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In relativistic field mechanics one ordinarily introduces the time derivative of a field component as its
velocity and the partial derivative of the Lagrangian density with respect to the velocity as its canonically
conjugate momentum. In order to treat the time and space equivalently, Born and Weyl once treated the
four space-time derivatives of a field component as four velocities and introduced the four partial derivatives
of the Lagrangian density with respect to the velocities as four momenta. In the present paper this idea is
carried further in order to introduce the generalizations of the point-mechanics ideas of Hamiltonian
equations, Lagrange brackets, Poisson brackets, and integrals of motion.

I. INTRODUCTION

~ ~HE electrodynamics of Schwinger, ' Feynman, ' and
Dyson' has been very successful, especially in

interpreting the Lamb-Retherford shift4 and the
anomalous magnetic moment of the electron. "In this
electrodynamics the idea of covariance with respect to
Lorentz transformations is specially emphasized, for the
success of the theory depends on expressing the theory
in a covariant fashion. Accordingly there is an incentive
for constructing a 6eld theory in which the time coor-
dinate is treated entirely equivalently to the space coor-
dinates so that the equations can be written in an even
more obviously covariant form at every step of the
development. The problem has been studied by Born~
and by Weyl this paper is an attempt to extend some
of their ideas.

If one follows Heisenberg and Pauli, ' the mechanics
of 6elds is ordinarily built up by comparison with the
classical mechanics of point particles and rigid bodies.
Starting from a given Lagrangian density which is a
function of the 6eld amplitudes and their four space-
time derivatives, one uses the theory of functionals in
such a way that the amplitudes of the 6eld at the
various points in space are analogous to diferent
degrees of freedom. The partial derivatives of the ampli-
tudes with respect to the time are called the velocities,
and the partial derivatives of the Lagrangian density
with respect to the velocities are called the momenta.
In this way a momentum is defined for each component
of the field, and a Hamiltonian mechanics for the Geld

may be set up, still in parallel with classical mechanics.
In contrast to this, Born and Weyl treat the four partial
derivatives of a component of the 6eld with respect to
space and time as four independent velocities. Conse-
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quently for each component of the Geld they introduce
four momenta, de6ned as the partial derivatives of the
Lagrangian density with respect to the various veloci-
ties. The advantage of this point of view is that the
momentum canonically conjugate to the 6eld is a
covariant quantity, for if the Geld is a tensor with
independent components, the momentum is a tensor
of one higher rank, and if the field variable is a four-
component Dirac function, the momentum transforms
like the gradient of the adjoint function. In what
follows, the Born and Weyl point of view is used; the
object of the paper is to see how the classical ideas of
Hamiltonian equations, Lagrange brackets, Poisson
brackets, and integrals of motion carry over into this
digerent point of view.

As is shown in detail below, the starting point dis-
cussed above leads naturally into a generalization of
Hamiltonian mechanics in which the four space-time
coordinates together take the place that the time alone
takes in Hamiltonian mechanics, and the number of
components of the 6eld takes the place of the number
of degrees of freedom. Many of the classical ideas can
be carried directly into this field mechanics; others have
a limited parallel. In particular, one can set up a
generalization of the Hamiltonian equations and study
in detail the transformations which leave their form
unchanged. The most general such canonical trans-
formation is found to be a transformation in which the
new coordinates used to describe the Geld are functions
of the old coordinates, independent of the momenta.
The generalized Lagrange and Poisson brackets are
found to be vector operations which are in a limited
sense reciprocal. For every in6nitesimal canonical
transformation which leaves the functional form of the
Hamiltonian unchanged, there is a vector function
which has zero divergence and which, if it does not,
explicitly depend on the spacetime, has a zero Poisson
bracket with the Hamiltonian. This property is in close
parallel with point mechanics, but the converse of the
theorem, which is also true in point mechanics, does not
hold in this Geld mechanics.

