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The Theory of Defect Concentration in Crystals*
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The theory of the formation of vacancy and interstitial defects in crystals is re-examined. It is suggested
that a Born-von Karman type of lattice provides an adequate model for the calculation of the essential
parameters giving the concentration of defects as a function of temperature. It is concluded that the entropy
of formation depends only on the lattice frequencies before and after formation of the defect, and no further
contribution to the entropy arises even though the enthalpy of formation may appear to remain temper-
ature dependent at constant pressure. Data on vacancy concentration in NaCl and LiF are analyzed
roughly in the light of present ideas. The results for NaCl are understandable in a simple way; those for
LiF seem to require more complete calculations.
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giving a contribution to A of e ~~. However, Haven and
van Santen' have pointed out recently that a temper-
ature dependence alloted to the enthalpy of formation
requires some entropy of formation because of the
thermodynamic connection:

(BH/BT) p = T(BS/BT)p

From this they find a further entropy term to be
necessary because of Mott and Gurney's temperature-
dependent enthalpy and arrive at a negative contribu-
tion to the entropy of formation rather than a positive
one as would be derived from (2).

*Work carried out under contract with the U. S. Atomic
Energy Commission.

t On leave from the University of Missouri, Columbia, Missouri.' See, for example, F. Seitz, Modern Theory of Solids (McGraw-
Hill Book Company, Inc. , New York, 1940), p. 458.

'N. F. Mott and R. W. Gurney, Electronic Processes in Ionic
Crystals (University Press, Oxford, 1948), pp. 29-30.

3 J. Frenkel, Einetic Theory of Liquids (Clarendon Press,
Oxford, 1946), Chapter I.

4 Y. Haven and J. H. van Santen, Philips Research Repts. 7, 474
(1952).

I. INTRODUCTION

~ 'HE concentration of lattice defects in a crystal,
according to statistical mechanics, is given by

c=e/E=Ae ~'"r,

where a=number of defects; E=total number of
atoms; E= energy of formation of a defect; and 2 =
pre-exponential constant. If there are no entropy
changes other than the entropy of mixing, then the
constant A in (1) is equal to unity. Experimentally, A
often differs from unity by orders of magnitude. Two
main contributions to the value of 2 have been con-
sidered in the literature. -' First, the vibrational
frequencies around a defect are altered, which contrib-
utes to the entropy of formation. Second, the energy of
formation depends on the interatomic distance and,
hence, on the temperature via the volume expansion.
Mott and Gurney' and FrenkeP assumed that E depends
linearly on the temperature as

Because of this unsatisfactory state of affairs, we
decided to reinvestigate this problem by taking account
of thermal expansion from the start. We may anticipate
the results by stating that we find a common error in
previous analyses. Energy terms which depend only on
the volume do not contribute to the entropy of forma-
tion, and these are the entropy terms which have
often been included in the past. According to our
analysis, the entropy of formation depends only on the
lattice frequencies before and after formation of the
defect, and no further contribution to the entropy
arises even though the enthalpy of formation may
appear to remain temperature dependent at constant
pressure.

In Sec. II the detailed thermodynamic arguments
are given, and in Sec. III we discuss brieQy application
to actual experimental data.

II. THERMODYNAMICS OF THE FORMATION
OF LATTICE DEFECTS

The discussion will first be carried through for the
case of a monatomic substance in which each atom
occupies an equivalent position when in the perfect
state. Generalization to more complicated substances is
easily made. The discussion is limited to the case where
hydrostatic pressure is the only stress. The crystal
may exist in a perfect state, and this will be assumed
to be a lattice of the Born-von Karman type, that is,
one in which the thermal oscillations are of sufficiently
small amplitude that the potential energy is a quadratic
function of the atomic displacements. The energy of
the crystal, relative to the state in which the atoms are
all at rest at infinite separation, consists of a potential
energy of equilibrium @„plus a dynamic part which, by
normal mode analysis, is equal to the kinetic and
potential energies of a set of independent simple
harmonic oscillators. These oscillators are characterized
by their frequencies which, together with @p (under
the condition of hydrostatic pressure), depend on the
volume of the crystal and on no other thermodynamic
variables.

