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( cos(mr/Ã),
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(21)

"p= (Eppp/Hap)'being theharmonic oscillator frequency,
and each level is seen to be split into sV levels by the
coupling.

On account of the interaction in all conceivable direc-
tions, extension to three dimensions of (19) and (20) is
more complicated than previously, but presents no
serious difficulties, ' and there is no need for writing
down the corresponding expressions here. In any case,
for all oD, the coeKcients E and M in each series of (20)

4 H. B. Rosenstock, thesis, University of North Carolina,
Chapel Hi11, North Carolina, 1951 (unpublished).

where

",'= fgt Eppt cos(hrr/X)]/Lpt Mt(coslmr/1V)]. (20)

If e D is so small that only nearest neighbors need to
be retained, (20) may be written as

or its equivalent fall o6 exponentially; each series con-
verges for all r.

From the conservation laws, ". the::.quantity

Bp= (8&/8k) (W/»p)

should be interpreted as the k component of the mo-
mentum density of the field, and the momentum then
becomes, with (1) and (13),

G=P;; q,q,f8(r iD) V—8(r jD)d—V.

Since it is generally possible simultaneously to diago-
nalize two quadratic forms (such as the two appearing
in the Hamiltonian) but not three, it follows that G
will not commute with II.

I wish to thank Professor Nathan Rosen for patiently
guiding the preparation of the thesis4 from which this
paper is taken, and for making countless suggestions.
I am also grateful to Professor Wayne A. Bowers for
disc ussloIls.

5 G. Wentzel, QNuntentheorie der Welleszfelder (J. W. Edwards,
Ann Arbor, 1946), Sec. 2.
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The energies of excited states of nucleons are calculated for the symmetric pseudoscalar meson theory
with a 6xed, extended source. A version of the Tomonaga method, which is shown to be approximately
correct in the limit of strong coupling, is used. The calculation is carried out for moderate coupling by
using trial functions with 0, 1, 2, and 3 mesons. Numerical results are presented for a source of the Yukawa
shape. For coupling stronger than a critical strength which varies with state and source size, isobars are
found for angular momenta —,', —,

' and for isotopic spins —,', $. The (-,',—,') state always lies lowest in energy.
A very large source (~-,'the meson Compton wavelength) yields a (-,',$) isobar at 350—400 Mev excitation,
and a degenerate (-,',—',) and (-', ,-',) pair at &~500 Mev. Other isobars lie considerably higher. Smaller sources
correspond to higher excitation energies in this range of coupling strength.

L INTRODUCTION

HE existence of nucleon isobars was first predicted
by strong coupling meson theory. Since that time,

isobars have been used in phenomenological theories in
attempts to explain meson-nucleon' and nucleon-nu-
cleon" scattering, and photomeson production. 4 Until
now, the isobars of symmetric pseudoscala, r theory have
been examined only in the strong coupling limit. ' The
only relevant low-lying isobar predicted in that limit
is the one for which I= ~, J=—,'. As a result, this excited

*National Science Foundation Predoctoral Fellow. Present
address: The University of California, Los Alamos Scienti6c
Laboratory, Los Alamos, New Mexico.' K. A. Brueckner, Phys. Rev. 86, 106 (1952).

2 J. Iwadare, Prog. Theoret. Phys. (Japan) 9, 94 (1953).'R. B.Raphael and J. Schwinger, Phys. Rev. 90, 373 (1953).
4 B.T. Feld, Phys. Rev. 89, 330 (1953).
~ W. Pauli and S. M.. Banco', Phys. Rev. 62, 85 (1942).

state is the one which has been considered in scattering
problems, although there was no guarantee that at
some smaller coupling another state could not lie lower
in energy. We have, therefore, calculated the positions
of the low-lying isobars using the intermediate-coupling
theory of Tomonaga. "

There is rro- attempt in this paper to calculate the
widths of the isobaric levels. The results should, none-
theless, be useful in predicting the order and approxi-
mate spacing of the excited nucleon levels. The motiva-
tion is comparable to that of theories of nuclear
structure which attempt to predict the same features of
the levels of complex nuclei.

