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With a view to examining the effects of configuration interaction in the ground state of the three simple
atomic systems, H, He I, and Li ii, a three-parameter variational function invcvling a symmetrized ex-
ponential in the nuclear distances and a linear factor in the interelectron distance has been obtained for He I
and Li H. These functions together with the one of the same type already in existence for H have been
expanded in series of Legendre functions of the cosine of the angle between the two radius vectors. The
coeKcients in these expansions are functions of the nuclear distances of the two electrons. The various
component functions are presented, together with the coef6cients with which they enter the expansions, and
their contributions to the total energies. A discussion is given of the method of estimating the magnitude
of the total correlation, or configuration interaction, energy and its radial, angular, and mixed parts, A

table is given of the values of the correlation energy and its various parts for H, He I, and Li II.

'HE great body of theoretical atomic spectroscopy
is based on central-field wave functions. The fact

that this method of approach gives results in good
agreement with the classification of atomic energy
states, as worked out more or less independently by
the experimental spectroscopists, indicates that the
central-field approximation is a good one. Furthermore,
it is clear how the simple theory should be extended in

a higher approximation to include the e8ects of ex-

change and configuration interaction. On the other
hand, in those cases in which the theory has been most
completely worked out, something is left to be desired.
Hartree, Hartree, and Sirles' have superposed the
1s'2po+' and the 1s'2s'2p' configurations for 0 m, 0 n,
and 0 1, using wave functions with exchange. Jucys' has
superposed the 1s'2s'2p' 1s'2p, 1s'2s'2p3p, and the
1s'2s2p'3s for C 1 using self-consistent field wave
functions without exchange. In both cases some slight
improvement in the energies was found. The cause of
this disappointing outcome is suggested by work on
the ground state of He I,' which indicates that to obtain
good results it would be necessary to superpose a large
number of configurations.

In contrast to the wave functions derived on the
central-field approximation are those which contain
terms or functions in the interelectron distances r;;. The
Hylleraas4 and the Baber and Hasse' wave functions
for He I are of this type. With only a few exceptions'
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very little has been done on the more complex spectra
with wave functions involving the r;; s. However, in two
electron spectra, which are almost the only ones which
have been worked out in detail, the inclusion in the
wave function of fairly simple terms in ri2 has yielded
good values of the energy. On the other hand, there are
certain disadvantages to using the r, s. No simple
combination of elementary functions of r;; is an eigen-
function of any large part of the energy operator. In
addition the r s and r;, 's do not form an orthogonal
coordinate system. The energy operator is therefore
rather involved. This is true also of many of the integrals
which arise when the minimum principle is applied.

Fortunately one may take advantage of the accuracy
overed by the solutions involving the r; s to learn
something of the form which solutions in central-field
wave functions would have to possess if they were to
be of equal accuracy. To do so, one expands the r;;
solutions in series of central-field solutions. The latter
should form complete orthogonal sets. The individual
members of a set may be constructed from one-electron
wave functions in such a way as to have the desired
symmetry and exchange properties. That is, the in-
dividual members of the set may be chosen to represent
particular levels arising from particular electron con-
figurations. The coeScients in the expansion then show

just what configurations must be superposed, and. with
what weight, to obtain a solution in the central-6eld
approximation equivalent to the r;; solution. ~

'

The present yaper takes the first step in the direction
of such an expansion in the case of a. relatively simple

type of expression for the ground-state wave functions
of H, He, and Li+. This first step consists in expanding
the solution involving ri~ in terms of a series of mor-

malized Legendre functions of the cosine of the angle
between the two radius vectors. It is wise to begin the
expansions in this way because some interesting results
with regard to the relative importance of the various

~ The possibility of investigating configuration interaction in
He r in this manner was suggested to one of us (L.C.G;) by Dr.
G. Breit.
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C,&=— ' 0'~P,& sinNH,
c;~

(2)

and c; by the expression

-2

c;= ' O' P& sni8de dr'

where dr' indicates the volume element with respect to
f1) 81) pJ) f2) and po

Expansions of the type described in the above para-
graph have already been carried through' using for +~
the three and the six constant expressions for the
ground state of He I given by Hylleraas. 4 However, these
two C~'s are of quite similar form so that, although the
c)s did not vary much between the two expansions,
there was still some possibility of doubt as to the
validity of the conclusions with regard to the relative
importance of the various angular components of the
ground-state wave function and to the size of the com-

TAnLs I. Values of the constants in Eq. {4l and of the computed
energies (in units of Rghc).

