greater than the range in the emulsion
of deuterons elastically scattered at the same angle).
Figure 4 shows E~(gl,b), the energy of a proton whose
range in the emulsion is the same as the range in the
emulsion of a deuteron elastically scattered at the same
angle, as a function of Ol, b. Then the cross section for
emission of high-energy disintegration protons is
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section for elastic scattering is greater than 650 mb. '
This leaves 150 mb for the total cross section for
emission of protons. Allred, Armstrong, and Rosen
observed 57&13 mb for the total cross section for
emission of protons of energy greater than 2 Mev. This
work was undertaken partly in order to determine
whether the cross section for emission of protons of
energy less than 2 Mev could be sufficiently large to
explain the difference between 150 mb and 57+13 mb.
This appears to be the case. We find 144 mb for the
total cross section for emission of protons and 80 mb
for the cross section for emission of protons of energy
greater than 2 Mev.

On the whole the theoretical results seem in good
agreement with the experimental results. From Fig. 3
it might be concluded that the theoretical energy
distributions have too many low-energy protons and
too few high-energy ones, but in view of the experi-
mental uncertainties, this conclusion is not certain.

70-

50-

~-40-8
O

30-E
b

20-

27rJ', (oil protons) =233 mb

2trf . (protons & I.S Mev) =(26 mb

protons. & 1.5 M

B. 9.66 Mev

At this energy we may compare our results with the
experimental results of Juanita H. Gammel. ' She
observed protons of energy greater than 1.3 Mev
emitted in p-d scattering (the names "proton" and
"neutron" have to be interchanged for comparison
with the calculated I-d angular distributions). This
was allowed for as in Eq. (48). Figure 5 shows that
theory and experiment are in excellent agreement (no
doubt fortuitously). She found

130o

sin8d8 dEo(E,8)= 114 mb, .
~1.3 Mev

l0

IO-

Oo0
I

20 40 60 80 100 I20

lab

FIG. 5. Angular distribution of protons emitted in 9.66-Mev
inelastic p-d scattering.

and we Gnd 126 mb for the same quantity. It is inter-
esting to note that the total cross section for emission
of protons is more than twice this, or 233 mb. About
one-half of the protons have an energy less than 1.3
Mev.

Coulomb eGects were neglected in the calculation.
They might be taken into account approximately by
use of the following as a Coulomb penetration factor:

(.o(&+l&)(=o(lk'+-:k'+k" I); (»)
that is, we use the relative momenta of the two protons
in the initial and 6nal states. Here, as usual,

Co= 2trt)/Lexp(2trt)) —1$, t)= e'/hv„t„t;„. (51)

For the initial state,

-ask= Mv„t„;,/tt);
and for the Gnal state,

i
sk'+k"

i
=Mv„t.„.,/is.

C. Total Cross Section

(53)

Q I I

0 l5 50 45
8 lab

60 75 90 A graph of the e-d inelastic cross section is presented
in Fig. 6.

FIG. 4. The energy of a proton having the same range in the
emulsion as a deuteron elastically scattered at the same angle as
a function of the laboratory angle (14.1-Mev n-d scattering).

"iuanita H. Gammel (to be published).

VIII. DISCUSSIOH

Bransden and Burhop have presented some calcu-
lations which show that the inelastic cross section
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Pro. 6. Total disintegration cross section for n-d scattering as
a function of energy.

depends sensitively on the nature of the nuclear forces."
This does not result from our calculation. The con-
nection (36a) between the inelastic and elastic cross
sections involves only 'V„„+, the value of which is
determined by the singlet rs-p scattering length. Since
Christian and GammeP found that the elastic cross
section depends hardly at all on the unknown properties
of the nuclear forces, it follows from Eq. (36a) that the
same is true of the inelastic cross section. The dis-
crepancy between this result and that of Bransden and
Burhop arises partly perhaps from the crudeness of our
theory, but the problem 'should be studied more care-
fully if possible.

Another point of interest is the following. Use of
plane-wave wave functions for the continuum states of
the deuteron in calculating the integrals (the J's) would
have made them all vanish. One is led to believe, erst,
that the nonplane-wave parts of the deuteron-con-
tinuum states should make the most important contri-
bution to the inelastic cross section even in calculations
better than the one. made here, and, second, that it is
doubtful that the use of plane wave-continuum wave
functions could give a better approximation to the total

"B.H. Bransden and K. H. S. Burhop, Proc. Phys. Soc.
(London) A63, 1337 (1930).

scattering cross section than the inelastic scattering
cross section as is sometimes stated (one would hardly
want to get zero for the total scattering cross section,
especially after calculating a nonzero elastic scattering
cross section as Christian and Gammel did using the
same zero-range approximation used here).

It might not be out of place to point out one further
motivation for carrying through such a long calculation
based on such doubtful premises as the zero-range
approximation, the impulse approximation, and the
replacement of quantities calculated in the Born
approximation by exact quantities.
5 The "phase shifts" which occur in an analysis of n-d
elastic scattering at energies greater than 3.342 Mev
must be complex numbers since inelastic scattering also
takes place. We have developed a method of calculating
complex phase shifts for which it is necessary to know
the absorption from each partial wave by inelastic
scattering. Since the connection Eq. (36a) between the
inelastic and elastic cross sections is independent of.the
angle between lr and k' and of the direction of lr", the
ratio o.;,~/o, ~, q is independent of l (l is the angular
momentum of the partial wave) and is equal to o;„/o,&.

This makes it simple to compute 0;, ~ when 0-;„, 0,~,

and 0,~, ~ are known.
Thus the calculation was carried out partly in order

to determine whether such a simple relation as Eq.
(36a) could be in agreement with experimental evidence
at low energies.
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