SYMMETRY PROPERTIES OF WIGNER 95 SYMBOL

The complete set of special values of the 125 symbol
when any one of its twelve arguments is zero is as
follows:
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together with
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= {[b][d}‘%{ cdf}-
ghs
A group of 16 symmetry relations of the 12 symbol,
together with a convenient new notation, has been
found by R. J. Ord-Smith and will be reported upon
shortly.
The 125 symbol is being used in Southampton in
nuclear structure calculations on light nuclei with
interconfigurational mixing.
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The p3 and p3 phase shifts determined from analysis of the elastic scattering of protons by alpha particles
are treated in terms of a potential interaction between the proton and alpha-patticle core, with a spin-orbit
interaction of the Thomas type. The results are sensitive to the well shape chosen and favor a Gauss well
interaction. The limitations of this type of treatment are discussed.

I. INTRODUCTION

HE elastic scattering of nucleons by alpha particles

has been extensively studied by many workers,*”
mainly on account of its possible importance for the
determination®? of the magnitude of the spin orbit
interaction in nuclei. The origin of the latter is still
obscure, and none of the work done so far, including
that reported here, has any certainty of being more
than an attempt to fit the data with formulas having
only a slight foundation from a fundamental viewpoint.
The possibly large importance of many-body forces in
nuclei throws doubt on the applicability of considera-
tions based on interactions between pairs of nucleons.
The fact that the spin-orbit interaction is appreciably
larger than expected from a simple application of the
Thomas term theory or its extensions is an additional
deterrent to elaborate calculation with wave functions
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based on two-body forces and spin-orbit forces which
follow from relativistic considerations®® in such cases.
From a purely phenomenological point of view, it is
not clear that one-body treatments of nuclear structure
are meaningless in such cases as the p-a interaction.
There is much evidence that the alpha particle behaves
approximately as a unit in nuclei, and the small nuclear
radius as well as the large internal tightness of binding
of the alpha particle lend plausibility to a view in which
this particle produces a general field to which the
incident proton is exposed. From this admittedly naive
viewpoint it is of interest to determine the magnitude
of the p-o interaction in terms of potential well
parameters for wells of prescribed shape. The inter-
action is not taken to be the same for s, py, pj, - - - terms,
but it is supposed below that the potential wells for the
3 and p; states are related to each other as though the
difference between them were caused by a Thomas term
with an adjustable constant of proportionality. Wells of
various shapes are fitted to experimental data, and it is
found that the data favor the Gauss potential well
shape in preference to the long-tailed exponential well
or the short-tailed square well. The wells just referred
to are meant to be idealized wells in the absence of the
Thomas term. The possibility of distinguishing between
wells of different shapes rests on the experimental
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PHASE SHIFT IN DEGREES

F1G. 1. Phase shifts for p-a scattering as a function of proton
energy. The points represent the experimental phase shifts. The
curves show the fits to the experimental phases for three well
shapes. Legend: —:—— square well; Gauss well;
------- exponential well.

information regarding the p; and p; phase shifts at
different energies and the influence of well shape on
the phase-shift energy dependence.

As in p-p and n-p scattering, the influence of well
shape is hard to distinguish from velocity dependence
of potential well depth or range. The interpretation of
the results presented here is thus subject to reservations
regarding the absence of serious effects of such energy
dependence. It is possible, therefore, that the signifi-
cance of the preference of the experimental data for
potentials with intermediate-length tails is not direct
and that the best effective potentials will be useful
primarily as a summary of the data.

Since two-body forces are still one of the most definite
ways of dealing with nuclear structure, a discussion is
given regarding the approximations needed in order to
replace two-body spin-orbit forces by a spin-orbit force
corresponding to a central potential. This discussion is
explicit only regarding potentials of the Thomas-term
type, but requires little modification for more general
two-body potentials.

II. EXPERIMENTAL DATA AND PHYSICAL
ASSUMPTIONS
The most extensive and quantitatively reliable meas-
urements have been of the p-a differential cross
section. Measurements for proton energies of 1 to 3
Mev! were analyzed by Critchfield and Dodder? giving
two sets of phase shifts (s,py,p3) allowed by the data,
corresponding to inverted or normal p;— p; doublets.
Measurements of the polarization of the scattered
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protons® showed the correctness of the inverted doublet
phase shifts. Measurements at 5.81 Mev® and 9.48
Mev?® were analyzed by Dodder and Gammel,” yielding
S, 3, p3, d3, ds phase shifts, the p and d doublets being
inverted. The phase shifts, with errors as estimated in
the phase-shift analyses,?7 are reproduced in Fig. 1.