~l
Z2

Z(cal)
E(exp)

H

0.0312241
0.478~
1.075'
0,3'J 21'—1.05184'—1.05512b

Her

0.675135
1.436
2.208
0.2924—5.80284—5.80752

Li rr

2.88811
2.362
3.299
0.2770—j.4.55435—14.56079

& Taken from Chandrasekhar; see reference 10.
b Best calculated value, due to Henrich; see reference 11.

I The value of an expansion in terms of Legendre functions was
pointed out to two of us (L.C.G. and M.M.M.) by Dr. E. U.
Cond on.' Green, Mulder, and Milner, Phys. Rev. 91, 35 (1953).

angular components of the wave functions appear at
once. Besides the results of the more detailed expansions
into con6gurations which might follow will depend on
the particular type of function chosen for the radial
components of the central-field wave functions. The
coeKcients of the Legendre functions in the expansion
are themselves functions of r1 and r~, the distances of
the two electrons from the nucleus. We then have

%~(r~&rs, r~s) =P; c4~(r trs)P;~(cose), (1)

where 0 is the normalized function involving r12 which
is to be expanded, P,& is the normalized Legendre
polynomial of order i, and the C,~'s are normalized
functions of r1 and r2 whose form is to be determined
from Eq. (1).%~ is normalized with respect to integra-
tion over r1, 81, and q1, the coordinates of the 6rst
electron, r2 for the second electron, r12, and q, the
Euler angle which together with r12 specifies the direc-
tion of r2 with respect to j.'1. The C,+'s are normalized
with respect to integration over r1, 01, y1, r2, and q.
From Eq. (1) it then follows that C&P is given by the
expression

ponents of the correlation energy. It therefore seemed
wise to repeat the foregoing work using a ground-state
wave function containing terms in r12 but of a somewhat
diferent functional form from those of Hylleraas. At
the same time it was felt that it would be distinctly
interesting to examine the variation in the importance
of the correlation energy, together with its various
parts, and of the diferent angular components of the
ground-state wave function as one passes from the
negative ion H, to the neutral atom He I, and on to
the positive ion Li rr. For such a comparison to be of
the most interest it seemed that the same type of
ground-state wave function should be used for the
expansion in all three cases.

The best available three-parameter wave function
for H is that due to Chandrasekhar. ' It is of the form

QÃ Q(e zlrl z2r2—+e —z2rl z1r2) (—1++—r ) (4)

where r1, r~, and r12 are measured in atomic units and
Z1, Z2, and 0. are chosen to give the lowest energy. This
simple function gives an energy only 0.31 percent
above that given by the best function now known,
Henrich's eleven-parameter function. " The expression
for @~ in Eq. (4) is of a distinctly different form from
the three- and six-parameter functions of Hylleraas for
He I,' which were used in the earlier expansions. ' The
functions given by Hylleraas use the same eGective
nuclear charge for both electrons and the symmetrized
exponential therefore does not appear. Furthermore,
Hylleraas includes quadratic terms in r&, r2, and r» in
the 6nal factor. It seemed therefore that if a function
of the form given by Eq. (4) should prove to give good
values of the energy for He r and Li rx as well as for H,
it would be plausible to take this as the type of function
to be expanded.

The 6rst task was, therefore, to obtain the values of
the parameters in Eq. (4) which would give the lowest
energies for the ground states of He I and Li zr. The
values found for these parameters as well as the energies
which they yield are given in Table I together with the
results of Chandrasekhar for H . In the 6rst line is
given the ion; in the second, the normalization con-
stant; in the third, fourth, and fifth, the values of the
parameters in Eq. (4); in the sixth the energy calculated
from the energy integral using these values of the
parameters and units of RHhc, EH,hc, and EL„hc for H,
He, and Li+, respectively; in the 6rst column of the
seventh line the value of the H energy found by
Henrich, " and in the second and third columns the
experimental values of the energies for He I and Li rr."
As already indicated Chandrasekhar's wave function
gives an energy only 0.31 percent above Henrich's

