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The transfer of energy across the spectrum is investigated by the method of the harmonic analysis of the
Navier-Stokes equation. The phase correlation which enters into the transfer is determined by the statistical
considerations of transport processes. The results obtained allow a theoretical explanation to be given to
the Heisenberg and Obukhoff postulates, delimiting the conditions of their applicability. By extending
the above considerations of transport processes to shear flow, the production of turbulent energy from the
mean flow is determined in spectral terms. As an application, the spectral laws for energy and shear are de-

rived, and compared with measurements.

I. INTRODUCTION

N the metamorphosis of turbulence, we generally
distinguish three phenomena: production, transfer,
and dissipation. Recent theories confine themselves
mostly to the study of transfer and dissipation, because
they are controlled by fine patterns of turbulence
which present an infinite number of degrees of freedom,
and are, therefore, suitable for the attack by similarity
and statistical methods. Of the two phenomena of fine
patterns, the most characteristic one in turbulent mo-
tion is the transfer. The turbulent energy produced in
the form of relatively big patterns is transferred to
smaller and smaller patterns, because of the interaction
between eddies, increasing in this way the local turbu-
lent gradient, and hence promoting the dissipation by
viscosity. It is this transfer, nonlinear in nature, which
is responsible for the change of profiles of eddies, and
hence for the transmission of energy through the
spectrum.

The expression for the viscous dissipation is well
known. In theories on the spectrum of turbulence the
difficulty lies in the formulation of an expression of
transfer, called transfer function. Owing to analytical
difficulties relating to the interaction mechanism of
eddies, the transfer function has been assumed usually
on dimensional grounds. Since it controls the rate of
decrease of energy, it has the dimension of #*™! or
#3071, or in spectral terms (Fk)**k. Here 3u? is the
kinetic energy per unit mass, ¢ is the age of coherence,
1 is the size of the domain of coherence, F is the spectral
function, such that Fdk is the kinetic energy associated
with wave numbers between % and k+-dk. With such
dimensional compositions, Heisenberg! writes the trans-
fer function W, in the form

k
Wi=2, f dR'R2F (F). (1a)
0

Here Wy is the transfer of energy from wave numbers
smaller than k& to wave numbers larger than k; vy is the

! W. Heisenberg, Z. Physik 124, 628 (1948); see also S. Chan-
drasekhar, Astrophys. J. 110, 329 (1949).

4

turbulent viscosity defined by

®  (Fm)\?
V=K f dn( )
k n®
on dimensional grounds, and « is a numerical constant.
In this form, the transfer is expressed as a turbulent
dissipation which, in a form similar to the viscous dis-
sipation, is the product of the turbulent viscosity by
the square of the vorticity. By means of general di-
mensional considerations, von Karman? writes a general
expression for W; which comprises (la) as a special
form.
In another way Obukhoff® writes

W=« fk wan(n)[z f kdk’k”F(k’)]g.

The numerical constant x may not be identical in (1b)
and (2). In the form (2) the transfer is considered as a
production of energy by shearing stresses. Thus it is
proportional to the product of a Reynolds stress (first
integral) by the vorticity (second integral).

The two expressions (1a) and (2) represent two dif-
ferent theories of turbulence, the one based on the
turbulent dissipation, the other on the turbulent shear.
While the dimensional reasonings present the transfer
in a simple way and is rich in possible applications, the
physical foundations of the basic mechanism remain
rather obscure. It is to be remarked that any dimen-
sionally correct expression of transfer is expected to
lead to the same “5/3” law of spectrum in the inertial
range. This is the reason why the spectral laws based
on the Heisenberg and Obukhoff hypotheses agree with
the Kolmogoroff theory* in that range, although not in
other ranges. We shall come back later to discuss
further these hypotheses.

(1b)

)

2T, von Karman, Proc. Natl. Acad. Sci. U. S. 34, 530 (1948).

3 A. Obukhoff, Compt. rend. acad. sci. U. R. S. S. 32, 19 (1941);
see also Bull. acad. sci. U. R. S. S. Sér. géograph. et géophys.
32, 453 (1941).

1 A. N. Kolmogoroff, Compt. rend. acad. sci. U. R. S. S. 30,
301 (1941) and 32, 16 (1941).
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By leaving the dimensional method, Burgers’ theory
uses, as a model of turbulence, a simple nonlinear par-
tial differential equation having the essential properties
of the hydrodynamical equations. The model shows
saw-tooth profiles. The study of the law of successions
of the segments can give interesting insights into the
transfer mechanism and the spectrum of turbulence.

In the following pages an attempt will be made to
study the mechanism of transfer by starting from the
hydrodynamical equations, and hence to give a physical
foundation to the hypotheses of Heisenberg and
Obukhoff about the transfer function, delimiting the
circumstances under which the theories are valid. The
analysis of the turbulent velocity into modes, by apply-
ing the Navier-Stokes equations, leads to a dissipation
equation, similar to the Boltzmann equation of velocity
distribution (see Sec. 2). The nonlinear term, respon-
sible for the transfer of turbulent energy between vari-
ous modes, is comparable to the collision term of Boltz-
mann, the latter being, however, much simpler. Here
the nonlinear term represents the mechanism of merging
of one element into another, when they reach maximum
steepness. After coalescence of elements, the one dis-
appears and the other acquires the sum of momenta, in
a manner analogous to the cascade processes advanced
by Onsager.® Thus there results a transfer of momentum,
for the study of which a statistical method is introduced
in Sec. 3, describing the transport processes in tur-
bulence.