The internal partition function of the E-atom
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perfect crystal is now

g c Pp/—'/IIc vp/2—T (1 c vp/T—) 1—

where ~„ is the frequency of one of the 3E-6 lattice
oscillators, measured in energy units; T is the tempera-
ture in energy units; and the product is taken over the
entire set of oscillator frequencies.

The Helmholtz free energy, pressure, entropy, and
internal energy are given by

Py
&p= —T 111Zp=yp+P -//-T l—n(1—e "p ), (2)

Vp

f'BA p ) @p dyp—ZLk+ (c"""—I)-'3, (3)
EBV)r dV pp dV

(BA„)
(aT)v

Vy=~ -'"(1-' "p")+ ('""'-»-' (4)
Vp T

~p=~p+TSp=4p+ZppLk+(c"p" 1) 'j. —

Here the correction to the entropy because of the
indistinguishability of the atoms has been omitted,
which is permissible because all systems to be considered
will have the same number of atoms.

At temperatures appreciably above the characteristic
temperature of the crystal, the thermodynamic func-
tions assume the following simpli6ed forms:

Vy

Ap Pp+PT ln——.
Vy

d&p T dppp~
dV ~v„dV

U„=P,++T=&„+3ET.

Consider next a crystal identical with the perfect
crystal just treated, except that it possesses one defect,
e.g., an atom has been moved from the interior to a
site on the surface, or a surface atom has been moved
to an interior interstitial position. This imperfect
crystal now constitutes a second mechanical system
describable by a volume-dependent potential energy of
equilibrium @;and a set of independent simple harmonic
lattice oscillators characterized by the volume depend-
ent frequencies v;. All of the preceding formulas for
thermodynamic quantities now apply to the imperfect
lattice simply upon replacement of the subscript p by

the subscript i throughout. The entropy and free
energies so calculated do not include the entropy of
mixing, which arises because of the different equivalent
sites on which the defect may be formed.

At thermal equilibrium the concentration of defects
c (atomic fraction) is given by the formula"

c=e ' (10)

c= exp{san
—h~/T}. (14)

The entropy and enthalpy (14) may be written down at
once from the preceding formulas. For many cases of
interest the lattice frequencies will all be smaller than

'The case of pairs or other complexes of defects requires a
simple numerical factor in the exponent of (10). Equation (10) is
the basic form, of which Eq. (1) is a common specialization.

where g is the increase of Gibbs free energy of the
system, exclusive of the entropy of mixing, attendant
upon the formation of one defect at temperature T and
pressure I'.

Following the preceding discussion, g can be written

g= G;—G„,

where G; and G„are the Gibbs free energy of the
imperfect and perfect crystals, respectively.

Experimentally one always determines defect con-
centrations over a restricted range of temperatures,
and an equation of the type of (1) is employed to
analyze the data in terms of an enthalpy (or energy) of
formation and a pre-exponential factor. In most cases
a plot of inc vs 1/T proves to be very nearly linear over
the entire experimental range. These circumstances
suggest that the most useful form in which to elaborate
(10) is the following:

Let T~ be a temperature near the middle of the experi-
mental range. Development of g in Taylor series about
Ty gives

g(T) =g(T~)+ (~g/~T~)~(T T~)—
+ '(~'g/~Ti')~(-T T~)'+ " —(12)

As long as the experimental data can be represented by
a straight line in the usual plot, the Grst two terms of
(12) must give an adequate approximation to g.
Consequently, we shall discard the quadratic and higher
terms. The present model allows one to estimate these
terms and con6rms the expectation that they are small
in cases of interest.

If we employ (11) and the relation (BG/BT)p= —S,
(12) becomes

g (T)=g~+ T~s~ Ts~= h~ Ts~, —(13)—
where s=S;—Sp (the entropy of formation of one
defect, exclusive of the entropy of mixing), h= H; —Bp,
the enthalpy of formation of one defect, and the
subscript 1 means that the quantity is to be evaluated
at temperature Tj, Finally, the equilibrium concentra-
tion of defects in the temperature range of interest
becomes
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T&, and good approximations can be found in the early
terms of expansions in v/T. Subsequent developments
will be confined to this case. From (8) one finds
s=P 1 n( vv/ v~)+0( v/T'), so that, to first order,

st ——P ln(v„/v;), (15)

the summation being over all vibrational modes.
Equation (15) is essentially the same as a term already
employed by Mott and Gurney' to take care of altered
vibrational frequencies around a defect. It is now
apparent that this vibrational entropy, if properly
computed, should not be supplemented by any other
entropy terms. ' It should be added that thermal
expansion and attendant subtle sects, on the basis of
which the temperature dependence of the enthalpy of
formation was first suggested, are provided for in the
present model.

