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processes occurring in rarefied gases, it is desirable to have a
method of solution which deals with the entire range of pressures
in a unified manner and which can satisfy general microscopic
boundary conditions. The present communication sketches such
a method for the special case of Maxwellian molecules, which
repel each other with an inverse 6fth-power law of force.

The Boltzmann equation governing the distribution function
f(v, x,t), in the absence of external forces, is

+v—vt,f=ff(v', x,t)f(v, ',x)t)dAdvg

f(v, x—,t)1f(v&,x,t)dAdvi (1)

where dA contains the geometrical variables specifying a collision
and is independent of velocity; v' and v&' are velocities after
collision and are expressed in terms of v, vi and the geometrical
variables.

We introduce a cutoG in the form of a maximum impact
parameter so that the integrals converge separately. We give the
names "emission term" and "absorption term" to the 6rst and
second terms, respectively, on the right-hand side of (1.).Our pro-
cedure is then the following: at each step the absorption term
is left intact. For the 6rst step we insert a locally Maxwellian
distribution fo in the emission term. Here,

form exponentially with a time constant 0./p. The nature of the
decay is independent of the initial form and amplitude of the
distribution. Equation (4) yields the distribution function as a
power series in e '~~~, the coefficients depending on the initial
distribution. The results for the decay of the lowest moments
agree with the exact results of Maxwell. '

c. Equation (3) permits a clear survey of the problem of
translational dispersion. However, in the limit where the Enskog-
Chapman procedure is valid there is a discrepancy of 20 percent
in the dispersion; this is removed by the iteration (4).

The chief physical reason for the success of the iteration is that
we successively improve the emission term by inserting more
exact distribution functions; the behavior of Eq. (1) for most
problems is not sensitive to this term. The physically reasonable
solutions of (3) imply that we start with good over-all behavior.
For some problems the iteration (4) may not be the most practical
procedure. Nevertheless, methods involving a successive set of
kinetic equations which are solved exactly appear promising for
cases where the expansion of the distribution function in some
orthogonal set does not lead to de6nite results.

A more extensive treatment, together with applications, will
be published later.

The author would like to thank Dr. M. Krook for helpful
discussions.

with

p (x,t) =ffdv, —

1
q (x,t) —=— vfdv,

p

3kr(x, t) 1
(v—q(x, t) }'fdv,

m p

(2b)

(2c)

(2d)

tS ~ 81f,(, a) ,=—, *x — Cv —a(*,~)l'p, (2 )
*Sponsored by the U. S. OfFice of Naval Research, the Army Signal

Corps, and the Air Force.'S. Chapman and T. G. Cowling, The Mathematica/ Theory of Non-
Uniform Gases (Cambridge University Press, London, 1952). Another
method of the same type is given by H. Grad, Comm. Pure Appl. Math.
2, 331 (1949).

2H. Jaffe, Ann. Physik 6, 195 (1930).
8 Bhatnagar, Gross, and Krook, Technical Report 69, Laboratory for

Insulation Research, Massachusetts Institute of Technology (unpublished);
Technical Report 11, Solar Project, Harvard University (unpublished);
Phys. Rev. (to be published).

4 E. Wild, Proc. Cambridge Phil. Soc. 47, 602 (1951).
5 J. C. Maxwell, Scientific PaPers (Dover Press, New York, 1952), Vol. 2.

where k is Boltzmann's constant and m is the mass of the molecule.
Using the conservation laws v +vp= v' +vi" and v+vi ——v'+vI',
we obtain

—+v &*f=(f.—f)
8f p(x, t)

(3)
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"AGNETQRESISTANCE anomalies have been observed
J - in a single crystal of natural graphite at low temperatures,

further verifying and extending the correlation already illustrated
in bismuth' ' between .the magnetoresistance variations and the
de IIaas-van Alphen eB'ect (oscillatory dependence of magnetic
susceptibility upon magnetic Geld). Furthermore, application of
the same type of analysis used in bismuth and graphite to the
zinc magnetoresistance data of Nachimovich' and the de Haas-
van Alphen data of Marcus4 and Mackinnon' reveals the existence
of a like correlation. The existence of such a correlation in zinc,
which is a relatively good conductor, implies that the electrons
causing the susceptibility oscillations, i.e., the de Haas-van Alphen
electrons (while as few as 10 ' per atom) may play a greater role
in determining the electronic properties of metal single crystals
than was heretofore believed. Indeed, such magneto-oscillatory
behavior must be expected in still other electronic properties
measured at low temperatures. Because de Haas-van Alphen
effect investigations yield relatively precise values for electronic
effective masses and chemical potentials, they should prove
valuable in interpreting such behavior.