The s phase shifts are negative and increase slowly
in magnitude with energy, suggesting a repulsive inter-
action between the proton and alpha particle. The s
phase shifts have been fitted qualitatively by Adair*
and Dodder and Gammel” with a hard-sphere inter-
action having a range of 2.6X 1071 cm.

The p; and p; phase shifts show markedly different
energy dependences. The phase shifts are positive, in-
creasing with energy. The p; phase shifts increase
rapidly with energy, passing through 90° at 2.8-Mev
proton energy ; the p; phase shifts increase more slowly,
remaining less than 90° throughout the experimental
energy range.

The energy dependence of the p phase shifts sug-
gests a deeper effective attractive potential for ps than
for p;. The difference between the p; and p; potentials
can then be interpreted as an effective spin-orbit inter-
action between nucleon and alpha particle.

Previous discussions of the p states®” have been in

terms of resonance models. Adair* and Dodder and
Gammel” have treated the p states in terms of the
“reduced width” and ‘“‘characteristic energy” of the
Wigner!® formalism. These formulations give results
similar to treatment in terms of effective potentials for
the p; and pj states, insofar as their applicability de-
pends on the simple energy dependence of the loga-
rithmic derivative of the wave function of relative
motion.
f However, a description in terms of resonance model
parameters has few advantages in the present case,
since there are no marked resonance levels. Since the
Wigner formalism involves some arbitrariness in the
dependence of levels on the choice of the nuclear radius,
and since it gives no direct connection between the
interactions that apply to the two p states, the more
elementary approach of one-body effective potentials
was preferrec as a temporary expedient. The limitations
of this treatment have been mentioned in the intro-
duction and a more precise understanding of such
limitations could possibly be obtained by an application
of the dispersion theory formalism.

The quantity of interest, for the approach used here
as well as the Wigner formalism, is the logarithmic
derivative of the wave function of relative motion at
moderate internuclear distances. This is readily calcu-
lated from the experimental phase shifts and tables of
Coulomb functions.!**? In the notation of reference 11,

1 E, P. Wigner and L. Eisenbud, Phys. Rev. 72, 29 (1947).

11 Bloch, Hull, Broyles, Bouricius, Freeman, and Breit, Revs.
Modern Phys. 23, 147 (1951).

2 Tables of Coulomb Functions I, National Bureau of Standards
Applied Mathematics Series No. 17 (U. S. Government Printing
Office, Washington, D. C., 1952).
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the homogeneous logarithmic derivative ¥ (7) is given by
Y (r)=7dF/Fdr= (pdF/Fdp)—1/[ (F*/p) cotK—FG/p].

The difference in the p; and p; state interactions is
clearly illustrated in the energy dependence of the loga-
rithmic derivatives.’® The p; logarithmic derivative is
more negative and decreases more rapidly with energy
than that for p;. These properties are expressed from
the standpoint of the Wigner model as follows:’
(1) the characteristic energy for the p; state is higher
than that for p;3; (2) the p; state has a larger reduced
width than the p; state. From the standpoint of the
present work: (1) the difference in the logarithmic
derivatives, Y3<Y}, indicates a deeper potential well
for the p; state; (2) the different energy dependences,
(dY3/dE)<(dY3/dE), serve to fix qualitatively the
dependence on distance of the difference between the
p3 and p; state potentials. The values of ¥y and ¥y fix
the sign and magnitude of the effective spin-orbit
interaction while the values of dY ;/dE determine
qualitatively its shape.

The effect of the spin-orbit interaction shape may be
seen with the aid of a well-known formula relating the
change in logarithmic derivative to the change in
potential:

(V3= Y)rma= (2na/ ﬁz)[(l/ 5153 f ) ff:ff%AV(r)dr]-

Here, V is the homogeneous logarithmic derivative
defined earlier, and AV (r) represents the effective
spin-orbit interaction Vy— V. If the spin-orbit inter-
action has a & function distance dependence §(r—a),
(V3—Y3)r— is independent of energy. For an inverted
doublet spin-orbit interaction at distances 7<a, the
bracketed quantity increases in magnitude with the
energy, reproducing qualitatively the behavior of the
experimental logarithmic derivatives.