The calculation of h will be simplified here by setting
I'=0, an adequate approximation in most experiments.
Then from the relation H=A+ TS+PV, one finds

The potentials P can be calculated theoretically by
well-known methods. "It should be pointed out that
in ionic crystals, such as the alkali halides, the condition
of electrical neutrality requires that vacancies be
created in pairs of opposite sign. At elevated temper-
atures association of positive and negative vacancies
will not be important, ~ and the concentration of
separated pairs of vacancies (number of pairs divided
by number of molecules in the crystal) is given by a
simple modification of Eq. (10):

c=e gi2 (19)

where g is the Gibbs free energy increase, exclusive of
the entropy of mixing, upon formation of a well-
separated pair of positive- and negative-ion vacancies.
All other formulas are then readily transcribed for this
case.

III. COMPARISON WITH EXPERIMENT'

Etzel and Maurer" have measured the electrical
conductivity of NaCl and deduced a concentration of
vacancy pairs

&(i.ev—j..oiiT)

Again a good approximation to h~ will often be obtain-
able by omitting all terms in v/T from (16). The p
terms should be computed at V~, the equilibrium volume
at T~, rather than at Vo, the equilibrium volume at
T=0. This generally involves a slight correction,
probably smaller than the inaccuracy in the calculated
value of P(Uo) itself, which may be estimated as
follows:

1 (Vt—Voq '
0 (Vt)=4 (Vo)+-&Vo

I

2 ( Vo
(18)

As examples, for NaCl with T~= 900'K the second term
in (18) equals 3 percent of the first term; for LiF with
Tt 1000'K the secon——d term is 8/10 percent of the
first.

~ Presumably this conclusion is also valid for the formation of
a saddle point configuration during diffusion. Consequently, one
of the entropy contributions ESI, previously considered positive
by one of us (G.J.D.) in an earlier analysis of entropies of activa-
tion /Phys. Rev. 89, MS (1933)j, should be zero.

At T=O, with neglect of the zero-point vibrational
energy, P is just the internal energy of the system.
Then dy= Pd V, dy/8 V=—Pd'y/d V'= dP/d —V—
= (1/V)B, where 8 is the bulk modulus at absolute
zero. Setting I'=0 gives

in the temperature range 825 to 1000'K. (T in the above
is in units of electron volts. ) The value 1.01 ev for half
the enthalpy of pair formation is in good agreement
with Mott and Littleton's" theoretical value.

To calculate the entropy term, one should make a
normal mode analysis of the perfect and imperfect
crystals, an especially dificult task for the latter case.
An approximate value may be obtained much more
simply, however, by using an Einstein model for the
lattice, as has already been suggested by Mott and
Gurney. ' If one assumes, with these writers, that only
the nearest neighbors of the vacancy will be affected,
and then only in respect to vibrations along a line
joining them with the defect, one has a total of 12
altered modes per defect pair. If one assumes that the
ratio of the altered to original frequencies is the same
for positive and negative vacancies, one obtains from
Eq. (15) the entropy change per defect pair of st
= 12 ln(v„/v;). A fit to Etzel and Maurer's data is now
obtained if s&is——1.67, which requires v„/v;= 1.32. In the
absence of a complete calculation, it may be said that
this value seems entirely reasonable. In the simplest
possible situation, that of nearest-neighbor interaction
only in a cubic lattice, one immediately computes that
vv/v;=92, since creation of the vacancy halves the
force constant for vibration of the neighbor.

