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TABLE L Relative scattering with respect to 90'.

Angle
Aluminum

Experimental Theoretical Deviation (%)

30~
600

1200
150'

89,06 ~0.27
5.504 ~0.011
0.2654 ~0.0007
0.08572 ~0,00029

89.08
5.496
0.2665
0.08544

—0.0
+0.2—0.4
+0.3
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INZINGER and Bothe' have reported significant deviations
from Mott theory in the large-angle scattering of 245-kev

electrons from heavy nuclei. For gold at 150' they found that the
scattering is more than 35 percent low. Subsequent measurements
by Kinzinger' at 120' show a consistent deviation which is 25
percent low and is independent of energy between 150 and 400 kev.
Paul and Reich' report similar behavior for 2.2-Mev electrons, the
deviation being about 15 percent for platinum at 90' and 120'.

A preliminary measurement of the scattering of 1-Mev electrons
by aluminum and gold has been made. Electrons from a Van de
Graaff generator are focused on Parlodion (0.006 mg/cms) backed
foils of aluminum (0.22 mg/cm') and gold (0.02 mg/cm'), and the
relative number of electrons scattered at 30, 60', 90', 120', and
150' is measured. The two detectors are photomultipliers with
anthracene crystals mounted at the end of collimators. An integral
pulse-height discrirninator is biased to minimize the x-ray and low-
energy electron background so that the electrons elastically scat-
tered from the foil nuclei are counted. The ratios of scattering at
30', 60', 120', and 150' to that at 90' are measured and compared
with the theoretically predicted values. Account has been taken of
background counting rate, counting losses due to finite resolving
time of the scaling circuits, multiple scattering, plural scattering
(transmission-reQection asymmetry), and scattering in the
Parlodion foil support. The maximum contribution for each of
these was of the order of one percent and was in most cases less
than this.

The results for aluminum and gold are given in Table I. The
uncertainties shown are the standard deviations associated with
counting. The results for aluminum are compared with the n4

approximation to the Mott series given by McKinley and Fesh-
bach' rather than the 0.' approximation formula, since the latter
does not fit the experimental values as well as the more accurate
n4 approximation. For gold, the n4 approximation is not sufficiently

accurate, since n=Z/137=. 0,58 and the series does not converge
rapidly enough. The theoretical values given in Table I for gold
were obtained by interpolating the calculations of Bartlett and
Watson' for mercury and multiplying the result by the ratio of
gold to mercury scattering given by the o.' approximation. This
procedure should give results accurate to about 1 percent. 4 As
may be seen in Table I, the experimental results do not differ from
these theoretical values by more than 1.5 percent and the differ-
ences exhibit no systematic trend. Thus, there is no evidence for
deviation from the Mott theory of electron scattering at 1 Mev.
Work is continuing on the measurement of relative scattering at
other energies as well as of the absolute scattering.
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ECENTLY, Feynman' has developed a new theory of liquid
helium. In the present note we wish to show how the approxi-

mations that Feynman has to make to evaluate the partition
function may be related to well-known approximations in statis-
tical mechanics. We should also like to point out that Matsubaral
has developed a theory of liquid helium using almost the same
mathematical approximations as I'eynman. It appears to us that
the relationships that exist between Feynman's approximations
and the standard approximations of statistical mechanics throw
new light on the nature of Feynman's work.

We shall confine ourselves in this note to the first of Feynman's
papers —hereafter referred to as I—in which he discusses the origin
of the lambda transition of liquid helium. In I, three approxi-
mations are made in order to evaluate the partition function for the
system. Feynman first argues that it is very reasonable to assume
that the helium atoms move about as if they were practically
free, and therefore that to a high degree of accuracy the distri-
bution function in configuration space will be essentially the same
as that for an ideal Bose-Einstein gas. This distribution function
is proportional to

ZQ exp —(x/x') Z
I

z*' Pz' I'
i=1

where zi is the coordinate of the ith atom, I' is any permutation
of the N indices, X~= hs/2xmkT, and Zt stands for a summation
over all permutations I'. In order to take into account the effects
of the interactions between the atoms Feynman proposes to mod-
ify this distribution function by replacing the true mass m by an
effective mass m and by multiplying it by an additional distribu-
tion function Ep pN(zq ~ .zN), where Ett is a normalization
constant. The function pN is stated to be" ~ qualitatively very
similar to the distribution function for a classical gas." We can
therefore write it in the form expL —PV'(P)], where V'(P) is a
quasi-interaction potential, with properties similar to that for a
classical system except that it depends slightly on the temper-
ature. With these approximations the partition function reduces to

Q'=&""—'
expI —pV'(p)3

NI
N

Angle
Gold

Experimental Theoretical Deviation (%)
XZ exp —(x/X") Z

I z; —Pz; I' dz, (1)
P i 1

30
60~

120o
150

39.50 ~0.12
3.898 &0.009
0.3204 ~0.0008
0.09610~0.00039

39.87
3.840
0.3178
0.09693

—0.9
+1.5
+0.8—0;9

where ) "=h'/2xm'kT and z stands for the set of all coordinates
(zi). We now wish to compare this approximate partition function
with another that can be obtained from the semiclassical expansion
due to Wigner' and Kirkwood. 4 These authors showed that the
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partition function can be written in the form,

Q= (X'~/E!) f exp( —PV) Z exp —(z/Xs)
Z -P

N

&&I iz; Pz;—i' +O(h')+O(h4) dz, (2)

where V is the interaction potential of the atoms. If we ignore the
terms of order h', h', etc., in the above expansion we get