A simple verification of the above conclusions is
obtained by fitting experimental data for p; and p;
separately by means of square-well potentials. For p;
the data require an attractive square well with a range
of 3.15X 107 cm. The p; phase shifts call for a shallower
attractive square well with a range of about 3.6X10~%
cm. The effective spin-orbit interaction Vi—Vj is seen
to be attractive for r <3.15X 10~ cm and repulsive for
r>3.15X1078 cm.

In order to relate the analysis to the customary form
of the Thomas term, it was supposed that the Hamil-
tonian has the form

H=T4V+ (ah/4M?*)[pXVV] 0,

where T is the kinetic energy, V is a function of 7 only,
p is the momentum operator, and V in VV applies
to V only. This Hamiltonian can be written

H=T+[1—(ar?/4)(L-a)d/rdr]V (r), 1)

13D, C. Dodder and J. L. Gammel, Phys. Rev. 88, 520 (1952),
Fig. 1. Note that energy of relative motion is incorrectly given;
the values in their Fig. 1 should be multiplied by 5/4.
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where X=7%/Mc and L is the orbital angular momentum
operator in units #. On account of the relatively large
difference between the proton mass M and the reduced
mass u=4M/S, there is a question as to whether one
should use a=1 or @=25/16 to reproduce the expecta-
tion on the simple scalar equation view. Since the
empirical a is appreciably greater than either of these
values, this question does not appear to be very sig-
nificant, there being no possibility of agreement with
the scalar equation. In the interests of simplicity, the
standardization used here is such as to neglect correc-
tions for reduced mass. There is no reason for supposing
such corrections to be simply a matter of changing M
to the reduced mass. In fact, in a system composed of
several particles, there is a separate Thomas-like term
for each particle, so that the contributions of terms
referring to the four nucleons in the alpha particle
cancel in first approximation.

The employment of Eq. (1) does not strictly corre-
spond to the form which follows from the assumption
that Thomas-like terms represent the spin-orbit inter-
actions between pairs of particles, as has been noted by
Breit and Stehn.! In the approximation of representing
the wave function by Slater determinants, the spin-
orbit energy for the p; state is

W, H"Y) =2 (us™v, Aro*us™v1) + 2 (ug’v1, A 1525 v1)
— (™0, (ArP+ A us™1), (2)

where the superscripts m,» refer to proton and neutron
wave functions, respectively, and the remainder of the
notation is as follows:

u,9=orbital functions for s and p states, respectively;
the p function is for magnetic quantum number 1;

A= (h/AM %) [ p1 X (V1V (r12)) ]., with the under-
standing that p;= (%/7)V: is an operator, while
(v1V (r12)) is a_number;

(U1V2,O12X1Y2)=f U*(l‘l)V*(l’z)ong(rl)Y(l’z)dl’ldl'z;

where, for brevity, arguments are indicated by sub-
scripts.

The first two terms in Eq. (2) represent direct inter-
actions of the p particle with the s shells of neutrons
and protons. The last term arises on account of the
identity of the three protons and is an exchange effect.
The first two terms can be represented as the effect of
an equivalent central field; the last one cannot. It
should be pointed out that the scattering problem can
be stated in terms of a variational equation for the
expectation value of the energy. The radial factors in
u and v are varied. On varying v, there results an integro-
differential equation for the radial factor of v. The first
two terms in Eq. (2) contribute an ordinary potential,
while the last contributes a part representable as an

14 G, Breit and J. R. Stehn, Phys. Rev. 53, 459 (1938).
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integral operator which is not expressible in terms of a

local potential.
One finds

(avy, A1e"tm1) = — (@X?/4)
x [ RAQRAOLV ()rdindn G, )

where R;(r), R,(r) are the radial s and p functions, re-
spectively, normalized so that

f R2(r)rdr= f Rprdr=1.
0 0

If, on the other hand, use is made of Eq. (1) for a
single-particle model, and if ¥ in this model is dis-
tinguished as U, one obtains for the spin-orbit energy
in the p; state:

