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The deuteron stripping reactions are analyzed from the point of view of the many-body problem. A
rigorous formal solution is given. From this it is shown how assumptions less restricted than Butler’s can be
employed to reduce the many-body interactions to those of a deuteron moving in a potential well. At this
point, the relation to previous theories is readily established. The present theory might be termed “the
optical model” of the stripping reactions and represents a considerable generalization of current theories.

L. INTRODUCTION

UTLER’S analysis! of the deuteron stripping reac-
tions at intermediate energies has provided a useful
tool for analyzing experiments pertaining to these proc-
esses. Alternate methods of calculation?3—that is, the
so-called Born-approximation theories—have led to
rather similar results. One purpose of the present note is
to derive both types of theories from a single model as
somewhat limiting cases. It will be seen that the alter-
nate points of view are closely related and that the
distinction between them involves questions of nuclear
structure as much as of mathematics.

For the sake of being specific, we shall speak of the
(d,p) reaction, although the method of analysis applies
equally to the (d,n) reaction. Our results are applicable
also to the (p,d) and (u,d) processes’ (the pickup
reactions) either directly or by means of, the principle
of detailed reversibility.

Butler! makes three significant assumptions in order
to simplify the development of his theory. These are
[we are now referring to the (d,p) reaction]:

(1) The proton does not interact at all with the
nucleus which is struck.

(2) Once the neutron enters the nucleus, it is cap-
tured and does not interact with the proton which was
originally in the deuteron.

(3) The incoming deuteron wave function is un-
distorted by the reaction.

Proceeding from these assumptions, Butler encloses
the nucleus within a sphere of radius R,. Within this
sphere the neutron is bound to the nucleus. The outside
region contains the incoming deuteron and the outgoing
proton. Matching these wave functions and their
derivatives on the sphere R, determines the cross
section.

In the present discussion it will prove convenient to
relax somewhat each of the above three assumptions.
In so doing we shall cast the theory into a new form
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which, it is hoped, will add to the understanding of the
physical basis of the Butler and ‘“Born-approximation”
theories, as well as to provide a more general theoretical
basis for analyzing the stripping reactions. Our start-
ing point will be a rigorous formulation of the process
as a many-body problem. An exact formal solution will
be given. By use of a somewhat modified form of
Butler’s assumptions, it is then shown how the many-
body aspects of the problem can be reduced to those
of a deuteron moving in a potential well. By imposing
the appropriate conditions on the nature of the poten-
tial well, the Butler and “Born-approximation” theories
can be obtained directly.

We shall neglect any specific discussion (as have
previous analyses) of the role played by the Coulomb
field on the stripping reaction. This involves no con-
ceptual difficulties, as we can suppose the (screened)
Coulomb interaction to be included in the definitions of
the other interactions introduced in the next section.
On the other hand, a numerical discussion of effects of
the Coulomb forces would be quite involved and pre-
sumably would not add greatly to our understanding of
the mechanism of the reaction.

II. DEVELOPMENT OF THE BUTLER AND
BORN-APPROXIMATION THEORIES

A. General Discussion

We wish to calculate the transition rate for the re-
action in which a deuteron strikes a nucleus with
emission of a proton, the residual nucleus having
“captured” the extra neutron. We suppose that the
wave function for the initial nucleus is

gA(E))

where £ is a complete set of nuclear coordinates, and
that the deuteron is moving with a momentum K with
respect to the nucleus. Then, if D(r) is the deuteron
wave function, the initial state is

eiK-x

Xa= D(r)ga(8), 1)

(2m)?
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where x=23(rp+1x), r=rp—1y, and rp and ry are the
respective coordinates of the proton and neutron with
respect to the center of mass of the nucleus.

The state x, is evidently not antisymmetrized in the
coordinates of identical particles as required by the
Pauli principle, even though we suppose the nuclear
states g4 (and gp) to be so antisymmetrized. The
antisymmetrization is most easily effected by first
solving the Schrodinger equation with the wunsym-
metrized initial state x, and then antisymmetrizing this
solution by means of an antisymmetrization operator.
In principle this is simple to do, but to avoid complicat-
ing the argument, we shall for the moment (apparently)
treat the initial neutron and proton as distinguishable
from the nucleons in the nucleus (except that the final
nuclear state is considered to be properly antisymme-
trized). We shall return to this question in Sec. V.