The magnetoresistance measurements on graphite were carried
out at 4.22'K on a sample cleaved from a large single crystal of
natural graphite (Catalog No. 48789, Essex County, New York)
kindly loaned by Dr. George Switzer of the Smithsonian Insti-
tution. The magnetic 6eld was parallel to the hexagonal or c axis,
and the direction of the measuring current was along a binary
or u axis. Electrical contact was obtained by copper plating the
ends of the crystal which were then clamped to an insulating
member with small copper bars to which current and potential

Equation (3) is the kinetic equation proposed by Bhatnagar,
Gross, and Krook' as a model for collision processes. It has the
feature that particle number, momentum, and energy are instan-
taneously conserved by collisions. While (3) is a nonlinear integro-
diBerential equation, it is of a simpler mathematical nature than
the Boltzmann equation since only the first few moments of the
distribution function occur in the collision terms. Indeed, for
small-amplitude sound oscillations (translational dispersion oi
sound) the exact solution can be exhibited as a contour integral'
and investigated as a function of mean free path and boundary
conditions. While (3) leads to sensible physical results for a wide
variety of situations, the solutions are not quantitatively exact.
The sequence (4) is proposed as a systematic improvement. A
general study of the convergence of (4) to the solution of the
Boltzmann equation can be made using the methods of Wild. '
We discuss here the results of (3) for three diiierent types oi
problem and indicate the improvement brought about by (4).

a. A calculation of transport properties using (3) yields a
ratio of heat conductivity to viscosity, which is —, the correct
value. Equation (4) gives the series —',(1+-,'+ .+(-,')" 'g, which
converges rapidly to unity.

b. According to (3), a spatially homogeneous velocity distri-
bution which is non-Maxwellian initially, decays to Maxwellian

where a is a constant depending on the cutofII; to insure con-
sistency of the procedure it has a definite value for a given force
constant. In the second step we insert the solution f& of (3) into
the emission term. The equation satis6ed at the nth step is

+v vlf~+ —= f~ i(vi', x,t) f„&(v',x,t)dAdvi (4).
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FIG. 1. Change in resistance b,R in a graphite single crystal as a function
of H 1 at 4.22'K (solid line), 8 is the difference between the experimental
values and the dashed curve.

leads were soldered. Since an unknown amount of contact resis-
tance is present in such a configuration, the change in resistance
(rather than the usual ratio of change in resistance to zero field
resistance) is reported. In Fig. 1, the change of resistance hR of
the sample in a magnetic field H is plotted. as a function of H '.
Since the probable error was estimated. as less than the thickness

of the plotted curve, the experimental points could not be indi-
cated. Consequently, in order to illustrate the nature of the
anomalies better, the differences 8 (as read from a larger graph)
between the experimental points and the dashed curve (which is'

accurately represented by AR0-H'"' between 12 and 25 kilo-
gauss) are plotted on an expanded scale at the bottom of Fig. 1.
Values of H ' for which 8 exhibits minima are indicated by arrows
in Fig. 1 and are plotted against integers in Fig. 2 (solid hne).
For comparison, Shoenberg's de Haas-van Alphen data' on
graphite were extrapolated to the same orientation (P parallel to
the hexagonal axis), and values of H ' for which graphite exhibits
susceptibility minima are also plotted on Fig. 2 (dashed line).
Since these lines are parallel, a one-to-one correspondence in
period P/ED=2. 2X10 ' gauss ' is indicated. ' This point should
be emphasized in view of the fact that the more complicated
nature of the electronic constant energy surfaces for bismuth had
made it impossible to state unambiguously from the experimental
evidence alone whether the period of the magnetoresistance
oscillations was one half that of the long-period susceptibility
oscillations or was just equal to the period of the short-period
susceptibility oscillations. (The one-to-one correspondence in
period is further borne out by the zinc data. ) Although the
separation between the lines in Fig. 2 indicates a phase difference
of approximately x/2 between the resistance variations along a
binary axis and the susceptibility oscillations along the hexagonal
axis in graphite, no great accuracy is claimed for this parameter
since the susceptibility and resistance measurements were not
carried out on the same crystal. Furthermore, the analysis is
complicated somewhat by the fact that 8 is not a simple mona-
tonically modulated sinusoid (see Fig. 1). However, this is to be
expected in view of the existence of a subordinate term in the
susceptibility having a period 4 that of the dominant term.

More detailed investigations of the correlative eBects are in
progress and will be reported at a later date.
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FIG. 2. Ualues of H 1 for which magnetoresistance and susceptibility
oscillations in graphite exhibit minima are plotted against integers. The
susceptibility data are those of Shoenberg (reference 6).
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'RANSPARENT films of sulfide phosphors of the order of
10 microns in thickness have been prepared by the vapor

reaction method of Cusano and Studer. ' Such films o8er a crystal-
line form of these materials particularly suitable for study under
high voltage gradients. Preliminary data on films of ZnS:Mn
(approximately 0.5 percent Mn) reveal some interesting variations
from previously reported electroluminescent behavior.

Samples were prepared in the form of condensers with one
transparent conducting electrode on a glass substrate, a trans-
parent phosphor dielectric, and a second electrode of evaporated
metal. ZnS:Mn films so prepared respond with a Mn emission
peaked at 5900A to either cathode-ray or electroluminescent
excitation. They have a specific resistance in the dark of the
order of 10" ohm cm measured at an average gradient of 104

volts/cm. Thermoluminescent measurements between —196'
and +200'C yield one "glow peak" corresponding to a 0.3-ev
trap (frequency factor of 10 /sec assumed). This trap is observed
also in ZnS films with no Mn.

Except for a transient Rash on application and removal of dc
fields, no dc luminescence is produced by fields below breakdown
(approximately SX10' volts/cm). Two light pulses per cycle are
observed on application of an ac potential. As can be seen in
Fig. 1, these light pulses are very closely in phase with the applied