One of the results of these calculations is that nucleon
isobars do exist for surprisingly low coupling. The

1

S. Tomonaga, Prog. 'fheoIet. Phys. (Japan) 2, 6 (1947).'R. Christian and T. D. Lee (to be published) ~
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excitation energies for various source sizes are sum-
marized in Figs. 2 through 5, and a discussion of these
results is given in Secs. VI and VII. Some speculations
on the relevance of these isobars to meson-nucleon
scattering are presented in Sec. VIII.

jected to the following restrictions: (a) It shall be an
exact eigenfunction of each of the operators I2, I„J',
and J,. (b) All mesons shall be in one mode. This point
is further discussed in Appendix A.

The minimization of the energy with a trial function
of this type is equivalent to solving exactly the new
problem B~%'=&0 with

r=(vQ;„[ApAp+yr o;(A; +A; )]=(ok—r (5.)

II. THE TOMONAGA METHOD

A '=Z~—f(k)ai'(k); Z~lf(k) I'=1'

~=—Z~ ~lf(k) I'

coy—=g(12v.R) 'Qy k'v(k)(o '*f(k).

As Christian and Lee' have pointed out, the form of f(k)
can be determined from the energy minimization

p,n(r) = (M'/4vr) exp( —Mr)

[with Fourier transform: v(k)=M2/(M'+k') j, where
M is the parameter which determines the size of the
source.

In this modified problem, only l=1 waves interact
with the source. Including only these terms, the Hamil-
tonian is (with 5=c=meson mass= 1)

N(X) k'v(k)
f(k) =

R'* (a'((o+X)

where X is a real parameter to be determined by further
energy minimization and 1V(X) is a normalizing con-
stant.

If we set
H=P; g(ua, (k)a, (k)+g(127rR) '

XQ; A, k'v(k)(o lo-;r [a, (k)+ a; (k)7, (2) (6)R= oo(X) U(y-'),

Ke use pseudoscalar symmetric meson theory with a g
fixed, extended source. Inclusion of the repulsive core
term which results from y5 coupling has been shown to
be equivalent, in an energy calculation, to a change in
the source shape and the coupling constant. ' These
changes are considered to have been included here. In
particular, we choose a Yukawa source for the modified
shape

where the superscripts o.=x, y, 2 refer to Cartesian
components in charge space, and the subscripts j=x, y, s
refer to Cartesian components in ordinary space. g'/4v.
is the analog of the fine structure constant, E is the
radius of the sphere in which the radial functions are
quantized, and &a= (1+k') l. The l= 1 part of the meson
field operators is given by

3 y
& x,F&(r)

[a,'(k)+a, (k)j,
&4v (gR) r'

where F&(r)=krj&(kr) of Schiff, ' if the repulsive core
is absent.

The Hamiltonian commutes with the operators I2, I„
J q and J wliere

I*=l '-'Z'[ *(k) "(k)- "(k) *(k)j
', r'+ T„(3)——

J,= ,'o, iQ -g [a—, (k)a„ (k) —a„~(k)a,~(k)j
',o,+L,. (4)—-

A transformation which interchanges 0. and 7 and
which simultaneously interchanges upper and lower
indices leaves (2) unchanged and interchanges I and J.
Thus, all energies and phase shifts will be unchanged by
an interchange of I and J.

Ke now solve the problem B%'=EC by means of a
variational method in which the trial function is sub-

then the problem separates into two parts. The first is
independent of source, involving only the solution of
the eigenvalue equation

br% = U(y')+ (7)

III. MINIMIZATION OF THE ENERGY

The eigenvalue equation (7) is discussed in Secs. IV
and V; here we develop the results of the energy mini-
mization condition. It is convenient to define

1 r" k'v'(k)dk
L„(X)—=-

v. &o co(oo+X)"

from which follows the property L„'(X)=—nL~~(lw, ).
The expression for L~(X) is given in Appendix B. We
then have

1 Lg ('g') (L,)'
=L2, o=——X,—S' L2 l 4v) 3L)oP

From the foregoing it follows that

for various values of the parameter y. The second part,
which does depend on source size and shape, is the
minimization of the energy (6) with respect to X for a
fixed value of g. It is this feature of the separability of
the problem which facilitates the calculation of results
for a large number of source sizes.

C. H. Chang and B.A. Jacobsohn (to be published).'L. I. Schi8, Qgaetlm Mechanics (Mcoraw-Hill Book Com-
pany, Inc. , New York, j.949), p. 77.

d&u 2LgL3 dy' y' (' a)L2 q d(o

dX (L2)' dX oo & Lg ) dX
(10)
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so that from (6) the condition of energy minimization
becomes

~(v') dv'

~2 dP

The left side of (11) is plotted as a function of X in
Fig. 1 for several source sizes.