This work is perhaps interesting because it shows a
generalization of classical mechanics which might not
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the space integration corresponding to a sum over the
degrees of freedom. Then the variational principle,

or equivalently

S~t Ldt=0,

Ld4x= 0,

(2)

(3)

(where the field amplitudes are to be varied arbitrarily
within the integration region but kept fixed on the
boundary) gives the equations of motion, which are
written in either of the forms

d 61. 61.———0 (&)
dt 8(dq;/dt) 8q;

or
d BI BL

=0
dx. 8 (dq, /dx. ) riq;

In Eq. (4), the 8 indicates the functional or variational
derivative. Following the correspondence with point
mechanics, which is clearly visible in Eqs. (2) and (4),
one ordinarily introduces momenta by

8(dq;/dt) 8 (dq;/dt)
(6)

and proceeds to build up a Geld Hamiltonian mechanics
which diQ'ers from the point mechanics only in having
integrals replacing certain sums over degrees of freedom. '

In adopting the point of view of Born and Weyl, one
remarks that in point mechanics the problem is to Gnd

certain functions of the time q;(t), whereas in field
mechanics the problem is to Gnd certain functions of
space and time q, (x ). Consequently, given

L(q;, dq;/dx, xp),

one postulates Eq. (3) directly. This approach of course
produces the same equations of motion, Eq. (5), but it
leads to the introduction of four momenta for each

I Greek indices will be used to correspond to the four space-
time coordinates x1, x2, x3, x4 =ict. Roman indices will correspond
to the components of the field so that i = 1 for a scalar field, i=1
to 4 for a vector field, etc. Indices appearing twice in a product
are to be summed. The 8 symbol will be used for partial di6eren-
tiation when the field components, the velocities or momenta,
and the space-time coordinates are taken as independent variables.
The symbol d/Ch~ will indicate the gradient operator when only
the space-time coordinates are taken to be independent.

have been anticipated. There is also the possibility that
it might lead to some new ideas about Geld quantization.

IL THE HAMILTONIAÃ EQUATIONS

The usual way to discuss a GeM with amplitudes

q;(x ),"given the Lagrangian density function

L(q;, dq;/dx, xp),

is to introduce a Lagrangian by

r~

I.(t) = Ld'x,

Geld amplitude"

(7)
8(dq;/dx )

To conform with this point of view, in what follows,
L will be called the Lagrangian and other quantities
which arise will be named the same as their point-
mechanical analogues. It is easily verified that if, under
a Lorentz transformation of the coordinates,

xa =Q~pxpy G~pQ~y =Spy) (8)

the Geld components transform according to

q''(x')=b' q (*)

8 (dqj/dxp)

~p'~ q, r it(de/dxp) q, &qi&~ itpi~ q, r

8 (dq, /dxp)
pip

cipiu q, y

cj ( dqg' )+ I p I , (»)
dx~ Bp i~ E dxp J

BL BL BL

Bqi q, y iraqi q, dq/dz 8 (dqj/d p) qx, dq/dg ciqi q y

dp, cj (dq, /dxp)
+pip

8X~ Qgs

dpi& ci (+ I pip I
. (14)

dx~ . Bqi 0 dxpl q, y

"Momenta corresponding to the space derivatives of the 6eld
components have also been considered by Satosi Watanabe,
Progr. Theoret. Phys. Japan 2, 71 (1947)."W. Pauli, Revs. Modern Phys. 13, 220 (1941).

8 (dq, /dxp)

q'(x) = (b ') 'q''(x'), (10)

then, assuming the Lagrangian is a scalar and the com-
ponents of the Geld are independent,

p'-'(x') = (b )i'it-ppip(x). (11)

From this one sees that, if the Geld is a tensor, the
momentum is a tensor of one higher rank. Also if the
q;(x ) form a four-component Dirac function, then the
adjoint function transforms according to"

q;"'(x') = (b ');;q;"(x), (12)

(time-reversal will not be considered), and the mo-
mentum transforms like the gradient of the adjoint of
q;(x.).

