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SHOCKLEY has recently proposed' that a continuous Qow of
defects will occur in a crystal in which there exists a temper-

ature gradient, on account of the gradient of defect concentration
which exists if the density of defects at any point has the equi-
librium value characteristic of the local temperature at that point.
Such a Qow of defects, he suggests, will produce a mass transport
through the lattice towards regions of higher temperature for
vacancies and towards regions of lower temperature for inter-
stitials and will be continuous except for limitation imposed by
stresses that may be set up by the mass Qow. Observations on the
direction of such a mass transport, he then proposes, may
provide a means of distinguishing between vacancies and inter-
stitials.

It is the purpose of this note to point out that a Qow of defects
may occur as a direct result of the temperature gradient as well
as indirectly through the gradient of local equilibrium concen-
trations. We shall consider first the more interesting case of
vacancies. Figure 1 represents two adjacent lattice planes normal
to the direction of the temperature gradient. n and T are, respec-
tively, the numbers of vacancies per unit area and the temperature
at plane (1), and n+An and T+AT are the corresponding quan-
tities for plane (2). In order that a vacancy on plane (1) may
move to plane (2), an atom on plane (2) must acquire at temper-
ature T+AT an activation energy Q. The rate of Qow of vacancies
from plane (1) to (2) is therefore:

Jgs ——nv expL —Q/R(T+AT) g,

where v is the vibration frequency of the atoms. Similarly, the
rate of flow of vacancies from plane (2) to (1) is:

Jsg= (n+hn)v exp( —Q/RT).

The net flow of vacancies from plane (1) to (2) is therefore, for
small dT/T,

o(») AeJ=J&s—Jsq= vn exp( —Q/RT) vn exp—(——Q/RT).RT' n

The second term gives the di6'usion Qow arising from the concen-
tration gradient and is of course proportional to the gradient and
directed towards regions of lower concentrations. The first term
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T+QT
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gives the "thermal di6'usion" Qow and is directed towards regions
of higher temperature.

Now, if we assume with Shockley that the concentration of
vacancies is and remains, at each point in the crystal, equal to
that which would be found in equilibrium in a crystal at a uniform
temperature the same as at that point, then we shall have An/n
= (U/RT')dT, where U is the energy of formation of a vacancy.
Thus n increases in the same direction as does the temperature,
and the normal diffusion Qow is in a direction opposite to that of
the thermal diffusion Qow. If Q= U, then there will be no Qow of
vacancies at all. If Qg U, the net Qow of vacancies will be towards
the region of higher temperature when Q& U and towards regions
of lower temperature when Q(U.

In the case of interstitial diffusion, we find by reasoning similar
to the above that the net Qow of interstitials from plane (1) to
(2) is

Q(») AeJ= — vn exp( —Q/RT) —vn—exp( Q/RT)—,RT g
where Q is the activation energy for the jump of an interstitial,
which in this case is to be acquired at the temperature of the
plane on which the interstitial is situated. n is the number of inter-
stitials and v their vibrational frequency.

If again we assume that the concentration of interstitials at
any point is that corresponding to thermodynamic equilibrium at
the temperature at that point, then n increases in the same
direction as does the temperature and the normal diffusion and
the thermal diffusion Qows are in the same direction, towards
regions of lower temperature, and together equal —v exp( —Q/RT)
)&{(Q+U)/RT2)a dT/dx, U now being the energy of formation
of an interstitial.

We see then that, under the assumptions made, the mass Qow
accompanying the diffusion of interstitials is always towards the
lower temperature regions whereas that accompanying the
diffusion of vacancies may be towards either the lower or the
higher temperature regions depending on the relative magnitude
of Q and U. Observations on the direction of the mass Qow will
not then necessarily give an unambiguous indication of the type
of defect responsible for it.

A detailed analysis of the diffusion of defects in a temperature
gradient would have to take account not only of the Qux of
vacancies but also of the rates at which they are created and
annihilated and the variation of these rates with temperature.
Two extreme but simple cases can be distinguished. We may
suppose that the rates of creation and annihilation of defects are
su%ciently rapid to maintain at each point a concentration
corresponding to isothermal equilibrium at the local temperature.
A continuous flow of defects will then occur as here described.
On the other hand, we may consider the case where the rates of
creation and annihilation of defects are very slow compared to
the diffusion flux. (This might be true for a time for regions well
inside a single crystal if defects were generated only at the crystal
surfaces. ) The total number of defects present at the moment the
temperature gradient was imposed would then diffuse until a
quasi-stationary state was established where the normal diffusion
Qow exactly balances the therma) diffusion Qow. The concentration
of defects at any point would then remain constant but change
with distance so that d logn/dx= (Q/RT2) (dT/dx) for vacancies
and d logn/dx= —(Q/RT') (dT/dx) for interstitials; i.e., the
concentration of defects increases towards higher temperature for
vacancies but towards lower temperature for interstitials. Such a
creation of a concentration gradient by the action of a temperature
gradient is, of course, an example of the Soret e6'ect, and these
same results may be obtained by the methods of irreversible
thermodynamics if we put for the "heat of transport"2 the acti-
vation energy Q for the motion of defects; the di6'erence in sign
arises because the transport of heat is in the same direction as
the movement of interstitials but in the opposite direction to the
movement of vacancies.
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