After the reaction is completed, we suppose the sys-
tem to be in a final state in which the neutron is cap-
tured and the proton is moving as a free particle of
momentum p (with spin wave function sp).

This state we write as

gip TP

Xb= 2 )%ngB(E, N), (2)

v

where gp is the wave function of the final nucleus
including the captured neutron (which may or may not
be bound into a stable state).

We next give the explicit Schrodinger equations
satisfied by the states x, and xs. If V is the deuteron
binding potential, then

(HO+ V)Xa= EaXay (3)

where Ho(£,7n,7p) is the nuclear Hamiltonian plus the
kinetic energy operators of the neutron and proton in
the deuteron. If further »(ry,£) represents the inter-
action of the neutron with the nucleus, then

[H o+ v]Xb = Euxs. (4)

The final states x; ,which are of most interest to us, are
those for which energy is conserved, or E,=FE;. We
finally suppose that the interaction of the proton with
the nucleus is given by the ‘“potential” u(rp,£). Then
the entire process is described by the appropriate solu-
tion to the Schrédinger equation

[Hot+V+otulo=E,. )

B. The Butler Theory

In accordance with Butler’s! assumptions, we shall
in the remainder of the present section set #=0. That is,
we suppose that the proton does not interact with the
nucleus. The solution to Eq. (5) with #=0 will be
designated by ¢ to distinguish it from the exact solution
¥ (which will be given in Sec. IIT).
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The desired solution to Eq. (5) is then easily obtained
as?

1
¢=[1+———v]xa

a—V—9 ©)
6
1
=Xat+—AXaq,
a—v

where a= E,+in—H, (n is a small positive parameter,
such as occurs in the Lippmann-Schwinger® formulation
of scattering problems). The quantity A is

1
A=v+V——. @)
a—V—v

The proof of Eq. (6) is trivial. The Schrodinger
equation to be satisfied by  is
[a—V—vg=0.

Applying the operator [a— ¥V —2] to the right-hand side
of Eq. (6), we have by Eq. (3)

—¥Xat (6— V—1)———0x,=0.
a—V—v i

The last step in Eq. (6) is just an algebraic identity.
On introducing a complete set of final states,®
28\;, where
Me=e P/ (27)dsp, (8)

Eq. (6) can be expressed as

1
Y=xat+2 —g8NT (B,ky;a). )
Bk a—v
Here, .
T(Bk;a)= (g5, Axa)- (10)
Now, because of Eq. (4),
1 1
—gp M= g\
a—v Ea'*‘i"]_ Eb
(11)
1
=———¢3 (——))\k’
epptin—e€

where e,p equals the initial kinetic energy of the
deuteron plus the difference in binding energies between
initial and final nuclear states (or just the energy of the
outgoing proton). Also

er=Fk/2M, (12)

4 The notation is that introduced by G. F. Chew and M. L.
Goldberger, Phys. Rev. 87, 778 (1952).

& B. Lippmann and J. Schwinger, Phys. Rev. 79, 469 (1950).

¢ The state gz is equal to gg if the state is bound. Otherwise
¢8) contains incoming scattered waves whereas gz has outgoing
scattered waves. The necessity for using gz in Eq. (9) was
demonstrated by K. Watson, Phys. Rev. 88, 1163 (1952).
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where M is the nucleonic mass. When rp is large, Eq.
(9) becomes”

Y=xat T p(2m)) f oA

eikul‘P

5pB+1:7I_ €k
Xspge T (Bk;a)

eipBrP

=Xa— 2B (27r)—§{ 2m)M

rp
Xspge T (B,p5;a) {,

where pp?/2M = ¢,5 and ps=pr(tp/7p).
From Eq. (13) we see that the cross section for
stripping is (for a final nuclear state B)

da 2?3
—= (2m)*M*— S|T(B,p5;0)|% (14)
aQ K

where .S is an appropriate sum and average over final
and initial spin substates, respectively.

Our next problem is to reduce T'(B,pg;a) to a more
manageable form. Since in Eq. (14) we need T'(B,p5;a)
only on the energy shell, we may suppose Ey=E,
[Eq. (4)]and drop the subscript “B’ on pp. Then from
(7) and (10),

T(B,pr;0)= (g8 Ny, Axa)

X
= (gg(“))\,,, V[1+———-~u]xa). (15)
a—V—o

The last step follows since
(88N p, 2Xa)= (g8 N5, VXa).