Once (7) has been solved for a particular state, then
(11) gives the best value of X for a given value of y'.
The corresponding values of E and g2 are found from
(6) and (9).

In the calculation, only those solutions with X~&—1
are considered. This follows from the requirement that
the meson Geld vanish at large distances, so that f(k)
must not have a pole on the real k axis. Except in the
case of the ground state, this results in a minimum
value of ys (at X= —1) below which the isobar ceases
to exist. This critical value of y decreases with in-
creasing source size.

IV. THE STRONG COUPLING LIMIT

Before proceeding to the intermediate coupling calcu-
lations, we wish to compare the Tomonaga predictions
in the limit p2))1 with those of strong coupling theory.

Part of the Hamiltonian treated by Pauli and
DancofP is similar to that in (5). From their paper we
Gnd for the low-lying levels:

(UL,
L

0-l

=2
M 4

M=I
M

I

+I +

Fio. 1. o)Ls/L~ plotted as a function of ) for various
source sizes Lsee Eq. (11)j.

V. MODERATE COUPLING

We now turn to the problem of solving the eigen-
value problem (7) with y'&1. One should notice par-
ticularly that it is not g2 but p2 which determines the
coupling strength. They are related by the source-
dependent factor of (9). In this region, one may expect
to get a good approximation to U(y') by using a trial
function which contains only a small number of mesons
less than or equal to some given number X.The validity
of this limitation is discussed in Sec. VI. Since this
region probably covers the case of physical interest,
it is the only one we have investigated.

The trial function is now of the form

Cs J(J+1)——,
'

&= —3v'+~i+ —+ I=J. (12)
~2 8~2

N

g (n),g T (n),@ rT
m~ I—J+$ T I+$ g

(13)

C~ and C2 are constants independent of I and J. We
ignore them' since they do not contribute to the excita-
tion energy. They would have to be retained, however,
in order to calculate the energy to the point of dis-
appearance of the isobar (X= —1) for a very small
source.

Inserting (12) into (11) we find

)Lt~ J(7+1)
ELs) p 12''

The leading term in (6) for 7'-+e& gives

L, (0)gsy4

and the Yukawa shape for the meson Geld, in exact
agreement with the Pauli-Dancoff result. ~ Disagreement
occurs in the excitation energies, where our result
must be divided by a source-size dependent factor
E=LL)Ls/(Ls)']() in order to agree with strong-coupling
theory. Some typical values of E are E=1.23 for M =0,
K=1.59 for M=2, E=1.94 for M=7, and E=2.47 for
M = ~ (point source). We see, then, that this version
of the Tomonaga method, which agrees exactly with
the leading term of weak-coupling theory, agrees quali-
tatively in the limit of strong coupling.

TABLE I. The number of states with given T and L for
various values of n (number of mesons).

(r, L)

(0,0)
(o, i) or (i,o)

(i,i)
(0,2) or (2,0)
(i,2) or (2,i)'

(2,2)
'

n=O

where the &")jPJI.I~ are orthonormal eigenfunctions
with the indicated quantum numbers, containing just e
mesons. The subscript j enumerates the several possible
states that may exist with the same quantum numbers
and the same e. Table I lists the number of meson states
which exist for various e when all mesons are put into
one spatial mode. The table was constructed by making
use of the properties of the representations of the sym-
metric group. Only those meson states are included
which can be combined with nucleon spins to give I,
J= 2' and ~3. Since the number of states doubles in going
from 3 to 4 rnesons, we have cut oG the calculation at
X=3. The wave functions &"';O'Jl.l~ are formed from
the spin and isotopic spin functions of the nucleon
combined with the meson functions which are given in

Appendix C.
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through 5 show the results of the calculations of excita-
tion energies for various source sizes. In Fig. 6 we have
plotted the absolute energies of the ground state for
comparison with the magnitudes of the excitation
energies.

VI. EFFECT OF NEGLECTING THE
FOUR-MESON AMPLITUDES

The errors introduced by cutting oG the trial func-
tions at three mesons are here shown to be small in
the coupling region of interest. This may be seen from
two aspects.