' See reference 2, Chapter II.
8 See also the recent review: P. W. M. Jacobs and F. C. Tomp-

kins, Quart. Revs. 6, 238 (1932).
A theoretical treatment of association is given by J. R. Reitz

and J. A. Gammel, J. Chem. Phys. 19, 894 (1951).
'o H. W. Etzel and R.J.Maurer, J. Chem. Phys. 18, I003 (1950).
» N. F. Mott and M. J. Littleton, Trans. Faraday Soc. 34, 485

(1938).
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Similar measurements by Haven" on LiF gave

~(6.2—1.34/ 7)

The enthalpy of activation is similar to that for NaCl
in the sense that it is increased essentially by the ratio
of the cohesive energies (a ratio of 1.32) The entropy
term ot 6.2, analyzed as for NaC1, requires t „/v;=2.8,
a somewhat high value, A resolution of this difficulty
would require more detailed calculations. For example,
nearest-neighbor interactions could lower this value
appreciably. Further, Haven analyzes his data in a
somewhat diferent manner from Etzel and Maurer and
the two sets of results are not strictly comparable.

Simple application of the theoretical analysis appears,
therefore, to be in reasonable agreement with experi-
ment. There are additional terms, of course, which

'~ Y. Haven, Rec. trav. chim. 69, 1259, 1471 .(1950).

contribute to changes of the vibrational frequencies
which then should be included in calculating vv/v; of
Eq. (15), such as over-all dilation due to strains around
the defects and long-range elastic distortion of the
crystal. These effects are being investigated by Huntirig-
ton"'4 both for the formation of defects and the
formation of saddle point configuration during diGusion.

At the present state of analysis, from Eq. (15) the
strong inference is that the entropy of formation for
vacancies is positive while for interstitials it is negative.
Extensive calculations will be necessary, however,
before dependable theoretical values for this entropy
can be found.
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The main features of the temperature variation of the magnetic inelastic scattering of slow neutrons in
iron, recently measured by Palevsky and Hughes, are accounted for, by use of a theoretical description of
the scattering in terms of the correlation between pairs of spins at diferent positions and diferent times.
Proofs will be given in a later paper devoted to a general discussion of space-time correlations and of their
use in scattering theory.

'HE temperature variation of the total scattering
cross section of iron for very slow neutrons has

been measured by Palevsky and Hughes' in the tem-
perature range 100'K(T'(4300'K and for neutron
incident wavelength X varying from 5 to 13A. After

. subtracting the contribution of scattering by the iron
nuclei, one obtains a considerable residual cross section
g,~ to be attributed to the magnetic interaction of
the neutron with the magnetic electrons of iron. Two
striking properties of the residual scattering are revealed
by the experiment:

(a) For temperatures above as well as below the
Curie temperature T,= 1043'K of iron, 0. ,~ is propor-
tional to X, indicating that the scattering is inelastic.

(b) As a function of temperature o. ,~, which
vanishes at T=O on theoretical grounds, exhibits a
maximum at the Curie point, with an abrupt change of
slope. Its decrease on the left of the maximum is much
faster than on the right. The ratio o „,/crt of o,~ to

*Part of this work was carried out at Brookhaven National
Laboratory and supported by the U. S. Atomic Energy Com-
mission.' H. Palevsky and D. J. Hughes, Phys. Rev. 92, 202 (1953).

its largest observed value 0-~ is independent of X and is
plotted against T/T, in Fig. 1 (solid line), with indica-
tion of the experimental points. One has 0.~=3.5 barns
for X=SA.

Our object is to interpret briefly these properties,
restricting ourselves to temperatures below 1179'K, the

. o.~ transition point of iron.
The inelastic nature of the magnetic scattering

(property a) for wavelengths X larger than the Bragg
cutoG is a direct consequence of the strong exchange
interaction between the magnetic spins of iron: when
the Bragg condition is not satisfied the energy transfer
AE between neutrons and system of interacting spins
is continuously distributed, without singular peak at
DE=0. This fact is independent of the presence or
absence of long-range order and holds thus for para-
magnetic as well as ferromagnetic iron. It was recog-
nized by Van Vleck, ' who discussed a few features of
the distribution of hE in the limit of infinite tem-
perature.

For the magnitude and temperature dependence of

~ J. H. Van Vleck, Phys. Rev. 55, 924 (1939).