[That is, vge™A,=0agp A, and Vx.=ax. are just
Egs. (3) and (4)]. Because of Eq. (6), we may also
write Eq. (15) as®

T(B,p;0)= (g27N, V)= (0, V¥), (15

which is a formally exact solution to our problem once
Y is known.
To interpret Eq. (15), we note that

1
V[ 1+_‘—7’]Xa

a—V—v

describes the entering of the nucleus by the neutron
(as part of the deuteron) and its subsequent interaction
with the nucleus. The V on the left means that the last
step is a scattering of the neutron and proton. This last

7 See for instance, P. A. M. Dirac, Quantum Mechanics (Oxford
University Press, London, 1947), third edition, p. 193.

8 Equations similar to (15’) have recently been derived inde-
pendently by E. Gerjuoy, Phys. Rev. 91, 645 (1953), and by M.
Gell-Mann and M. Goldberger, Phys. Rev. 91, 398 (1953) [who
considered the pickup process—see Sec. IV]. These authors
neglected the many-body aspects of the problem, however, con-
sidering the deuteron to interact with a fixed force center only.
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scattering leaves the system in the final state xs.
According to the second of Butler’s assumptions men-
tioned in the Introduction, this final scattering cannot
occur when the neutron has entered the nucleus. Thus,
according to Butler, the contribution to the stripping
reaction occurs from neutron coordinates which lie
outside the nucleus in Eq. (15). We shall return to this
point in a moment.

Instead of Butler’s drastic second assumption that
the neutron does not interact with the proton once
within the nucleus, we shall make the weaker assump-
tion that the neutron does not interact with the proton
once it has excited the nucleus to a state above its
ground state. This seems quite plausible since an
interaction which raises the nucleus to an excited state
is expected to react violently on the more weakly bound
deuteron, breaking it up and separating the neutron
and proton of the deuteron. If this happens, we can
imagine the chance that the neutron and proton will
“find” each other to scatter again via the potential V
to be small.

To incorporate this approximation into Eq. (15), we
note that ¢ contains in general a large number of excited
states of the initial nucleus. Our assumption implies
that we replace ¥ by ¥, in Eq. (15), where ¢, is just that
part of ¢ which describes the nucleus in its ground
state.® Then . describes the “elastic scattering” of the
deuteron by the nucleus (that is, “elastic” in the sense
that the nuclear state is not changed).

It has been shown® that such a “wave function” as
Y. satisfies a Schrodinger equation with an “optical
model” potential. If we write ¥, as ¥.=Q¢wnXa, Where
Qcy is the appropriate Mgller wave matrix, then
Qcn satisfies the Lippmann-Schwinger integral equa-
tion:

Qenv=1+4

Venllen, (16)

a—

where Ueny is the “optical model potential.” The
important feature of Eq. (16) is that we no longer have
to deal with a many-body problem, since UVenx des-
cribes the motion of the deuteron in a “potential well”
[although UV¢x may also depend upon the spins of both
the nucleus and the deuteron]. We finally obtain

T (B,p;a)= (g8 N5, VQ0nXa). a7

It is quite tempting to relate VUc¢ny to the “optical
potential” deduced by Feshbach, Porter, and Weiss-
kopf® from Barschall’s!! neutron scattering experiments.

9 N. C. Francis and K. M. Watson, Phys. Rev. 92, 291 (1953).
The replacement of the many-body interaction v by the
“potential well,” Ucn has been discussed in detail in this reference
and here forms the basis of the present model of the stripping
reaction.

10 Feshbach, Porter, and Weisskopf, Phys. Rev. 90, 166 (1953).
We evidently must not take the numerical values of Eq. (18) too
literally. For instance, Ucy is expected in general to be energy-
dependent.

11 H, H. Barschall, Phys. Rev. 86, 431 (1952).
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If this were true, we would write ‘
Ven=— (19+7)Mev - (18)

within the nucleus and set UVexy=0 outside [that is,
when the neutron is outside]].