As a result of the transport processes, and by the
use of characteristic functions (Sec. 4), a relation of
phase correlation can be obtained and gives a general
expression for the transfer function, from which the
Heisenberg and the Obukhoff formulas are derived as
special cases (Sec. 5). At the same time this gives the
opportunity of discussing the conditions of their
applicability.

Finally, the considerations of transport processes are
extended to shear flow, so that, in addition to the
transfer function, the production function plays an
important role. It is determined in spectral terms by the
relation of phase correlation again. As an application,
the spectral laws for energy and shear can be derived
(Sec. 6).

II. HARMONIC ANALYSIS OF AN IRREGULAR MOTION
AND MODULATION DUE TO THE TRANSFER
OF ENERGY

For an isotropic and homogeneous turbulent field,
the Navier-Stokes equation for the velocity fluctuations

5 Prof. J. M. Burgers has considered to a large extent the appli-
cation of a mathematical model to the statistical theory of turbu-
lence in the papers: Proc. Acad. Sci. Amsterdam 43, 8 (1940),
and Advances in Applied Mechanics 1, 182 (1948). He considered
the formation of vortex sheets and the correlation problems in
the model of turbulence in the papers: Proc. Acad. Sci. Amsterdam
53, 122, 247, 393, 718, 732 (1950).

8 L. Onsager, Nuovo cimento, Suppl. 6, Ser. 9, No. 2, 279
(1949) ; see also Phys. Rev. 68, 286 (1945).

u; 18
ou;  ou; 19p %y
+u—=———Fr— 3)
ot 65\7;’ P ox; 8x,~2

u;(f, x) must satisfy the condition of continuity
du;/dx;=0. (4)

Here p is pressure, p is density, » is kinematic viscosity,
¢ is time, and x is vector position, with components «;.
A summation is understood whenever an index repeats.

Let us apply the Fourier transform to the above equa-
tions. The amplitude functions are

1 x+X .
w=— [axu@ens, G
8 x—X

with the wave-number vector k as an argument, while
dX’ = dxl'dxz’dx;;’

is the elementary volume. In order to secure conver-
gence in the Fourier analysis, the functions #; are
supposed fruncaled, i.e., the values of #; are restricted
within a finite element of volume, say a finite parallele-
piped of sides 2X, 2X,, 2X3. After Fourier transforms,
Eqgs. (3) and (4) become, respectively,

+(k °°
o ( ) =— VkZG«,' (k) - f dm'nja,- (k— n)
ot —w
kiks
x|am-—em]| ©
and

Equation (6) indicates that the rate of change of the
amplitude functions ¢;(k) is governed by two factors:
a viscous dissipation proportional to 42, and a nonlinear
interaction between the mode k and all other modes n
extending from —o to . In these notations, the
energy equation can be written as follows:

i}
—di(k)di('— k)
ot

— —2Ra(K)as(— k) — f dng(k, n). (8a)

—00

As the amplitudes of @; may be also functions of time,
a time average may be operated on the correlations
between the amplitudes. Such time averages will be
understood here and in the following, without addi-
tional symbols. The integral term of the right-hand
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side is the basic term for the formulation of the transfer
function. It is

fdnq(k n)= fdmnja,(n)[aj(k n)a;(—k)
 Hu-k-na®]
— - f dnikya:(K) - a;(n—k)a:(—n)

+fwdn’ikj(1i(—k)
- -a;(—n+k)a;(n).

The second integral is the conjugate part of the first
integral. ¢ is called modulation function. Its role is to
" excite other modes when one mode is produced. As
easily checked it has the following properties:

(a) ¢ is antisymmetrical, ie., q(n, k)+q(k, n)=0.
‘This condition imposes the conservation of modulated
energy, and can be easily verified by (7) and (8b).

(b) The three arguments entering in the three ampli-
tude functions have a sum zero.

(c) k should not be parallel to n in order to have a
nonvanishing ¢.

(8b)

It does not look easy to find a solution for @, or for
| @;]2, which is controlled by a modulation mechanism
having all those properties. From a general standpoint,
the dynamical equations (6) show a certain analogy with
the Boltzmann equation for the velocity distribu-
tion. The integral term of (6) represents nonlinear
interactions between modes, comparable to the collision
term of Boltzmann which was also in the form of an
integral. However, Eqs. (6) and (7) are much more
complicated, and the method of successive approxima-
tions, often applied to the Boltzmann equation, cannot
be used here. In order to obtain full use of isotropy, the
energy Eq. (8a) can be expressed in terms of a spectral
function. Before going to this end, let us first find the
spectral decomposition of the kinetic energy. As a
Fourier inversion of (5a), #; can be written in terms of
a; as follows:

wa(x) = f " dkau (K)o, (5b)

Its mean square value over a volume V=2X,2X,2X;
gives

8 r= ®
==, [ ak [ aka.draer

sin (kll+ klll) X1 Sil’l (k2’+ k2")X2 sin (k3/+ k3”) X3
X .

kll+k1/1 k21+k211 k3/+k3ll
By increasing X; indefinitely, we obtain
8wd

Since {(##) must be independent of V, it follows that the
absolute value of ¢ must be proportional to V. As a;
is obtained by the summation of a large number of
variables like
(X)X

according to (5a), the fact that its absolute value is
proportional to ¥ must be related to the same results
found in problems of random walk, even though the
paths may be bound by partial correlations.”