The Hamiltonian equations are found from the
Lagrangian equations, Eq. (5), and the definition of
the momenta, Eq. (7), with the use of the techniques of
partial differentiation. One must assume that Eq. (7)
can be solved for the velocities in terms of the momenta
and coordinates (this cannot be done with first-order
Geld equations), and then the general procedure is to
eliminate the velocities in favor of the momenta. One
Gnds that



HAM ILTONIAN MECHANICS OF FIELDS

Accordingly the Hamiltonian will be defined by

H(q, p, x) =p;pdq;/dxp L,—

so that the equations of motion are

dq;/dx =BH/BP;, (16)

dP;.—/dx = BH/Bq;. (17)

Evidently the Hamiltonian is a scalar. These equations
reduce to the equations of point mechanics when the
Greek indices range over only one value. The above
argument shows that Eqs. (16) and (17) are necessary
for Eqs. (5) and (7); it is easily veri6ed that they are
also suflicient. Equation (16) above is Weyl's Eq. (10),
and Eq. (17) above is equivalent to Weyl's Eq. (9)."

F (q, p', x), (27)
dS~

where P is some definite vector function. From this it
follows that

BFa/BPip =Bapqi y

BF./Bq;= p;.,

(28)

(29)

One may regard this equation as an identity among the
unprimed coordinates and primed momenta;. in that
case it may be written as

dq; dp;' dE d
P'« —H+q'' +H'= + (q''p*-')

de d&a dxa dsn

III. CANONICAL TRANSFORMATIONS BF /Bx =H' H. — (30)

—dp;. '/dx =BH'/Bq . (20)

In this 6eld mechanics the only canonical transforma-
tions are point transformations of the type

q =q (q, x),

Bqj Bfa
Pja+

Bq; Bq,
Piay (22)

Bq BfH'=H+ p'. '+
8$~ 8$~

(23)

whereq and f arefunctionsof theq;andx alone.
[Presumably Eq, (2'2) will be solvable for the primed
momenta in terms of the unprimed coordinates and
momenta. ]To see this, one observes that the existence
of a canonical transformation implies' that the varia-
tional principle,

dqi

a~ ] p,. —H [dix=O,
dx )

transforms into

(24)

t'(
B i

i P; ' H' id4x=0. -
E dx.

(25)

The diQ'erence between the integrands will then be the
divergence of some vector, say E:

dq; dq dE„
P; II p;

' +H'= . — —(26)

"Reference 8, p. 507.

By a canonical transformation is meant a trans-
formation

q''=q''(P, q *),
P*-'=P'-'(P q *)

such that, for some new Hamiltonian function
H'(q', p', x),

dq /dx = BH'/Bp;. ', (19)

Equation (28) implies that F depends on no other
momenta than the p; ' and that furthermore it depends
only linearly on those, so that in general

F-=r'(q x)p'-'+f-(q x). (31)

6 BG~
Bq;=q —q;=- (q, p, x) =as;,

4BP;
BG

Bp;.=P;.' —P;.= —e (q, p, x)
Bq;

(33)

(Bs; Bg )
p;-+ I, (34)

Eaq;
"

aq &'

BG (Bs; Bg )
BH=H H=. (q, P, x)=.

~

-'p,.+ ~. (35)
ax. &ax. Bx.i

IV. LAGRANGE AND POISSON BRACKETS

When the notions of Lagrange and Poisson brackets
are discussed, one must think of a set of independent
functions of the coordinates and momenta which are
not necessarily a new set of canonical variables. In case
there are e components of the field, there are altogether
5n coordinates and momenta; let Nr(q, p, x), I'=1,
2, ~ ~ .Se, represent the independent functions of the
coordinates and momenta. With respect to a certain