"S. Chandrasekhar, Astrophys. J. 100, 176 (1944)."L.R. Henrich, Astrophys. J. 99, 59 (1944).
"The values of the ionization energies and Rydberg constants

were taken from Charlotte E. Moore, Atomic Energy Levels,
National Bureau of Standards Circular 467 (U. S. Government
Printing Once, Washington, D. C., 1949).
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value. For He r the energy given by the wave function
of Eq. (4) exceeds the experimental value by 0.081
percent and for Li zx by 0.044 percent. All three wave
functions are therefore quite good. It is interesting to
note for comparison that with the Hylleraas three-
parameter wave function, f the energy for H is 0.44
percent above Henrich's value and for He I it is 0.045
percent above the experimental value.

If one examines the values of the parameters in
Table I, several points of interest emerge. As one passes
from H to Li+, the difference between the true nuclear
charge and Z~, the effective nuclear charge for the
outer electron, shows the expected increase toward one.
In other words, as the nuclear charge increases, the
shielding of the outer electron by the inner becomes
more complete. Chandrasekhar" has already pointed
out that in H if n is set equal to zero, Z&=0.283 and
Z2=1.039 so that dropping the r~2 term increases the
shielding of the outer electron by 0.195 unit. In He r
for n=0, one finds" Z~=1.19 and Z2=2. 18 so that
dropping the r» term increases the shielding by 0.25
unit. In Li Ir setting o.=0 yields Z&= 2.08 and Z2= 3.29,
so that in this case dropping the r~2 term increases the
shielding of the outer electron by 0.28 unit.

If the values of Z& in Table I are divided by the
nuclear charges, one obtains a slowly varying number,
which already in the case of Li+ seems to be decreasing
toward one, as was to be expected. A more interesting
result is found in the values of 0.. One might at first
expect that the relative importance of the r~2 term
would decrease sharply with increasing nuclear charge.
However, Table I shows a rather slow decline for 0.,
which we may attribute to the fact that the increasing
nuclear charge pulls the electrons into a smaller volume
and thereby increases their interaction.

When the values of the parameters in Eq. (4) had
been found, the @~'s were substituted into Eq. (3) and
the values of the c,'s were obtained. Table II gives the
values of the c s. The final line of the table gives the
values of P; c,s. If the expansions were complete and
the normalization constants were exact, this sum shouM
be one. Above all else Table II shows how far the ground-
state wave functions for these atomic structures are
from spherically symmetric. The coeKcients of the P&~
terms are 12 percent, 7 percent, and 5 percent of the
coeKcients of the I'p~ term for H, He I, and Li zz,

respectively. If the values of the c s for He I in Table II
are compared with those found earlier' for the Hylleraas
three- and six-parameter wave functions, one finds that
the coeScients for the two three-parameter functions
dier on the average, for the four coeKcients given, by
less than 0.6 percent. On the other hand, the coeKcients
of the two Hylleraas functions diGer by almost 12
percent. These averages might vary markedly if a dif-

t H. Bethe, Z. Physik 57, 815 (1929) and E. A. Hylleraas,
Z. Physik 60, 624 (1930).

'3 G. R. Taylor and R. G. Parr, Proc. Natl. Acad. Sci. U. S. 38,
154 (1952).

TAsLz II. Values of t,; in the expansion 0&=Z; c;@PI';N.

Cp

CI

C2

C3

g.~.s

0.993206
0.115067
0.016245
0.005375
0.999991

Her

0.997467
0.070256
0.010387
0.003501
0.999996

0.998806
0.048251
0.007179
0.002426
0.999998

ferent number of coe%cients were considered. However,
in view of the diR'erence in functional form of the three-
parameter solutions and the similarity in form of the
Hylleraas solutions, it is surprising that for not one of
the coe%cients computed does the di6erence between
the three-parameter functions amount to as much as
one-sixth of the difference of the two Hylleraas functions.