Instead of extending the integration in (9) over the
whole k space, we can integrate over a spherical shell
of radii between k and k-+dk, and obtain

2R ()= f "do f 48 sind s (K)a:(— k).

For isotropic turbulence, F is reduced to the expression
8

F(k)= 721rk2ai(k)a,-(— k). (10)

The wave-number vector k has a magnitude k. The
kinetic energy is given by the integral

) f ARF () =p(u2)/2.

With the use of definition (10), we are now able to
express the energy equation (8a) in terms of the spectral
function F, by integrating with respect to % for the
magnitude between 0 and k. We obtain

k

a k
_2 f AkF (k) =2 f AREF(E)
dtJy 0

8n *©
+._f dk’f dnzq(k’, m). (11)
V Jo<r<r —o

The double integral of the right-hand side of (11) is
called the transfer function and is denoted by W;. By
the reason of antisymmetry of ¢(¥/, #), the integrations
can be extended from 0 to % for the variable #/, and
from & to o for the variable #, instead of from — « to
o for n. Hence we can write the transfer function of
(11) in the following general form:

Wim —— f iK' f dntg(n, k)
0<k'<k —0

18x
= —— dk"ikjlai(k,)
2 V Jo<w<r
X dna;(—n)a;(n—Kk’)
k<n< » ’
1878
+—-— dk'ik/a;(— k)
2 V Jo<r<i
X dng;(n)a;(—n+k’). (12)
E<n< »

7C. M. Tchen, J. Chem. Phys. 20, 214 (1952).
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Several important features of the transfer can be
noted from this expression as follows:

(i) In the form (12), the transfer of energy from wave
numbers smaller than % to wave numbers larger than
k is ensured by the action of shearing stresses (second
integral) in a background of turbulent vorticity (first
integral), in the same way by which the energy of the
turbulent motion is produced by the gradient of the
mean motion through the action of the Reynolds
stresses.

(ii) Formula (12) indicates that for k=0, W van-
ishes. W, also vanishes for 2= . This means that the
total transfer across the spectrum must vanish. Conse-
quently, the transfer is not a real dissipation of energy,
in the sense that the energy is lost from the turbulent
flow in the form of heat, but it promotes indirectly the
dissipation by producing steep gradients which are
more easily attacked by viscosity.

(iii) In order to obtain a transfer function in terms
of spectral function, the first difficulty confronting us
from (12) is to separate the three amplitude functions
into two appropriate groups, each representing a well-
defined physical entity of the transfer mechanism.
Secondly, since according to (9) and (10), @* was pro-
portional to V, the quantity @® should be proportional
to V32, It seems that the missing factor (¥3V)} in (12)
should be embodied in the phase correlation of the
three amplitude functions. The factor k%2 is written
here to make (KV)} dimensionless. In this way we
would arrive at

WkNF3/2k5I2.

This expression gives the 2753 law of the spectrum. The
basic mechanism of phase interaction which would en-
tail a factor (£*V)?* forms a difficult problem to which
not much help can be found from the hydrodynamical
equations. Here we must look for a statistical method,
describing the transport processes by turbulence and
serving as a basis of studying the phase correlation. We
will come back to this matter in Sec. 3.
(iv) The integrands

ai(—n)a;(n—k'); a;(n)a;(—nt k),

of (12) can be considered as a result of the transport of
momentum in the 7 direction by a cross motion in the
4 direction. Therefore, from its mean value as defined
by the surface integral

fds(n)”"
j;gng mdn- . -=j;wdnj;ds(n)

for all directions of the vector %, the absolute value of
n being confined between # and n+-dn, a gradient,

—'ikj,d;(k’) or ik,-’ai(—k’),

such that

multiplied by a turbulent viscosity characterizing the
transport process, must come out under certain circum-
stances which we shall discuss in detail in Sec. 4. Hence,
a plausible formulation seems a priori to be as follows:

3 .

f dna;(n)a; (k' n) = — ik as(K)vs,
k<n< »

with its conjugate r

(13)

f dna:(—n)a;(n—k') = ik/as(— k).
k<n< o

J

Substituting (13) into (12), we derive the transfer
function (1a) postulated by Heisenberg. Equation (13)
is the equation of phase correlation, and plays an im-
portant role in the determination of the transfer func-
tion. From the physical point of view, it expresses that,
by interaction between k' and n (#>%'), the smaller
element n is merged into the larger element k’. Such an
intermingling produces an exchange of momentum pro-
portional to the average steepness of the resulting
element, i.e., gradient of the larger element k’, and to
the diffusivity of the smaller submerged element n. A
proof and a generalization of (13) are found in Sec. 4.

(iv) On a pure dimensional ground, without con-
sideration of phase interaction, the first integral of (12)
could be considered as a turbulent gradient propor-

tional to
k H
[Zf dk’k”F(k’)] ,
0

and the second integral could be considered as a stress
tensor proportional to

f °°an (n).