In general, we may expect the interaction described
by Uen to polarize the deuteron (that is, distort its
wave function). It is this modified wave function on
which V operates in Eq. (17). We have, however, made
estimates of the importance of this distortion for a
potential such as that given by Eq. (18) and found that
the effect is small, especially for the innermost parts
of the deuteron wave function on which V operates.
[The wave function might be distorted more if Uewn
contained spin-orbit interactions or a strong absorption
coefficient.] For the evaluation of Eq. (17), it is es-
pecially convenient to be able to neglect any distortion
of the deuteron, since ¥ can then be eliminated from
this expression by means of the Schrédinger equation
satisfied by the deuteron wave function.

If we suppose that Uew is such an interaction which
does not appreciably excite the deuteron, it is not an
unreasonable approximation to set Qexy=1 in Eq. (17).
Then

T(B,p;0)=(g87Np,Vxa) -(19)

is just the “Born approximation’ as proposed by Daitch
and French.? For a potential Uew such as that given by
Eq. (18), this expression may not be an unsatisfactory
approximation.

On the other hand, if one were to suppose that the
neutron interacts very strongly with the nucleus so that
immediately upon entering it a compound state is
formed in which the deuteron is broken up, the effective
absorption coefficient? in U¢n is expected to be large
[this is just the situation supposed by Butler in his
assumption (2)7. Then we could expect to write

QenXe=Xo. Wwhen 7y>R

20
=0 when 7y<R, (20)

where R is the radius of the nucleus. Daitch and French
have shown that with this modification of the Born
approximation one obtains just Butler’s result, although

they did not present any justification for doing this nor

did they give a derivation of their “Born approxi-
mation” expression. We thus see that if we make the
assumption implied by Eq. (20), which is equivalent to
Butler’s assumptions (2) and (3), we obtain just Butler’s
result from our theory, which is formulated quite
differently from his.

It is evident that Egs. (19) and (20) represent some-
what extreme limits on the nature of the physical

2 Tt should be noted that the “effective absorption coefficient”
for the stripping process is not necessarily identical with that of
the potential ‘VUcw. The former measures the rate at which the
deuteron is completely “broken up,”” whereas the latter measures
the rate at which the deuteron excites the nucleus. A precise
definition of the former is not necessary for our purposes, since
the problem is specified by the wave function Qcwxa.

N. C. FRANCIS AND K.
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problem. Equation (19) assumes a weak nuclear
interaction with the incoming neutron, whereas Eq.
(20) assumes that this interaction is very strong. The
analysis of Daitch and French? suggests that the deduced
cross sections are quite similar for the two models.
From this one might hope to conclude that the gross
features of the stripping reaction tend to be somewhat
insensitive to the exact nature of the potential V¢y and
so to that of Qew.

III. THE EFFECT OF THE INTERACTION OF THE
PROTON WITH THE NUCLEUS

We now no longer set #=0. A formally exact solution
to Eq. (5) is

1 1
= [l—l— u][l—{— v]xa. (21)
a—V—v—u a—V—v

This differs from Eq. (6) only by the factor on the left.
The first factor describes the interaction of the neutron
with the nucleus. The second describes the interaction
of the proton with the nucleus in a representation which
considers the neutron now to be a part of the nucleus
[i.e., in which (¢—v) is diagonal]. This expression is a
little unsymmetrical since the first interaction is just
through the potential % while subsequent interactions
are through the potential (#+4 V). Expressed somewhat
differently, for the first scattering of the proton, the
initial neutron does not contribute. For the subsequent
scattering it does, however. Since this neutron is just
one of many nuclear particles, its omission for the first
scattering is probably’® not of much importance for our
interpretation of the factor on the left in Eq. (21) as a
scattering of the proton by the nucleus.

The argument is now similar to that which we used
in Sec. II. The proton may or may not excite the final
nucleus (containing the extra neutron). If the proton
excites the nucleus, we may suppose it to form a com-
pound state from which it may be later emitted. We
shall further suppose that this type of process is not of
the sort in which we are interested and that it is ex-
perimentally distinguishable from the type of stripping
reaction considered by Butler.”* Then, if we consider
only the elastic scattering of the proton to contribute,
we may make the substitution®

]=QCP,

S 1
[1—}——————«—~—~u
a—V—v—u
1
Qcp=1+—VcrQcp.
a—v

(22)

where
(23)
131t will become clear in the next paragraph that it is only

elastic scattering of the proton which is of ‘interest to us. For
elastic scattering there seems to be considerable evidence that

‘one additional nucleon in the nucleus will not be of importance. -

1 For instance, one might construct a wave packet of incident
deuterons to meéasure the lag in time of protons emitted by com-
potnd state formation:
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Vep is the “optical model” potential for the elastic
scattering of the proton by the nucleus. Defining the

elastically scattered proton wave function by fp, we

have
fp=SQcpAp.