With the values of the c s known, one can write
from Eq. (2) explicit expressions for the C;N's. For i= 0
these take the form

(y N
E

(s
—srrs —zsrs+ s zsrt z&rs) 1—+ —

~
+3r

Cp 3Er) )
and for i=n&0:

K2N
@ N (r zrr1 zsrs+e —zsrl —zlr2)— —

n

n r&" (r&' 2ts+3)
X

(2N+3) (2ts+ 1)l r)" ' E r)' 2e—1)

When the C ~'s are known, one may proceed to find
the contribution to the total energies of the various
components of the ground-state wave functions. For
this purpose the terms in the integral

where dv indicates the volume element with respect to
all six variables, have been computed separately and
the results are presented in Table III. The first column
of Table III gives the various terms in the integrand,
where (i) is written for c,4PPP. The second, fourth and
sixth columns give the contributions of these terms to
the energy in units of RHhc, RH,hc, and RL;hc for H,
He z, and Li zr, respectively. The third, fifth, and
seventh columns give the contributions of the various
angular components to the energy if all of the angular
components of lower order are also present. The next
to the last line of Table III gives the sum of the con-
tributions to the energy of the first four angular com-
ponents, and the final lines gives the energy found for
the complete wave function.

It is interesting to note from Table III that the
spherically symmetric terms in the wave functions
account for 96.0 percent, 98.7 percent, and 99.4 percent
of the total energy given by the wave function in the
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TABLE III. Contributions to the total energy of the terms in E=J'Z;(c;4:,+P;+)~H Z;(c;4; P; )dT.

Terms

(0)*II (0)

(1)*P(1)
(1)*H(0)+(0)*II(1)

(2)*II(2)
(2)*&(0)+(o)*&(2)
(2)*II(1)+(1)*&(2)

(3)*~(3)
(3)*&(0)+(0)*&(3)
(3)*&(1)+(1)*&(3)
(3)*&(2)+(2)*&(3)

Sum

J'0"'II%~dr

Contributions
of the terms

—1.00925

+0.01003—0.04971

+0.00082—0.00428
+0.00131

+0.00019'
—0.00102
+0.00029 '
+0.00008,

—1.05154

—1.05184

Contributions
of the angular
components
of the wave

functions

—1.00925

—0.03968

-0.00215

—0.00046

—1.05154

Contributions
of the terms

—5.72603

+0.01 700—0.08714

+0.00176—0.00787
+0.00131

+0.00043
~—0.00190,

'

+0.00030
+0.00008,

'

—5.80206

—5.80284

Her
Contributions
of the angular

components
of the wave

functions

—5.72603

—0.07014

—0.00480

—0.00109

—5.80206

Contributions
of the terms

—14.46774

+0.01731—0.09586

+0.00198—0.00872
+0.00098

+0.00049'~—0.00212 i

+0.00022 (
+0.00006)

—14.55340

—14.55435

Li rr
Contributions
of the angular
components
of the wave

functions

—14.46774

—0.07855

—0.00576

—0.00135

—14.55340

cases of H, He I, and Li II, respectively. Similarly the
terms containing cose account for 93.2 percent, 91.3
percent, and 90.7 percent of what remains of the total
energy after the spherically symmetric terms have been
removed. The terms containing the second-order
Legendre polynomial account for 73.9 percent, 72.0
percent, and 71.5 percent of what is then left. Finally
using all the 6gures available, one finds that the terms
containing the third-order Legendre polynomial account
for 59.2 percent, 58.6 percent, and 58,3 percent of what
remains after the terms containing the Legendre poly-
nomials of lower order have been removed.

From Tables II and III one can also see that the
ratios of the contributions of the nonspherically sym-
metric components to those of the spherically sym-
metric ones are much larger for the wave function than
for the energy. For H the ratios of the contributions to
the wave function of the P~, P2, and P3 components
to that of the Po~ component are roughly 3, 8, and 12
times as large as the corresponding ratios of the con-
tributions to the energy. For He I the similar set of
numbers is 6, 12, and 18, and for Li II one finds 9, 18,
and 26. These numbers give a clear illustration of the
fact that a wave function chosen by minimizing the
energy will in general yield an energy which is much
closer to the true energy than the wave function itself
is to the true wave function.