In this way we would arrive at the Obukhoff formula
(2). The question may be asked whether some physical
basis may be attributed to it. This problem together
with the physical foundation of the Heisenberg formula
will be studied in Sec. 5.

III. TRANSPORT PROCESSES IN TURBULENCE

In the preceding section, we have studied the transfer
function from the hydrodynamical equations, and found
that the relation of phase correlation (13) is important in
the derivation of the Heisenberg formula. The fact
that the phase interactions should come out, indeed, in
the form (13) involving a turbulent viscosity, must be
examined from the statistical theory of transport
processes in turbulence, which we shall study in some
detail in the following pages. For this purpose, a transi-
tion probability controlling time and displacement will
be used to describe the transport processes. Its prop-
erties have been studied in detail in connection with the
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motion of small particles suspended in a turbulent fluid,?
and applied to the study of the configurations of long
chain molecules.®
Let
p(, x'5t, x)dx

be the probability for a fluid element, which at the
instant £, started from the point X/, to arrive in the re-
gion x, dx (ie., in an elementary volume between
%1, X1 d%1; %9, Xo+dxo; x5, x3-+dxs) at the instant ¢ The
function p controls the dispersion of the fluid element,
and is called dispersion function. It is supposed con-
tinuous, and satisfies the condition

f dxp(, x';t, x)=1. (14a)

Here and in the following formulas the limits of integra-
tion for convenience are given as — o, + 0 ; the mean-
ing of the formulas is that the integration is carried
out over the whole available domain of x-values, which
may be of limited extent. Formula (14a) expresses the
condition that all fluid elements starting from x’ must
find their place in the totality of the region dx forming
the available domain of the variable x.

It is in the nature of the phenomena of motion,
whether regular or irregular, that we must expect

limp(t, x' )= ) 0, for x—x'£0 (150)
imp (', x'; ¢, x)=6(x—x =< a
h"p o, for x—x'=0.

In all dispersion problems an important role is
played by the mean values of the displacement and of
its second and higher powers. Introduce the notations

- “ix(e=x)pt, X1, %), (162)

(lals)= f de(xa-xa’) (xs—xg)p(t', X'; £, %), (17a)

etc. The mean value of the displacement itself, (1), will
be zero in the case of a symmetrical dispersion; in other
cases, it can be expected that () varies as {—#. The
mean value of the square of the displacement, (%), can
be of the order of —# for small values of this interval.
This can be seen when as an example for p we take the
Gaussian function. The Gaussian function, which usu-
ally is considered as a typical example of a dispersion
function, has furthermore the property that the mean
values of higher powers of the displacement, as {I*) etc.,
for small intervals {—¢ are small compared with ¢—#'.
Following Kolmogoroff we shall assume this to be a

8 C. M. Tchen, “Mean Value and Correlation Problems Con-
nected with the Motion of Small Particles Suspended in a Turbu-
lent Fluid,” Mededeelingen No. 51, (1947), Laboratorium voor
Aero- en Hydrodynamica der Technische Hogeschool, Delit,
Netherlands.

(19 ;31) M. Tchen, J. Research Natl. Bur. Standards 46, 480
951).

general property of the dispersion function to be con-
sidered here. Kolmogoroff, moreover, assumes that the

ratios
D/ @—1") and (B)/(@~1)

tend to constant values (independent of ¢—¢') as i—¢’
is decreased indefinitely.

The dispersion function p which defines the motion
of the fluid elements, controls also the exchange of some
physical or mechanical property ¢ (¢, x)dx distributed
in the space and carried by the fluid elements in the
region dx, at the instant £ As a condition of statistical
conservation of ¢, we can write

3(t, x)= f o, X)p(, X3t %), (18a)

This equation expresses that the property ¢(¢, x) in
the region dx and at the instant ¢, must have originated
from somewhere in the whole region x’ at an earlier
instant ¢/. Evidently,

f dxo(t, x)= f ax'o (', x’).

—x0

In problems of moments it is known that the proba-
bility function p can be determined by the moments
(Im). Therefore, a relation for ¢ can be formed in terms
of the moments from (18a). For this purpose we shall
develop the integrand of (18a) into series. Before going
to the development into series, it can be remarked that,
in a Gaussian function, the parameters #, x’; ¢, x figure
exclusively in the form of the differences (—#, x—x'.
In functions of general type, however, #, X’ themselves
(or in another representation ¢, x) must also be present.
Let

t—t'=71; x—x'=I;

then we can write the dispersion function p(#, X'; ¢, x)
as a function P of (¢—7, x—1;7,1):

P, X8, x)=P(t—7, x—1; 1, 1).