Consider, first, the probabilities P„for finding n
mesons. These are plotted as functions of y' for the
ground state in Fig. 7, for the lowest (-'„-,') isobar in

50
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0
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FIG, 2. Excitation energy as a function of coupling for 3f= 1.

20

The calculations from this point on involve xnany
details which are omitted here. A summary of the most
important formulas involved in the solution of (7) is

given in Appendix D. The solutions for Lr(y') are com-
bined with graphs of the relevant source-dependent
quantities appearing in (6), (9), and (11) to give the
energy of each state as a function of g'. Figures 2
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FzG. 3. Excitation energy as a function of coupling for M= 2.

FrG. 4. Excitation energy as a function of coupling for &=4.

Fig. g, and for the lowest (—'„-',) isobar in Fig. 9. The
probabilities do not approach the proper strong coup-
ling limit of zero, since they were calculated from the
amplitudes of Appendix D. Nevertheless, it is reason-
able to assume that the curves are qualitatively correct
in the region for which P3(y') is less than one-half of
its asymptotic value. From this, we are led to infer
that P'4, which we have neglected, is actually quite
small for y'~& 4.

The association of these probability curves with
Figs. 3, 5, and 6 may be accomplished through Table II
which gives the relation between y' and g'/4m- for several
states and source sizes. The erst entry in the table for
each state is the critical coupling below which the
isobar disappears. Table II shows quite clearly the
smallness of y' for a large source (3II= 2) and the be-
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(d) The special emphasis given to the ($,2) isobar by
strong coupling theory is lacking in the intermediate
region. The only exceptional behavior of this state, as
compared with the (2,2) isobar, is the flatness of the
excitation-energy curve when plotted against g'. The
energy is thus a sensitive function of source size only.

I.O—

m. 8

JD

~ .6O

Q
CL

0)
'D

O
CO

~ 2

as the coupling is decreased. The value of the critical
coupling, however, is markedly afFected by changes in
the trial function (see Fig. 11), moving apparently in

the direction of weaker coupling as the trial function
is improved.

(b) A resonance in (+2,a~) scattering has been sug-
gested' to be at about 300 Mev. Figures 3 and 4 indi-
cate possible agreement with the large source sizes
(&=2 to 4) indicated by Chew. "

(c) For a large source, the (2,2) isobar lies at one- to
two-hundred Mev above the (2,2) level. H the former
level is broad, then this is consistent with experi-
ments' ' which suggest that the phase shift may change
sign at 90 Mev. The low-energy phase shift is predicted
by Chew" to be negative, but if there is an isobar,
tan8 will approach +~ as the meson energy approaches
resonance from below. The phase shift should, therefore,

0.5 t.o TABLE II. The relation between g' and y~ for various
states and source sizes. N=3.

FIG, 8. The probabilities P„offinding e mesons in the first
(-,',—,') isobar plotted as a function of y'.

VIII. IMPLICATIONS IN MESON-NUCLEON
SCATTERING

Since the concept of isobars is directly related to
meson-nucleon scattering, it is of interest to speculate
on the consequences of these results when applied
qualitatively to a discussion of phase shifts. (A calcu-
lation of the efFect of the isobaric states on the scattering
is under way. )

(a) From the consideration of a simple analogy, the
scattering of a particle by a square potential barrier,
we extrapolate the following comments on the width of

I.O

State

ground

(2. 5)
first isobar

first isobar

0
0.61
1.53
4.19
7.3

0.644
1.18
1.50
2.39
3.11
3.83
6.86

0.975
1.55
2.37
3.72
5.99

0
0.066
0.140
0.297
0.46

0.135
0.225
0.270
0.379
0.453
0.519
0.743

0.205
0.307
0.427
0.590
0.812

0
0.039
0.097
0.147
0.267

0.123
0.180
0.254
0.337
0.433
0.508
0.843

0.197
0.279
0.343
0.453
0.562

0
0.068
0.138
0.188
0.287

0.396
0.470
0.562
0.635
0.750
0.818
1.08

0.617
0.728
0.812
0.943
1.06

~ .8

t3~ .6O
CL

O

0 0.5 p 1.0 I.S

FIG. 9. The probabilities P„offinding e mesons in the first
($,~2) isobar plotted as a function of y'.

the isobaric levels. They should be quite narrow for
couplings much larger than critical; as the coupling
decreases, their breadths should increase. It is probable
that the disappearance of the isobar in Figs. 2 through
5 marks the attempt of the trial function to represent
the disappearance of the true resonance in the scattering

change from negative to positive below the resonance
energy, although a broad resonance is needed to produce
this efFect as low as 100 Mev.