Following the argument of the previous section, we
readily find that Eq. (17) is modified as follows :6

T(B,p;a) = (g3<—)fP(—))VQCNXa);

or that the plane wave Ap is replaced by the elastically
scattered wave fp. fp( contains the “shadow” cast
by the nucleus, and as such contains a “bundle” of
plane waves centered about the direction p with an
angular spread whose width is that of the diffraction
pattern. In a momentum representation, we write
[ = fp) (), so that Eq. (25) becomes

(24)

(25)

T(B,p;0)= f FhfpOWT(Bka),  (26)

where 79 is the expression given by Eq. (17). The modi-
fication arising from the use of fp¢ is then seen to be a
“smearing” of Butler’s angular distribution over angles
of the order of the width of the nuclear diffraction

pattern. For instance, the zeros in Butler’s angular-

distribution will tend to be filled in somewhat. This
correction does not seem to be of much practical im-
portance, since the finite angular resolution of the
experimental detecting equipment will also “‘smear out”
the angular distribution. Furthermore, compound nu-
cleus formation, which we neglected when approxi-
mation (22) was made, is probably equally important
in obscuring the finer details of the angular distribution
of Butler. An effect similar to this is the diffraction of
the incoming deuteron wave by Uen. The wave
function Q¢wnx. includes this automatically, but the
effect was neglected, for instance, in Eq. (20).

We conclude from this section, then, that the role
played by the proton in the (d,p) reaction can be simply
expressed but that it is not of great importance except
for the contribution through compound state formation.

IV. THE PICKUP PROCESS

The inverse of the stripping reaction is the deuteron
pickup process [i.e., the (p,d) and (#,d) reactions].
The cross section for pickup can be obtained either
directly as in the preceding sections or by applying the
time reversal operator to Eq. (25). The result is

T(a 3B,p)= (Qen x4,V frgn) (27)

'STRIPPING REACTIONS
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in the notation of Eq. (25). The matrix Q¢x is the
solution to? [see Eq. (16)]:

ch\r(_)»= 1+

VenQen . (28)

at—

Equation (27) describes the reaction in which an inci-
dent proton of momentum p collides with a nucleus
and picks up a neutron to emerge as a deuteron with
momentum K.

V. FINAL COMMENTS

Except for the need of some additional comment
concerning the Pauli principle, a rigorous formulation
of the Butler theory has been given by Egs. (15/) and
(21). We may however, antisymmetrize our wave
function merely by applying the antisymmetrization
operator to it. The antisymmetrization of the proton
coordinates will introduce terms corresponding to the
exchange of the incident proton with one of those in
the nucleus. Because of the fact that rather large impact
parameters for the proton seem to be involved,! it
appears to be consistent with the spirit of the calcula-
tion to neglect the proton exchange terms. On the other
hand, if we expand the scattered waves in a set of anti-
symmetrized nuclear states gg(£,75)—as we have done,
for instance, in Eq. (9)—then (except for the incident
wave) our wave functions are automatically antisym-
metrized in the neutron coordinates. We have thus
neglected only. the antisymmetrization with respect
to the incident proton, and this seems to be a reasonable
approximation. ’

The crucial points in our analysis have been those
which replaced the many-body interactions # and v by
the “potential,j‘well” interactions VUep and Vew, which
do not depend at all upon the nucleon coordinates.
These approximations have been explicitly defined
mathematically above. Physically, they imply that no
large momentum transfers between the proton and the
nucleus are permitted.

If the potentials Vexy and UVep contain spin-orbit
interactions, we may expect that in general the spin
of the proton will be polarized (this is not expected on
the basis of the Butler theory). Such spin-orbit inter-
actions would not be surprising, since it is not unlikely
that our Uew and Uep are related to the “single particle
potential” frequently presupposed in the nuclear shell
model. Another mechanism to obtain polarization of
the proton in the stripping reaction has been proposed
by Newns.!® In terms of the present theory, his model
is equivalent to assuming that U¢p has a large absorp-
tion coefficient.

18 H. C. Newns, Proc. Phys. Soc. (London) A66, 477 (1953).