This second mode of writing is advantageous when we
want to express that a dispersion function varies more
slowly with ¢, x than with 7, I. In particular this will
be the case when 7 is small. A development into a
Taylor series with respect to x means a development of
p(¢,x';1,%) into a series proceeding simultaneously
with respect to x” and x, with equal increments of both
variables. The development of the integrand of (18a)
into a Taylor series is then

(', x)p(t, x'; 1, x)
=¢(t—r, x—DP(t— 7, x—1;7,1)

a
=¢(t_— Ty X)P(t_'r, X7 l)_la__'(‘ﬁp)
T 0%y )
d

+2luls——(P).
0x,0%5
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Here repeating indices denote summations. Substitut-
ing the value above into (18a) and applying formulas
(14a), (16a), and (17a), we obtain

9

a 2
o(t, )=¢(, x) -, X)) ]+ [2(els)$].
0% 0x,0x

If we apply the Kolmogoroff assumptions that, for in-
definitely decreasing 7, the ratios (l)/7 and (?)/2r as-
sume constant values, and divide by 7, we can write
the partial differential equation:

tx) 0 [<la> o ¢] L2 [G;l")(b} (19a)

- (t ]
0x0xgL 27

at 0%y

T

In this form, Eq. (19a) is called the Fokker-Planck
equation.
The property ¢ must moreover satisfy the equation
of continuity:
dp 0
'—+‘—(¢ua) =0.
ot

Yo

(20a)

Equations (19a) and (20a) form a system of two funda-
mental equations of the transport processes and will
serve as a basis for determining the phase correlation
(13), as required in the Heisenberg transfer function.

Some remarks can be made about the range of appli-
cation of ¢. First, if we apply to the case ¢=1, Eq.
(20a) degenerates to the equation of conservation of
mass in an incompressible flow. Secondly, the case of
¢=p transforms Eq. (20a) into an equation of con-
servation of mass in a compressible flow. Finally, if
¢=pu, we have an equation of conservation of mo-
mentum, by disregarding the effect of pressure and vis-
cosity which are of molecular origin. Now for the pur-
pose of studying the transfer of energy across the spec-
trum (transfer function), the pressure and the viscosity
can be indeed dropped for the following reasons. The
former has the role of equipartition of energy among
the components and does not play a role in the energy
of the three components as a whole. The viscosity plays
only a role in the molecular dissipation function which
is well known, and not in the transfer function. There-
fore, we cease to investigate a more comprehensive type
of continuity equation, and conclude that (19a) and
(20a) can be legitimately applied to the cases ¢=1
and ¢=pu.

It is to be remembered that the dispersion, as char-
acterized by the function p, does not, by definition,
depend separately on the specific nature of ¢ (whether
it represents a mass or a momentum), and, therefore, we
shall have a unique turbulent viscosity,

vag® = (lalg)/ 21,

common, at least in spectral structure, both in the
transport of mass and in the transport of momentum.
We shall assume this to be the case considered here,

PROCESSES 9

and must leave open the question whether there exist
other types of dispersion functions which do not possess
this property.

ves® has the dimension #/, and may be expressed in
terms of F. Therefore it may be considered as related
to ¢, for ¢p=pu. Thus Eq. (19a) is essentially a nonlinear
partial differential equation, suitable for the study of
phase correlation.

Further, we shall assume

Vag*=1*84p.

With the aid of the property that »* is common to
both cases of transport ¢=1 and ¢=pu, a simplified
form can be written for (19a). By putting ¢=1 and
integrating, we have

o)/ T7=0v*/0%0;

the constant of integration may be rendered immaterial
by a proper shift of coordinates. Substitution of (21a)
transforms (19a) into

dp 0 d¢
— = 11*— .
ot ax,,( 6x,,)
Equation (21a) represents a current of diffusion due
to the inhomogeneity of the turbulent field. Consider
the case of a turbulent field where the diffusion in-
creases with increasing values of x. Elements diffusing
out of dx will take ever greater movements when they
are displaced in the positive direction. Hence they will
have greater chances to be dispersed farther away than
those elements displaced in the opposite direction, and
at the end of a small interval of time there will result
a mean displacement in the positive direction, propor-
tional to the gradient of the turbulent viscosity.

(21a)

(22a)

IV. CHARACTERISTIC FUNCTIONS

In order to study the phase correlation resulting from
the transport of momentum between various modes, it
is advantageous to pass from the probability function
to the characteristic function. The characteristic func-
tion, denoted by a bar, is defined as the Fourier trans-
form of the probability function. Thus the character-
istic function 7 is

o0

1
e [ (AT
)"V
and, conversely,

P, x5t %)= f ket = (¢, x'; 4, k).

—0

Also introduce

- 1 o ikex
36 0= f_ gl ).

Corresponding to (14a)-(22a) the following formulas
can be obtained either by the Fourier resolutions of
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(14a)-(22a) or by direct reasonings:

(27")313 (t’) X'; Z 0) = 1; (14b)
(2n) limp (¢, X34, W)=1, (15b)
' )
(2m)? lklg gk—ai) #, x5 t, k)= —i(l.), 16b)
62
Qo) e p (€, X6, )= =), (A7)
‘E(t’ k) = (2“')3‘50,, k)ﬁ(t’) XI; ¢ k)) (18b)
¢ 1 p® i )
—~=~f dniky(l.)(n)¢(k—n)
ot 71Vv_4 N
- f dnbokgieg*(m)@(k—n), (19b)
¢ 0 _
a—=ik.,f dna,(k—n)é(n), (20b)
¢ o
(lo)/ 7= —ika¥*, (21b)
) © .
Z=k, f dn(ka—n)@(k—n)7*(n).  (22b)
¢ o

Thus by comparing the right-hand sides of (20b)
and (22b) we have the following relation of phase
correlation:

fwdna,a(k—n)q;(n)': —ifwdnnaé(n)ﬂ*(k-—n), (23)

which, by putting ¢=pu; as mentioned before, can be
written as follows:

fwdnaj(n— k")a;(—n)

=if dnnja;,(—n)i*(n—k'),

(24)
f dna;(K'—n)a:(n)

—0
o0

= —if dnnya;(n)7*(k'—mn).