We would like to thank Dr. John S. Blair for many
stimulating and helpful discussions.

APPENDIX A. THE SINGLE MODE RESTRICTION

In his original application of the variational method
to charged scalar mesons, Tomonaga' introduced two
independent non-orthogonal modes, one for positive
and one for negative mesons. In this way, he was able
to achieve exact agreement in excitation energy with
the strong coupling theory. He was able to make this
two-mode assumption because his concern was only
with charge symmetry. In our case, the requirement
that the trial functions possess symmetry properties
"G. F. Chew, Phys. Rev. 89, 591 (1953).
'Anderson, , Fermi, Martin, and Nagle, Phys. Rev. 91, 155

(1953).
'3 Bodansky, Sachs, and Steinberger, Phys. Rev. 90, 997 (1953).
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(Z2- 1)~ in/. + (l(2- 1)~j
or (M'+ X2—1)'

M'X(3P+X' 1) M2r-
+ (3P+3X2—3)

2(M' —1) 4

3A. (2M2l(2 —3M' —3l),2+3) M—(M' —1)&

+ ln, (8.1)
4(M' —1)& M+ (M' —1)&

for X)1. In the case that (l(( (1, the 6rst term in the
bracket is replaced by (1—le)& arccosX. (The value of
arccosX varies between 0 and 2r.) We have used a
Yukawa source for which 2&(k) =M2/(M2+k2).

At X=O, the first three integrals are:

M'(M+2)
L1(0)=

4(M+1)'
M' 3M

3P+2
2 (M' —1)&

M+ (M' —1)&

)&ln
M—(M' —1)&

I.,(0)=
2&r (M' —1)'

I.3(0)=
4(M+1)'

APPENDIX C. WAVE FUNCTIONS

(3.2)

Since the amplitudes (");(tz,~ of Eq. (13) are useful in
scattering calculations, we will give the expressions
from which they may be found in Appendix D; first,
it is necessary to give explicitly the phases of the func-
tions that they multiply. We have adhered to the
Condon and Shortley" conventions for adding nucleon-

'4E. U. Condon and G. H. Shortley, The Theory of Atomic
SPecIru (The Cambridge University Press, London, 1951),
Chap. III.

with respect to continuous rotations in charge and
ordinary space makes it impossible to put the di6'erent
kinds of mesons in di8erent modes.

At the expense of considerable extra computational
labor, it would be possible to relax the single mode
restriction in a way that is illustrated by the following
example. A(1,—', ) wave function can always be written

0"&=4. &'+%. &'+%. &'+4" &' (A1)

One can choose a trial function in which the mesons in
the first state are all in one mode, those of the second
state are in another non-orthogonal mode, and those in
the last two states are in combinations of the two. We
have not chosen such trial functions, since their use
would be at the sacrifice of the simple splitting of the
problem into the source independent part, (7), and
source dependent part, (11).

APPENDIX B. THE INTEGRALS I.
„

The integrals defined in (8) can be found from the re-
lation L '(l() = —rtL„+1(l()and the following expression:

Ol
Og"2
EO

2 -4

w -6
C:
4J

'o

FzG. 1.0. Subsequent approximations to the ground-state energy
for source size &=2. E refers to the largest number of mesons
included in the calculation.

and meson-angular momenta, and for the relative
phases of functions of diferent Mp and M~. For each
T and L, however, we must give one function to deter-
mine phases completely.

The nine operators Ao, +, '+ are determined uniquely
in terms of 2 by defining &')C~, ~'™=—A~ 'C~„and
applying the operators L+, , L„T+,and T, (see (3)
and (4)$ to the equation (')C» 0' '=—A,*C»,.

n 3

(3)C(te"——6 1Det(A+ 0
+' —

(C .
„

(3)C&1,1''——3(11) U~+ (2)Ca000,

(3)@ 1,1 (v2/3) (3)C& 1.1 ((11)k/10)LA + (2)C& 2,0

~3A 0 (2)@ 2,1+@A —(2)C& 2,2j

(3)@ 2,2 (1/vt2)A + {2)C& 2,1 A 0 (2)@ 2,2

(3)C) 2,2 (vie/~A + (2)g) 1,1

Ol

~+8
O
CO 6-

EP
C

LU

0 P

QJ 00
l l

2 23
g/47r

FIG. 11. Subsequent approximations to the excitation energies of
the Qrst two isobars for source size 3f=2.