(A= (@/16%) [ RADIV(u/rdin @

If one compares this result with Eq. (3), agreement is
obtained if one sets

Flr)= f V (1) R2(2)drs/ (4). )

This equivalent one body ¥ is just the average potential
at r; caused by the s particles at ro. The possibility of
interpreting the direct-interaction terms in Eq. (2) as
due to an equivalent central potential is thus verified
and holds more generally than in the present simple
example. Collecting the results for different inter-
actions of a p particle with an s shell for the case of
Wigner forces as listed in reference 14, the expectation
value is

@, HY) = — (aX2/167%) f RPQ2 (V' fr)ridndr,

— (a?/1287?) f RiQ:(V'/112)

X{2(r2— 11- 1) ReQ1+ [ (RoQy' /1)
— (R'Qu/7r2) In’ra? sin0}dridry,  (6)

where R=R,, R,=7(Q, and the arguments 7,7, of the
radial functions are distinguished by subscripts. The
radial functions for s protons and neutrons are assumed
to be the same for simplicity although this point is not
essential to the argument. If one varies Q, the first
integral in Eq. (6) gives rise to a local interaction; the
second is not expressible in such simple terms.

The potential energy Vie+Vas--- also gives rise to
exchange terms. An improved treatment including ex-
change effects with two-body forces would thus have to
include a modification of the effects of the non-spin-
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orbit part of the potential. No attempt is made to
calculate these effects in the present paper, partly
because of the multiplicity of possibilities offered by
combinations of exchange effects, and partly because of
the unknown magnitude of many-body force contribu-
tions. The latter may conceivably result in making the
equivalent one-body equation (1) a better approxima-
tion than a sum of potentials representing interactions
between pairs of particles.

III. COMPARISON WITH EXPERIMENT

Three well shapes, giving a survey of possibilities for
the spin-orbit interaction shape, were chosen. For each
shape the values of three parameters, well depth, well
range, and strength of spin-orbit interaction, were de-
termined by minimizing the mean square deviation of
the calculated p phases from experiment. Five experi-
mental energies, E,=1.49, 2.22, 3.04, 5.81, 9.48 Mev,
were considered in the fitting procedure. These energies
provided an adequate survey of the data without over-
emphasis of the low-energy data. The three shapes
chosen were: (1) square well, giving a é-function spin-
orbit interaction located at the edge of the well,
(2) Gauss well, giving a Gauss well with the same range
parameter for the spin-orbit interaction, (3) exponen-
tial well, giving a Yukawa well shape for the spin-orbit
interaction. These well shapes show a regular pro-
gression from concentrated potentials with externally
located spin-orbit interaction to longer-tailed wells with
spin-orbit interaction concentrated at small distances.

In all calculations the repulsive Coulomb field was
taken as the field of a uniform volume distribution of
charge with a radius of 2.31X10™ cm. The fit for a
given well shape does not depend sensitively on the
assumed charge distribution. For the Gauss potential,
the effect of replacing the uniform volume distribution
by a point charge is compensated by increasing the
depths of the p; and p; wells by 0.45 percent, with the
range parameter left unchanged. The root-mean-square
deviation of calculated phases from experiment is the
same in both cases and the maximum difference in the
“best fit” phase shifts for the two cases is 0.2° an
amount negligible in comparison with the errors in the
experimental phase shifts.

(A) Square Well

The potential arising from a common p state poten-
tial, Vo(r)=—D, (r<r0), Vo(r)=0, (r>ry), is

V(r)=—D—(B/ro) (@L)s(r—ry), (r<ro);
V(r)=0, (1’>7’0),

where 8= (a/4) (/Mc)?. The spin-orbit interaction pro-
duces an energy-independent splitting in the p; and p;
state logarithmic derivatives, as is seen from the
relation

(V3= YD rear=—3(2uD/I*)ar?/4.
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The parameters for the best fit are
70=3.21X10"8 cm, D=19.65 Mev, «a=48.8.

The root-mean-square deviation of calculated phases
from experiment is 4.1°. The best fit is reproduced in
Fig. 1. It is apparent that the calculated p; phases in-
crease too slowly with energy, while the calculated p;
phases increase too rapidly.