—c0

Equations (23) and (24) are called relations of phase
correlation. Substituting (24) into (12), we obtain the
following transfer function:

1 8x8
= dk’f dnki'n;
2 V Jo<r<ek E<n< ®
X[a:(k)a:;(—n)7*(n—k')

+ai(=k)a;(n)5*(k'—n)].  (25)

This general expression will serve as the foundations
of the Heisenberg and Obukhoff theories.

V. ON THE HEISENBERG AND OBUKHOFF FORMULAS

Since we are concerned with the transfer function,
the size of the eddies which we must be dealing with are
mainly eddies of the inertial range. However, in order
to discuss the mechanism of transfer, it is necessary to
talk about the interactions between big and small
eddies. It must be understood, then, that they are still
eddies essentially close to that range. Let us consider

some special cases and derive the Heisenberg and

Obukhoff formulas from the general expressions of the
transfer function. This will give us at the same time an
opportunity of delimiting the circumstances under
which the two theories are valid.

In its general form (25), the transfer function con-
tains a gradient, of modes k’ and n, and a turbulent
viscosity, of mode (n—k’). It lies in the nature of the
phenomena of diffusion that a transfer of momentum
from k'(0<F<E) to n(k<n<®) occurs when the
small eddies n in the role of turbulent viscosity dis-
place themselves in a gradient field of larger eddies.
As one of the special cases which we consider, it may
happen that the functions of the two kinds of eddies,
the one playing the role of turbulent viscosity and the
other playing the role of gradient, are very distinct,
so that for the motion of gradient-forming eddies, the
smaller eddies may be, by approximation, abstracted
and replaced by a uniform turbulent viscosity of the
field; it is in the same way that the molecular motion
has been usually abstracted in the hydrodynamical
equation of motion and replaced by a uniform molecu-
lar viscosity ». For such a case, we can write

#*(n—K)=|v*|s(n—K'). (26)

In this way, the mode of the turbulent viscosity be-
comes independent of the mode of gradients during the
momentum transfer, so that the relations (24), be-
coming

f dna;(n—k")a;(—n)=ik/a;(—k')v*
and -

f dna; (K — n)a;(n) = — ik} a; (K)o,

prove the relation (13) for the part %k, © of the spec-
trum of v*.

Further, either by substituting (13) into (12) or by
substituting (26) into (25), we obtain the Heisenberg
formula (1a).

It may be assumed that such an independence of
modes participating in the momentum transfer occurs
more likely with smaller eddies than with bigger eddies.
Therefore, the Heisenberg theory may extend more
legitimately to small eddies. It is with them that the
two gradients in the transfer function (the one origi-
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nates from the transfer of momentum, and is associated
with »* to form a shear stress, and the other entails
from the transport of the shear stress to create the
transfer of energy) are not of smooth pattern and may
be intermingled. .

In the second place, consider the other extreme case
where the transport of momentum occurs in a vorticity

field of smooth pattern, i.e.,
k'<n. (27)

In this way #* and ¢; having the same argument »
become inseparable. Substituting (27) into (12), we
obtain

1
Wk= ——f dk'ikj’di (k’)
0<k'<Ek

8
X— dna;(—n)a;(n)
k<n< «
1
- dk'ik,"a,‘(— kl)
2Jo<r'<k
8
X— dna;(n)e;(—n). (28)
k<n< «

The right-hand member consists of a complex double
integral and its conjugate. Each double integral reveals
the product of a vorticity by an energy of shear origin.
As the vorticity is expressed by

[2 f kdk’k""F(k’)]*

and the energy by
f dnF (),
k

Eq. (28) is transformed into the Obukhoff formula (2).

Usual opinions are more in favor of the Heisenberg
theory, because it extends to the viscous range of the
spectrum (although not to k—c, where the Brownian
motion may come to interfere with turbulence) by
giving a reasonable spectral law F~k"7, while the
Obukhoff theory does not. The above considerations
of transport processes have given to those theories
some foundations, and shown that they are both reason-
able. The Heisenberg theory may extend more to large
k, while the Obukhoff theory more to small k. As the
Obukhoff theory is shown not applicable to large %,
obviously it is not expected to deliver the 7 law, as
did the Heisenberg theory in the viscous range.

The relation of phase correlation (13) which serves
as a basis of the Heisenberg theory, may be roughly
interpreted by means of the Burgers’® model of turbu-
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lence under the equation