The figures in Tables II and III may also be used to
obtain rough maximum and minimum estimates of the
energies which purely radial wave functions may be ex-
pected to give for the ground state of H, He I, and Li II.
Since such wave functions are often used in approximate
calculations, it will be worthwhile to see how close a
few of the better known purely radial functions come
to yielding the estimated maximum energy. The ener-
gies given in Table III for the PON components are
those which are found when all the other angular com-
ponents are also present. However if 'the Po~ com-

ponent is the only one present in the expansion given
by Eq. (1), that is, if all the C,N's for s)0 are set equal
to zero, as they must be in a purely radial function,
then cs will be 1 and the energy is 1/cs' times the value
given for the Po~ component in Table III. Such esti-
mates of the values of the energies given by spherically
symmetric functions may be regarded as rough maxi-
mum estimates because the functions used to compute
the quantities in Table III do not, of course, give total
energies as low as the experimental values. On the
other hand if one attributes the entire di6'erence
between the experimental values and the computed
total energies to the energies of the spherically sym-
metric components, one obtains rough minimum esti-
mates of the energy. Quantities computed in these ways
are listed in Table IV together with the energies given
by three of the better known spherically symmetric
functions and by one worked out by the present authors
to use in connection with the computations of the cor-
relation energies below. The energies for each element
in Table IU are given in units of the Rydberg constant
for that element times hc. The first line gives the energy
as computed from the simple exponential. The second
line gives the energy as computed from the three param-
eter function

+N (c c zlrl+c c zsrl) (c c
——zgrs+c e

—zsr2) —(5)—
where Z~, Z2, and the ratio of c~ and c2 have been chosen
to yield the minimum energy. '4 The third line of Table
IV gives the Hartree-Fock energy and the fourth the
energy as found from the symmetrized exponential.
The last two lines of Table IV give the maximum and
minimum estimates of the energy to be expected from
spherically symmetric wave functions computed as sug-

'4 A paper will appear in The Physic@/ Review 93, February 15
(1954) dealing with this function and a two-parameter one, both of
which are of the product type, and both of which compare favor-
ably with the Hartree 1s' function for He x-like ions,
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TABLE IV. Energies given by spherically symmetric ground-
state wave functions.

Functions

Ne—z(t'y+rg)

3-parameter Pace Eq. (5)g
Hartree-Fock
$7{o—Z1P'g Zmf'2+o Z2&1 Zl&2)

Estimated maximum
Estimated minimum

H

—0.9453—0.9756

—1.0266—1.0231—1.0264

He I

—5.6953—5.7233—5.723b
7513c—5.7552—5.7599

Li II

—14.4453—14.4728—14.42~
—14.4975—14.5024—14.5088

a From S. Chandrasekhar, see reference 10.
b From W. S. Wilson, see reference 15.
& From G. R. Taylor and R. G. Parr, see reference 13.
d From V. Fock and M. J. Petrashen, see reference 16 below. This value

appears to be a misprint since it does not give energies even as low as the
simple exponential in the first line of this table.

gested above. For He I it is possible to obtain similar
maximum and minimum estimates from earlier work on
the three- and six-parameter Hylleraas wave functions. '
These values are —5.7566 RH, hc and —5.7592 RH,hc
from the three parameter function and —5.7574 RH,hc

and —5.7584 RH, hc from the six-parameter function,
respectively. Examination of Table IV shows that only
for the symmetrized exponential does the calculated en-

ergy approach the estimates of what is possible evenwith
just spherically symmetric functions to closer than 0.02
unit. This result is, of course, a consequence of the fact
that the first three wave functions are of the simple
product type and therefore do not take into account
any configuration interaction even among spherically
symmetric terms, that is, they do not take into account
any radial correlation in the positions of the electrons
except in the average. For He I and I i rr, even the sym-
metrized exponential is seen to leave something to be
desired in the way of radial correlation. The fact that
for H the symmetrized exponential gives a value a
little lower than the estimated minimum energy would
appear to mean that when angular components are
added to the wave function the parameters in the
spherically symmetric component must change con-
siderably to yield the minimum total energy.