n=2:
(2)C0, 00 '= (v2/3)LA++A:+A+ A +—A0+A0

—A~0A '+-', (200)2)C .
„

&C 1 1'1——(1/v2) (A++A 00—A 0+A+0jC,

(2)C0 0P'=6 'L2A++A +—(A0+)')C

(»c 222=(1/v2)(A +)2c
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The remaining functions can be found by inter-
changing upper and lower indices throughout any
equation,

APPENDIX D. CALCULATIONS OF AMPLITUDES
AND ENERGIES

The solution of (7) with the trial function (13) re-
quires the use of sum rules and matrix elements given

by Condon and Shortley. '4 "
In each case we present the expression (h') which

must be minimized, subject always to the restriction
that PI &"&,a'r I'=1. The result of this minimization
is a set of equations for the amplitudes and an eigen-
value equation. In the following, we shall use X—= U—I,

V=—V—2, Z=—V—3.

(a) I=I=

Rotate axes in d, e, f space, introducing three new

orthonormal amplitudes g, h, k with

g= (88) '[(10)'*d—(45)'c+ (33)'fj,
)5~& 3 )5~l 7~10'l 3(3~l-

h= —
I

—
I

—
I

—
I
d+-I —

I
c+-I —

I f .
(31) . 10(11] 4(11) 2(2)

One then Ands k=0 and

(hr) =
I
al'+2[lb I'+ Icl'3+3[Igl'+ Ihl'j

—y(a[(2) ~b+ (5)'*c]+-',(5)'*b[g—(31/5) ~hj

+(8)'*cg+comp. conj.}, (D.3)

XY'Z' —(17X+7Z)FZy'+(62X+41Z)y4=0. (D.4)

The two lowest roots correspond to solutions of (11) for
suKciently large values of p2.

(0)a 0
7

b= (' al', C= ao (c) I=I=-,'

f= (83) '[(33)' '"«'+ (5o)' ~"'~~'3

p&"ag' ——(50/33)*' '8'ao'

bI'+2[Icl'+ IdI'3"3[I cl'+
I fl j

+y{3ba+V2[c+2d jb+ (11)'*ec

+(11):[4e+(83)lfjd+comp. conj. }. (D.1)

a= ' al' b= ' al' C= (')a22 d= (3 al'lp ly 2q a lq
c= p(3)gy& '—(3)g22 ~pe —(')gP=(3)g2&

Replace d, e, f, and g by the orthonormal ampli-
tudes h, j, 0, and l where

(2~: 1 5(2~-' 5~3~: (15~&
d+-I —

I
c+-I' —

I f+ I
—

I g,
&27) (»)» 4L») 2 E2) '4)The eigenvalue equation is

UXV'Z' —(20UX+10UZ+9FZ) YZy'

+(83UX+74UZ+180FZ)p' —747' =0. (D.2)
5 13(3i" 7 (6)l 7 8

,
—

I

—
I
d+ —

I

—
I c+ ~~f ,-g-—

3(61)* 3 &111 15 (11) 2 5:

5 2(61)&
+ ch — cj+comp. conj. , (D.S)

3(6)' 3(3)'

As expected, there is only one root which goes to
zero as''~0. This is the ground state forwhich Eq. (11) One then finds h=l=0, and
possesses solutions for ) ~&0 with any value of p2. The
next two roots belong to isobars, for they correspond &hr&= I'I'+2[lb l'+ Icl'0+3[1 hf'+ ljl'3
to solutions of Eq. (11) with X)—1 provided p' is
large enough. The three highest roots of (D.2) go not +y a[b+Scj/&2+ (27/2)-'*bh
correspond to solutions of (11);i.e., the energy in these
cases does not possess a minimum when X is varied.

a= (')al'1)
e= p(3)a '

1y f (3)02

(2)a 1 ~ (2)a 2 d' (3)a 1
XV'Z' —(23X+13Z) YZ7'

+(122X+161Z)y4=0. (D.6)
'5 For more details refer to the doctoral thesis by F. H. Harlow

at the University of Washington, 1953 (unpublished). Again the two lowest roots correspond to isobars.