du du O
—tu—=p—.
o ox 0

It is a simplified form of the hydrodynamical equation
(3), and can also be considered as describing in a
simplified way the propagation of a series of plane shock
waves, introduced one after another into a gas. For the
description of homogeneous turbulence, we may best
prescribe a system of impulsive forces acting simul-
taneously for a short instant in a series of arbitrary
chosen points. In the beginning the # curve will picture
the pattern of the initial impulsive forces. But later on
it changes more and more its profile, and original de-
tails are gradually eliminated. There is a tendency to
form steep fronts at negative slopes. After a finite
lapse of time they will approach to a vertical position,
while the positive slopes will gradually decrease, so
that we obtain a series of rectangular triangles, forming
the so-called saw-tooth profiles. The vertical fronts,
once generated, remain vertical, and propagate with
variable velocities of advance, so that the consecutive
vertical fronts may overtake each other. At the inter-
mingling of two fronts the element of smaller scale »
submerges into the element of larger scale %' with a
transfer of momentum, and the two elements are com-
bined to form a single front, moving from now on like
the front of the survived element %’. The transfer of
momentum is a result of the intermingling of the fronts
which are the seats of vorticity. It is, therefore, not
strange that in formula (13), the transport is char-
acterized by the merging of two elements %’ and #,
and as a result, the surviving larger element %’ appears
in the form of a vorticity ik;/a;(—k’). It is to be noticed
that the role of the smaller submerged element in this
transport process cannot be completely forgotten: the
transport, moreover, depends upon how actively the
submerged element # can diffuse, and is, therefore,
proportional to the turbulent viscosity formed by the
smaller element.

VI. APPLICATION OF THE PHASE CORRELATION AND
OF THE TRANSPORT PROCESSES TO SHEAR FLOW

By means to the dimensional reasonings on which
the Heisenberg theory is based, Parker!® has extended
the treatment to shear flow, and considered the prob-
lems of the critical Reynolds numbers. We shall not
go into the study of the origin of turbulence here, but
we shall restrict ourselves to the fully developed turbu-
lent state, and investigate the spectrum in shear flow.
The energy spectrum in shear flow has been studied
earlier on the basis of the Boussinesq-Prandtl concept

10 Eugene N. Parker, Phys. Rev. 90, 221 (1953) ; see also Eugene
N. Parker, “The Concept of Physical Subsets and Application to
Hydrodynamic Theory,” Technical Memorandum No. 988,
March 1953, Mechelson Laboratory, Inyokern, China Lake,
California (unpublished).
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of turbulent shear.!! In the following, the shear spec-
trum as well as the energy spectrum will be derived
directly from the relations (23) and (24) of phase
correlation. The method followed will be first to derive
the production function and the Boussinesq relation
between the shear spectrum F,; and the energy spec-
trum on the basis of the phase correlation. Then the
equation of equilibrium between the functions of dis-
sipation, production, and transfer will serve to deter-
mine F and Fy;.

We suppose that in a domain of size X, there are
superposed two flows: a main flow U; (independent of
time), and a secondary flow #; (varying in time and
space), respectively with Fourier components 4; and
a; defined by formulas of the types (5a) and (5b).
Beside the dissipation function and the transfer func-
tion as studied in Secs. 1-5, we have to investigate
the production function ¥ which results from the inter-
action between the two motions. Other functions, such
as diffusion and convection, which take their origin
from inhomogeneity, are of large scales, and are sup-
posed negligible as compared with ¢ and W.

As we recall that the transfer function W, was ob-
tained by analyzing the inertia term

U100/ 0% ;

of the equation of energy, the production function ¥y
is given by the Fourier analysis of the shear term

umja Ui/axj.
Thus by the same method used to derive Wy, we have
18«3
Yp=——— dk'ik/ 4 ;(k’)

V Jo<r<k

Xf dnag;(—n)a;(n—k’)
E<n< »

dk'ik/ 4:(—K')

0< k' <k

X j; g dna,(n)es(~ntK) - (29)

+——
2V

in analogy with (12), and

18#
dklf dnkj'n,-
0<k' <k E<n< »

Sy
X[4:(K)a:(—n)7*(n—k')
+4:(—kK)a:;(n)7*(kK'—n)] (30)
in analogy with (25).

Again we can apply to two extreme cases as de-
scribed in Sec. 5.

1t C, M. Tchen, J. Research Natl. Bur. Standards 50, 51 (1953).

(1) First, we suppose a uniform »* in the transport
processes. For this case we can use assumption (26),
which substituted into (30) gives

8rd

=] kLA Ke (k)

0<k'<k
+Ai(—k/)di(k/)]l'k. (31)

This supposes that there is a strong interaction be-
tween a; and A4.. Therefore, 4; must possess a rough
pattern with strong vorticity. The integral represents
a mixed vorticity composed of two motions. If we sup-
pose that the spectrum of A4; is approximately complete

between 0 and %, due to its rapid convergence, (31)
takes the following form:

AUN? rF 3 '
¢k~[2 (3—) f dk’k’zF(k’)] vk, for large U’, (32)
Xj 0 )

where
U= (0U,;/dx;)>.

For the determination of the energy spectrum F,
consider the case of statistical equilibrium, and write
the following equation of dissipation:

k
e=2» f AR KF () + Wit (33)
0
where
e=2vf dk'R?F (k).
0
In the inertial range, the viscous dissipation on the

right-hand side of (33) is negligible, and so does W5
too, as compared with ¥y, if

k
2 f QKRR (B (U /o)
0

This is the case of large U’ and moderate k. Hence from
(32) and (33) we have

k b
uk[U'22 f dk’kmF(k')] =
0

F=(¢/xU")k™, for large U'. (34)

An estimate of the shear spectrum F;; can be obtained
by starting from (6), and writing the rate of change of
the amplitude of the shear stress as

It follows:

0
5[01'(1()0:‘(" k)+a:(—k)a;(k)].