The data in Table III together with earlier work may
be used to estimate the size of the correlation energy

and its various component parts for the three atomic
systems under consideration. It was suggested in an
earlier paper that for the purpose of examining the
correlation energy one should write the wave function
for the ground state of these simplest systems in the
form

=cHpCHp Po +cRC'R Po +c~X~

In Eq. (6) O'HFH is the Hartree-Fock wave function for
the particular configuration and term, namely is' 'S,
making the largest contribution to the energy of the
ground state. 4~~ includes all the remaining terms in
%~ which are not angularly dependent. y~~ consists of
all the angularly dependent terms in 4'~. The relation
of the various quantities in Eq. (6) to those in Eq. (I)
is given by the following set of equations:

c = (c,C HPoH)*C HP Hd

CR (1 CHP )

O'B (coC'o cHF4H p )/cR )

~~K —Q C @HP H/P C,2.
CA=+ Ci ~

The Hartree-Fock wave functions should be the best
function which takes account of the electron interaction
only in the average, that is, the best wave function
which takes no account of the correlation in the position
of the electrons except in the average. It includes no
terms which depend on the instantaneous value of the
interlectron distance. It is suggested that if Cg~ and

are of suKciently general form so that%' may be
considered to be a good approximation to an exact
solution of the Schrodinger equation, then the total
correlation energy and its various parts may be found
from the diGerent terms obtained when +~ as given in
Eq. (6) is substituted into the energy integral,

+~*II% "d7-=

+ CHF') (O'Hp"Po")*HC'Hp"Po"dr

t

+ cHFGB (O'HF Po ) HC'R Po dr+ cRcHF (4R Po ) HC'H p Po dr+ cR (O'B Po ) HC'R Po dr '

+ CHFC~ (O'HYPO )*HX~Hdr+C~CHF ' (X~")*HCHFHPOHdr+c~o (y~H)*H7CgHdr ~

+ CBC~ t (CB Po )*HX~ dr+CatCH (y~ )*HCR Po dr . (7)
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The di8erent terms in the energy integral fall into four
types. These four types have been separately bracketed
in Eq. (7). First, there is a term which involves only
Ver+. This term yields an energy which is equal to c~s'
times the energy of the Hartree-Fock solution and is
the part of the total energy which does not depend on
the correlation in the position of the electrons except
in the average. Second, there is a group of three terms
which yield that part of the energy which appears
because terms arising from the radial correlation in the
position of the electrons are included in the wave func-
tion. It is reasonable to refer to this part of the energy
as: the radial correlation energy. Third, there is a group
of three terms which yield that part of the energy which
appears because terms arising from the angular corre-
lation in the position of the electrons are included in the
wave function. This part of the energy is, therefore,
referred to as the angular correlation energy. Fourth,
there are two terms still remaining which ~ield that
part of the energy which appears because terms arising
from both the radial and the angular correlation in the
position of the electrons are included in the wave func-
tion. This part of the energy may be called the mixed
correlation energy.

TABLE V. Correlation energies in the ground states of H, He I,
and Li n. The values are given in units of RHhc, RH, hc, and Rz„hc
for H, He I, and Li zr, respectively.

Radial
Angular
Mixed

Total corr.

—0.0930—0.0547
+0.0121
—0.1356

Her

—0.0608—0.0788
+0.0020
—0.1376

Li rr

—0.0492—0.0880
+0.0014
—0.1358

The extension of the above discussion to other states
and other atomic systems would seem to be clear.

If one adopts the definitions suggested above, one can
estimate the value of the total correlation energy and
its various parts for any of the three atomic systems
considered here for which Hartree-Pock wave functions
are known. Wilson" has given such a solution for
He r and Fock and Petrashen" have given the solution
for Li rr, but. unfortunately no solution for H seems to
be available. In view of the lack of a Hartree-Fock
solution for H it was decided to use the analytic
product type wave function of Eq. (5) for all three
atomic systems. This wave function has been compared
with the available Hartree-Pock solutions for He r,
Li rr, Be rrr, " and C v." It was found that it gave
energies which were very close to the Hartree-Fock
energies, and that with the exception of C v for which

~~%. S. Wilson, Phys. Rev. 48, 536 (1935).
1 V. Fock and M. J. Petrashen, Physik. Z. Sowjetunion 8, 547

(1935).
'r D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London)

A149, 210 (1935).
's A. Jucys, Proc. Roy. Soc. (London) A173, 59 (1939).