One sees then that the r; are only the new coordinates
and that Eqs. (28), (29), and (30) reduce to Eqs. (21),
(22), and (23). Thus for a canonical transformation
the new coordinates can depend only on the old coor-
dinates and the x . This is different from point me-
chanics where, in a canonical transformation, the new
coordinates may also depend on the old momenta. As
specializations of the above results, the generating
vector F =q,p; ' gives the identity transformation,
and an inlnitesimal canonical transformation with
generating vector G (q, p, x)=s;(q, x)p;+g (q, x) and
smallness parameter e is given by

Fa qipia+~a(q~ pyx) qipia+&(sipia+ga)p (32)
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set of coordinates and momenta, the Lagrange bracket
between any two functions will be defined by

Bgi Bpia Bgi Bpia
{u~, Qadi}

t9Qg BQg lIIIQgg BQ~
(36)

{ga ) Pip }a "=BjÃ'ap. (40)

Using Eqs. (21) and (22), one can easily verify that
these conditions are also necessary, whether the trans-
formation depends on the x„explicitly or not. As a
further justi6cation for the above dednition of Lagrange
bracket, Eq. (36), it can be shown that these quantities
are canonical invariants in the sense that they have
the same value no matter what set of canonical variables
are used to calculate them. One proves this easily by
writing

Bifi BPia (Bifi Bgj Bgi BPjs )+
Bs~ Buii E Bifi Bu~ Bp~s Bu@ )

where the rest of the Q's are to be held constant during
each partial differentiation. One is led to this particular
generalization of the point-mechanical definition by
considering canonical transformations which are inde-
pendent of the x so that the new Hamiltonian is equal
to the old. In this case one may easily transform from
the unprimed variables to the primed by multiplying
Eq. (16) by Bp; /Bpg', Eq. (17) by Bq;/Bp, s'and adding
to obtain

dq&' dp&„' MP
{if' P~s'}-'" +{P~ ' Ps'} '" = (37)

dx dx Bpip'

and also by multiplying Eq. (16) by Bp; /Bg, Eq.
(17) by Bq,/Bq,

' and adding to obtain

diftc dPi p
{O' V/}-'" +{P~s' V/}-'" = . (38)

dÃ~ Bg~

Consequently sufhcient conditions for a canonical
transformation are that

fp~v' Pu'}-'"= {if' n'}-'"=0 (39)

where Eqs. (39) and (40) were used in the last step. In
view of this fact the superscripts on the brackets will be
omitted below.

The Poisson bracket between any two functions Q&

and Q~, with respect to a certain set of coordinates and
momenta, will be delned by

BQg BQ~ 1 BQgg BQg
(ug, us)a& &=

Bifi BPia 4 Bgi BPia
(43)

BPia Bur Bg; Bsr
+ =Bar. (44)

BQB Bpia Buii Bifi

Although in general these Poisson brackets are not
canonical invariants, certain special cases of them do
happen to be invariants. By thinking of the Q& as
expressed in terms of the primed coordinates and
momenta, one Ands that

BQg BQ~
(up, u&) & &= (q, qp'). & &

Bg~ Ogle

BQg BQg 8Qg BQg
+(v' P~v')-'" +(P s' v~')-'"—

Bgi Bpg& Bijou Bpip

9Q~ 9Qg
+ (Pis' P~.')-'",

, (45)
Bp&v Bus

Also for a canonical transformation one Ands, either
directly from Eqs. (21) and (22) or by specializing Eq.
(44) to the case when the u~ are the primed coordinates
and momenta, that

VVith this dehnition the Poisson and Lagrange brackets
are, in a sense, reciprocal:

{ug, Qadi}a(ug, ur)a~'"

(Bifi Bpia Bgi Bpia l (BQA Bur 1 Bur BQA $

( Bug Bue Buii Bug ) E Bg&' Bp&'a 4 Bg& Bp&a)

so that
Bg; Bgq

{u~ uii} '"={q '
qi, '} &&

8Qg 8Q~

(Bpia BiJta Bpia Bpkv )
X

~
+

~
(41)

k Bga Bus Bpgp Buii )
(q qi, ') '&=0

(V~', P~v') -'"=B '&-v

(P
' v~') '"=-~~

(p;.', p&,').& &=0.

