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INZINGER and Bothe! have reported significant deviations
from Mott theory in the large-angle scattering of 245-kev
electrons from heavy nuclei. For gold at 150° they found that the
scattering is more than 35 percent low. Subsequent measurements
by Kinzinger? at 120° show a consistent deviation which is 25
percent low and is independent of energy between 150 and 400 kev.
Paul and Reich? report similar behavior for 2.2-Mev electrons, the
deviation being about 15 percent for platinum at 90° and 120°.

A preliminary measurement of the scattering of 1-Mev electrons
by aluminum and gold has been made. Electrons from a Van de
Graalff generator are focused on Parlodion (0.006 mg/cm?) backed
foils of aluminum (0.22 mg/cm?) and gold (0.02 mg/cm?), and the
relative number of electrons scattered at 30°, 60°, 90°, 120°, and
150° is measured. The two detectors are photomultipliers with
anthracene crystals mounted at the end of collimators. An integral
pulse-height discriminator is biased to minimize the x-ray and low-
energy electron background so that the electrons elastically scat-
tered from the foil nuclei are counted. The ratios of scattering at
30°, 60°, 120°, and 150° to that at 90° are measured and compared
with the theoretically predicted values. Account has been taken of
background counting rate, counting losses due to finite resolving
time of the scaling circuits, multiple scattering, plural scattering
(transmission-reflection asymmetry), and scattering in the
Parlodion foil support. The maximum contribution for each of
these was of the order of one percent and was in most cases less
than this.

The results for aluminum and gold are given in Table I. The
uncertainties shown are the standard deviations associated with
counting. The results for aluminum are compared with the at
approximation to the Mott series given by McKinley and Fesh-
bach? rather than the o? approximation formula, since the latter
does not fit the experimental values as well as the more accurate
o approximation. For gold, the a* approximation is not sufficiently

TaBLE 1. Relative scattering with respect to 90°.

Aluminum

Angle Experimental Theoretical Deviation (%)
30° 89.06 +0.27 89.08 —0.0
60° 5.504 4-0.011 5.496 +0.2
120° 0.2654 =-0.0007 0.2665 —0.4
150° 0.08572 +0.00029 0.08544 +0.3

Gold

Angle Experimental Theoretical Deviation (%)
30° 39.50 =+0.12 39.87 —0.9
60° 3.898 40.009 3.840 +1.5
120° 0.3204 +0.0008 0.3178 +0.8
150° 0.09610 3-0.00039 0.09693 —-0.9
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accurate, since a=2Z/137=0.58 and the series does not, converge
rapidly enough. The theoretical values given in Table I for gold
were obtained by interpolating the calculations of Bartlett and
Watson® for mercury and multiplying the result by the ratio of
gold to mercury scattering given by the a* approximation. This
procedure should give results accurate to about 1 percent.? As
may be seen in Table I, the experimental results do not differ from
these theoretical values by more than 1.5 percent and the differ-
ences exhibit no systematic trend. Thus, there is no evidence for
deviation from the Mott theory of electron scattering at 1 Mev.
Work is continuing on the measurement of relative scattering at
other energies as well as of the absolute scattering.

1 E. Kinzinger and W. Bothe, Z. Naturforsch. 7a, 390 (1952).

2 E. Kinzinger, Z. Naturforsch. 8a, 312 (1953).

3 W. Paul and H. Reich, Z. Physxk 131, 326 (1952)

4+ W. A. McKinley, Jr., and H. Feshbach, Phys. Rev. 74, 1759 (1948).

( ;J.)H. Bartlett and R. E. Watson, Proc. Am. Acad. Arts Sci. 74, 53
1940).

Feynman’s Theory of Liquid Helium
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ECENTLY, Feynman! has developed a new theory of liquid
helium. In the present note we wish toshow how the approxi-
mations that Feynman has to make to evaluate the partition
function may be related to well-known approximations in statis-
tical mechanics. We should also like to point out that Matsubara?
has developed a theory of liquid helium using almost the same
mathematical approximations as I'eynman. It appears to us that
the relationships that exist between Feynman’s approximations
and the standard approximations of statistical mechanics throw
new light on the nature of Feynman’s work.

We shall confine ourselves in this note to the first of Feynman’s
papers—hereafter referred to as I— in which he discusses the origin
of the lambda transition of liquid helium. In I, three approxi-
mations are made in order to evaluate the partition function for the
system. Feynman first argues that it is very reasonable to assume
that the helium atoms move about as if they were practically
free, and therefore that to a high degree of accuracy the distri-
bution function in configuration space will be essentially the same
as that for an ideal Bose-Einstein gas. This distribution function
is proportional to

N
Zp exp[— (w/N0) Z Izi—Pzil2]!
=1

where z; is the coordinate of the ith atom, P is any permutation
of the N indices, N2=/2/2xmkT, and Zp stands for a summation
over all permutations P. In order to take into account the effects
of the interactions between the atoms Feynman proposes to mod-
ify this distribution function by replacing the true mass m by an
effective mass 7’ and by multiplying it by an additional distribu-
tion function Kg-pn(2z1--zn), where Kg is a normalization
constant. The function py is stated to be - - - qualitatively very
similar to the distribution function for a classical gas.” We can
therefore write it in the form exp[—gV’(8)], where V'(8) is a
quasi-interaction potential, with properties similar to that for a
classical system except that it depends slightly on the temper-
ature. With these approximations the partition function reduces to
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where N2=42/2xm'kT and z stands for the set of all coordinates
(z:). We now wish to compare this approximate partition function

with another that can be obtained from the semiclassical expansion
due to Wigner?® and Kirkwood.* These authors showed that the
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