the Hartree-Fock function seems to be somewhat less
accurate, the maximum difference between the norma-
lized analytic and numerical wave functions was
1.2X10 '."Using this wave function, the values of c~p
were found to be 0.969074, 0.994907, and 0.998124 for
H, He r, and Li rr, respectively. With these values for
err~ and the values of the energy for this function as
given in the second line of Table IV the correlation
energies have been computed. The results are recorded
in Table V. Table V gives the values of the total corre-
lation energy and its component parts, the radial,
angular, and mixed correlation energies. The values are
given in units of E~hc, RH, hc, and EL„hc for H, He I,
and Li rr, respectively. The radial correlation energy
was computed by subtracting cIIp' times the Hartree-
Fock energy, taken as suggested above from the second
line of Table IV, from the energy given in the Qrst line
of Table III for the spherically symmetric component of
the ground-state wave function. The mixed correlation
energy was computed directly from the integrals listed
in Eq. (7). The angular correlation energy was then
computed by subtracting the energy of the spherically
symmetric component and the mixed correlation energy
from the total energy given by the ground-state wave
function. Finally, the total correlation energy was
computed by subtracting c&p' times the Hartree-Fock
energy, taken as above from the second line of Table IV,
from the total energy given by the ground-state wave
function for the particular atomic system.

The results given in Table V may be compared with
those obtained earlier' for He r using the three- and
six-parameter wave functions of Hylleraas. There the
radial, angular, mixed, and total correlation energies
were found to be —0.056, —0.079, +0.002, and —0.133
unit and —0.056, —0.075, +0.002, and —0.129 unit,
respectively, for the three- and six-parameter functions.
In making use of the results in Table V and in com-
paring them with the results of the earlier work, it must
be remembered that all of the ground-state wave func-
tions employed give energies above the experimental
values. These diBerences amount to 0.0033, 0.0047, and
0.0064 unit for H, He r, and Li rr, respectively, using
a wave function of the form given in Eq. (4) and to
0.0026 and 0.0010 unit for the three- and six-parameter
Hylleraas functions. These small diGerences represent
corrections to the values of the energies given in Table V
and in the earlier work, but just how these small quan-
tities should be divided between the noncorrelation
energy and the various parts of the correlation energy
is not clear.

The most striking characteristic of the values in
Table V is the remarkable similarity of the total corre-
lation energies for the three atomic systems. Perhaps
more signi6cant is the fact that the total correlation
energy accounts for 12.9 percent, 2.4 percent, and 0.9
percent of the energy of the ground-state wave function
for H, He r, and Li rr, respectively. Next one notices
the downward trend of the magnitude of the radial and
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the mixed correlation energies with increasing atomic
number and the corresponding increasing importance
of the angular correlation energy. A quantitative dis-
cussion of these results will be presented in a later paper.

In summary the present work gives the correlation
energies in the ground states of H, He r, and Li rr and
the importance of the various angular components of
the ground-state wave functions both in the total wave
functions and in the energies computed from them;
First the values of the three parameters in the ground-
state wave function given by Eq. (4) were determined
variationally for He r and Li rr. These functions together
with the one of the same type already in existence for
H were then expanded in series of Legendre functions
of the cosine of the angle between the two radius
vectors. The size of the coeKcients in these expansions
indicate the importance of the nonspherically sym-
metric components of the ground-state wave functions.
That is, the size of the coefficients indicate the im-

portance of configuration interaction with configura-
tions which are not spherically symmetric. This im-

portance decreases as one passes from H to Li rr. On a
percentage basis the contribution of the various com-

ponents to the ground-state energy is less important

than their contribution to the wave function. This con-
tribution to the energy becomes larger in absolute value

but smaller relatively as one passes froxn H to Li rr.

On the basis of the size of the contribution of the
spherically symmetric component to the total energy
and to the wave function for the ground state, the
accuracy of various spherically symmetric ground-state
wave functions is considered. Definitions are given for
the total correlation or configuration interaction energy
and its radial, angular, and mixed parts. Making use of
an excellent analytic approximation to the Hartree-
Fock ground-state wave functions, the definitions of
the configuration interaction energies are applied to the
three atomic systems under consideration. The total
configuration interaction energies are found to be re-
markably similar in absolute value but of decreasing
relative importance with increasing atomic number.
The absolute value of the radial and mixed correlation
energy decreases from H to Li rr and the absolute
value of the angular configuration interaction energy
increases.

The authors wish to thank Mr. Paul P. Craig and
Mr. Robert T. Seeley for help in the computations
leading to Table I.