(46)

(47)

(48)

(49)

BA Bpiv
+fv' P~v'}-'"

BQg BQg

BA BPA
+{Pv' v~'}-'"

Bp~v BPJp+{P~s' P~v'}-'"

= {u~, Qadi}a" "', (42)

Therefore, in the special case when Q~ is independent
of the momenta, say uz ——r(q, x),

88 BQ~
(v, uii) . = = (e, u~). '

BPia
(50)

Another special case is when four of the Q&, say m,
depend on no other momenta than the p; and are
linear in those, so that

Bwa/Bpis= gbapB wp/Bp;7'
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Then one sees from Eqs. (45) to (49) that
l

OK' 8Q~

I

point-mechanical idea, a function G s...(q, p, x) will
be called an integral of the motion if

(w us) ' = (q, qi, ') '"
Og, Ogj,

(d/dx )G p. ..(q(x), p(x), x)=0. (60)

O'N OR~
+(qi' p~v')-'"

iraq~' dpi

OQg O'Rp
+-', (p;.', q~').'"

Bqy' Bp js'

OQ~ O'leap

+i (pia y pky )a ' (Way NB) ' a~
Viz ~p~s

Gp. .. (/) = G s...d'
all

space

(61)

is a covariant quantity of one lower rank, and further-
more

This generalization is appropriate in view of the well-
known theorem that if G p. .. is a covariant quantity
which satisfies Eq. (60) and which is zero except in a
region of space near the origin, then

In these two special cases, then, the Poisson brackets
are invariants, and the superscripts may be omitted,
These two special types of Poisson brackets correspond
to partial differentiation with respect to momenta and
coordinates, for it is easily seen that

(62)

In this field mechanics, in parallel with point mechanics,
if the functional dependence of the Hamiltonian on its
arguments is unchanged during an in6nitesimal contact
transformation, then the generating vector of the trans-
formation is an integral of the motion. One sees this
easily by noting that, when the Hamiltonian is in this
sense invariant, then to first order

BE//Bp;. = (q;, E), (53)

(54)BE/Bq;= —(p, , E),
where E(q, p, x) is any function. One can then write
the Hamiltonian equations, Egs. (16) and (17), in the
form

&II BH
8H=H(q', p', x) —H(q, p, x)= bp; + 8q;. (63)

opia iraqi
dq;/dx. = (q;, II).,

dp; /dx = (p;, H) .

In fact, for the two special types of function introduced
above,

OH BG„~OII BG~
+— = —e(G, H) . (64)

ilpia iraqi 4 riqi opia(57)dv/dx. = (n, H).+Bv/(3x. ,

dw /dx =(w, H).+Bw /Bx .

V. INTEGRALS OF MOTION

(58) Finally, since G (q, p, x) = s;(q, x)p; +g (q, x), one can
apply Eq. (58) with the result that

(55)
Next, using Eqs, (33), (34), and (35) to rewrite this
in terms of the generating vector, one finds that

In the mechanics of point particles and rigid bodies,
one is concerned with functions of the time q, (t) and
one calls a function G(q, p, t) an integral of the motion if

OG
=0

dG
=(G., H) +

dXcr BX~
(65)

(D/Dt)G(q(t), p(&), &)= 0, (59)

where the symbol D is used to indicate total digerenti-
ation with respect to the only argument. In the
mechanics of fields one is concerned with functions of
the space-time q, (x ) and, as a generalization of the

The converse theorem of point mechanics, that each
integral of the motion is the generator of a canonical
transformation which leaves the functional form of the
Hamiltonian unchanged, does not apply here since only
generating vectors which give point transformations
are allowed.