(B) Gauss Well

The interaction arising from a Gauss well, V()
=—A exp[— (r/a)%], is

Vy=—[1— 48/ 14 exp[— (r/)"],
Vi=—[1+(28/a") 14 exp[ — (r/a)7],

where 8= (a/4) (/Mc)?. The above set of potentials is
equivalent to taking V ;= — A4 s exp[ — (v/a)?], with

4y=[1—-(48/a")]4, A;=[1+(26/a)]4.
The parameters for the best fit are:

a=2.30X10"5 cm, A=47.32 Mev, a=29.6,
or

A3=53.17 Mev, A;=35.61 Mev.

The phase shifts for the best fit are reproduced in
Fig. 1. The root-mean-square deviation of calculated
phases from experiment is 1.5° slightly over § the
corresponding number for the square well.

For the Gauss potential, the dV/rdr term has the
same shape as V. The difference between the p; and p;
potentials is, therefore, the same fraction of V at all 7.
This fraction has the large value 0.4, supporting the
view that the spin-orbit interaction is not a relativistic
correction, but a major effect.

(C) Exponential Well

The interaction resulting from a common p state
potential, Vo(r)=— B exp(—2r/b), is

V (r)=—Blexp(—2r/b)
+ (oL) (48/8?) exp(—27/b)/ (r/b)],

where 8= (a/4) (#/Mc)?. The spin-orbit interaction adds
a potential having a Yukawa radial dependence, at-
tractive for p; and repulsive for ;. The parameters for
the best fits are

b=1.924X10"8 cm, B=155.5 Mev, a=20.0.

The spin-orbit splitting is here given by a Yukawa well,
Cexp(—r/d)/(r/d), with €=110 Mev and d=0.958
X10~8 c¢m. The calculated phases are reproduced in
Fig. 1. The root-mean-square deviation of calculated
phases from experiment is 2.5°. The exponential-well
fits show too large a p; phase shift and too small a p;
phase shift at the highest energies, a trend opposite to
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that shown by the square well fits. This may be at-
tributed to the singular spin-orbit interaction at small
distances, which is most effective at high energies for
which the centrifugal barrier is least important.

IV. CONCLUSIONS

The best-fit phase shifts calculated for the three well
shapes studied are plotted with the experimental p
phase shifts in Fig. 1. The graphs indicate that: (1) an
exponential well gives a splitting increasing too rapidly
with energy; (2) a square well gives a splitting increasing
too slowly with energy; (3) a Gauss well gives a good
over-all fit to the experimental phase shifts.

The Gauss-well parameters which may be considered
as giving a good representation of the p state proton-
alpha interaction are

V=—[1-B(cL)(d/rdr)]4 exp[— (r/a)?]
a=2.30X10"8 cm, A=47.32 Mev, B=7.40(%/Mc)2.

These numbers support the general belief that the
spin-orbit parameter required by experiment is much
larger than the theory of the Thomas term would
require, viz. 8= (1/4)(%/Mc)% The ratio of the spin-
orbit interaction needed to account for experiment to
that suggested by the Thomas term has the following
values:

Square well Gauss well Exponential well

49 30 20

The conclusions as to well shape depend sensitively
on the values taken for the experimental p phase shifts
at the higher energies, as is evident in Fig. 1. The
possible presence of small phase shifts for L>2, neg-
lected in the phase-shift analysis,” might lead to changes
in the p phases sufficient to change the preférence for
the Gauss well. An investigation of this point is outside
the scope of the present work; however, the f phase
shifts calculated from the same Gauss well that fitted
the p phase-shift data are =~3° at 10 Mev, which indi-
cates that the neglect of f phase shifts in the analysis
of the experimental data is not unreasonable. On the
other hand, there is no compelling reason for taking
the potential to be the same in f and in p states, so that
it is difficult to exclude f phase shifts of appreciably
greater amounts than given by the above estimate. It is
also difficult to exclude effects of changes in well shape
for large r which can affect f wave phase shifts without
producing serious effects on spin-orbit interaction.

For these reasons the phase-shift analysis used here,
as well as its consequences as presented in this note,
might need modification. In particular, the effect of
phase shifts for L>2 on the s,p,d phase shifts cannot be
claimed to be necessarily negligible in “ascertaining
effects of well shape on spin-orbit interaction,’ as has
been attempted here.