The function of production of such a shear stress has
an expression of structure similar to ¥y, containing the
triple product of 4 by two @’s. If again the production
term is the predominant one, one finds by similarity
2F s~k (35)

as the spectrum of the shear uu;.
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(2) Let us consider the case of a mean motion of
smooth pattern, i.e., of small U’,

k
Zf dk'R?F (B )>U".
0

The assumption (27) is then valid, and after being sub-
stituted into (29), gives

aU; =
Yi=—2 f dnF (). (36)
Ix; Jy
Since U’ is small, (36) indicates that W is predominant
on the right-hand side of (33). Hence the spectrum of
energy is that given by the Heisenberg and Obukhoff

theories:
F= (8¢/9)¥3k7505, 37

In order to determine F;j, we start from the general
relation of phase correlation (23), which may be
written as follows:

8t _ 8 o
— [ dn(as ) () =— [ dniny(6 (—mys* (),
14 14
For ¢=p(U;+u;), we have
8t 8x
——fdnaj(n)ai(— n)=—fdninin(—n)ﬁ*(n).
14 14
Further, by means of the relation
1 px+x 0U(X
| AT

midi(—n)=—— X
8m3Jx -X é)xj’

em-x'

as derived from the definition (5a), (38) can be trans-
formed as follows:

83
— dna;(n)a;(—n)
k<n<
1 x4+X 0 U«;(X’)
=—— dnf dx’ e™-x'7*(n)
Vdipcn< z—X i
aU;
= VK y (38)
Gx,-

for a mean motion of smooth pattern. Hence

k

KS o
-— fk Ao n)+ o)

1,9U; aU;
2 ax,- 0x;

for sufficiently large k.

(39)

13

10
. °
AN
cF (k)
cm
10"
% -1
AT
102 4
-5/3
10° *
102 10" 10° 10! 102
k, cm™'

Fic. 1. Energy spectrum in a boundary layer and in
a pipe (for data see Table I).

Formula (39) is known as the spectral equivalent of
the Boussinesq-Prandtl formula, which, after differ-
entiation, gives a relation between F;; and F as follows :

1,0U; oU;\ sF(k)\?
e 22
4\ 9x; 9x; k3

1 aUz an 8kZe\ 113
=——( +— (__...) B8 (40)

4 ax,- 6x,- 9
102
cFip
cm
103 + ..+‘§\
-1
Tol \<\
-7/3 °
10°
To
+
ToRd
1072 10” 10° 10!
k,cm™

F16. 2. Shear spectrum in a boundary layer
(for data see Table II).
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TaBLE I. Data for the energy spectrum in a boundary
layer and in a pipe.

Distance Local
Experi- from mean
mental Type of Unj; wall; velocity u’
points ow 8;cm  cm/sec 8/x2 gradient cm/sec c
+ boundary 7.6 1524 0.05 large 119 1
layer .
A pipe 12.3 3048 0.008 large 256 3.87
X boundary 7.6 1524 0.8 small 32 1
layer
[ ] pipe 12.3 3048 0.69 small 113 2.51

TaBLE II. Data for the shear spectrum in a boundary layer.

Experi- Distance from  Local mean

mental Un wall; velocity _{uwrna)

points cm/sec 8/x2 gradient Unm?
[ 1524 0.05 large 0.0014
+ 1524 0.58 small 0.00017

provided dU,/dx; is small, and F is given by formula
(37). The above derivation of (39) fixes the conditions
of applicability of the Boussinesq-Prandtl formula.

We conclude that in the inertial (nonviscous) range,
the spectral laws of energy are F~k~%3 k7 and the
spectral laws of shear are F~k~"3 k1 respectively, for
small and large U’.

From the experimental point of view, high values of
U’ can be found near the wall in flows of the boundary
layer type. However, one must not go too close to the
wall, where the turbulent Reynolds number drops, and
the inertial range becomes absent. It is to be remarked

that the spectra considered are three dimensional
spectra. To date, no measurements of three dimen-
sional spectra are available. However, some measure-
ments of one dimensional spectra seem to give reason-
able confirmation to the above power laws, if it can be
assumed that the powers are conserved in the trans-
formation between the one- and the three-dimensional
spectra, especially at large £ (compare Figs. 1 and 2).

It is to be remarked that for flows in a boundary
layer and in a pipe, only one component of the mean
flow with gradient plays a predominant role. Therefore,
among the energy equations for the three components,
one component only contains the production function,
and hence may give the spectrum %1

Figures 1 and 2 are based upon the measurements in
a boundary layer and in a pipe, respectively, by Kleban-
off®? and Laufer.® In order to facilitate the comparison,
the normalized spectra of energy and shear are plotted
in Figs. 1 and 2. Thus the one-dimensional energy spec-
trum F; and the shear spectrum F1; are expressed in cm.

Let 6 be the thickness of the boundary layer, and the
radius of the pipe; U, the maximum mean velocity;
#' the root-mean-square of the velocity fluctuations in
the x; direction; ¢ a numerical constant required by
normalization, and used to bring together the data.
The essential data for those figures are found respec-
tively in Tables I and II.

2P, S. Klebanoff, Natl. Advisory Comm. Aeronaut. Tech.
Notes (to be published).

13 John Laufer, Natl. Advisory Comm. Aeronaut. Tech. Notes,
No. 2954 (1953).