Q"= (X'~/¹!)f exp( —PV)

XZ exp —(z/X') Z ~z; —Pz;~' dz. (3)
P 1

It is seen that Q' only diGers from Q" in that m is replaced by m'
and exp( —PU) by ES expL —PV'(P) g. In I it is stated that m' will
probably not differ very much from the true mass m, near the )
temperature, and that Xp can be ignored as far as the nature of the
transition is concerned. We have already noted that V'(p) is fairly
insensitive to changes in P and is qualitatively similar to the actual
potential t/". In other words the modifications to the zero-order
term in Eq. (2) proposed by Feynman are quite small; we there-
fore have to consider whether the eBects of all the other terms,
that have been omitted, can be supposed to be small. This question
is very difficult to decide, although it is quite easy to show that
the coefficients of the leading terms of the series are large. How-
ever, even if we cannot evaluate any of the higher-order terms
rigorously we can still argue that they are unlikely to remove
any discontinuities that may be present in the derivatives of the
first term of the series. This follows from the fact that the above
series is an expansion in powers of A*'(=h'/0'me), and therefore if
the higher-order terms were to remove any discontinuities pre-
dicted from the first term this would imply a critical dependence
on h,*.This would seem to be unreasonable on physical grounds.
We therefore conclude that although the first term may be a poor
approximation quantitatively it may still yield useful qualitative
information.

Feynman next considers a typical term in the summation over
all the permutations P in Eq. (1). Let us suppose that in this
particular term there are ml cycles of / "atoms" so that Zllml =N.
Then a typical term in the sum in Eq. (2) can be written,

j+ml l

par(z& z&) II II II expL —(z'/X')
I zs+, —zA'+@+I I'jdz, (4)

l k=j @=1

where the product Ol is over a set of values of t such that Zllml =N
and z~&+I—=z~I, Feynman now approximates to pN by the
product

j+ml l

II 11 11 „(z „, ~
lk jy 1

where p2 is proportional to the pair or "radial" distribution function.
Clearly with this approximate form for p& each of the terms in the
sum of permutations can be evaluated explicitly, provided the
form of p2 is assumed. We shall now show that this approximation
is closely related to the well-known superposition approximation
of Kirkwood. ' The superposition approximation can be formulated
by saying that we approximate to p& by the product

II II p2(z;, z;).
iCj 1

Basically, therefore, Feynman's approximation rests on this
approximation. However, Feyman has also replaced all factors of
the form p2(z;, z;+„),p&1, in the superposition approximation, by
unity. As he has pointed out, this means that we are completely
neglecting (a) correlations between atoms that are not 'nearest
neighbors' in a cycle and (b) correlations between all the atoms
in any. one cycle and those in any other cycle. It is mell known that
it is very difficult to estimate the validity of the superposition
approximation. However it is very reasonable to assume that the
more "gas-like'-' the structure of the liquid the more accurate the

approximation will be. We may therefore be reasonably sure that
for helium, which is a "gas-like" liquid with an abnormally low
density, the approximation will be quite accurate. This conclusion
lends support to Feynrnan's basic approximation and we would
agree with him that the neglect of correlations between atoms in
different cycles is probably much more important; it may be vital
in deciding the order of the lambda transition. It is interesting to
note that for a "classical liquid" the superposition approximation
is, by itself, sufficient to allow us to calculate many of its properties.
This is unfortunately not so for a "quantum liquid. "

Finally we would like to mention that Matsubara' has developed
a similar theory of liquid helium using essentially the same
mathematical approximations as Feynman. Equations (4.13) and
(4.14) of Matsubara's paper are equivalent to Eqs. (25) and (26)
of Feynman's. Matsubara concludes that the lambda transition
predicted by his theory is of the second order: this conclusion
appears to us to be due to an error in the later stages of his analysis.

Acknowledgment is made to the Chief Scientist, Ministry of
Supply, and the Controller, H. Britannic M. Stationery Office for
permission to publish this paper.
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'HE measurements of Graham and Bel11 and those of Fergu-
son and Lewis' indicate that the mean lifetime of positrons

in ~etals is constant and roughly independent of the metal. In
other materials one may describe the observed facts by using two
separate lifetimes for the positrons, indicating two distinct modes
of annihilation. Inasmuch as there appears to be some empirical
connection between the characteristics of the material and the type
of positron annihilation process, one may inquire whether the
annihilation characteristics of positrons are affected when a metal
goes over from the normal to the superconductive state. A precise
calculation of these characteristics should be based on a detailed
description of the thermalization and annihilation processes in
superconductive solids. Since even for a normal solid the mech-
anisms involved in these processes are only partially known' 4 and
since there does not appear to be a completely satisfactory wave
function of a superconductor, it seems best to investigate the
qualitative features of these processes. Several of the results are
amenable to experimental verification, so one may decide on the
basis of the experimental result whether a more detailed treat-
ment is worth while.

1. It would appear that in so far as the lifetime of positrons
depends on the average electron density only, the lifetime should
not change in a superconductive transition, since the electron
density is the same in the two phases (unless one wanted to
exclude the "super electrons" u priori from taking part in the
annihilation process, which seems unreasonable). It should be
stressed however that even for normal metals the relationship
between lifetime and electron density is not completely clear. In
fact the experimentally obtained lifetimes are constant, whereas
the electron densities may vary by a factor 20.' It may be shown'
that the annihilation mechanism of a thermalized positron in a
solid is determined by the matrix element M; j(p) =J'I;*vj
Xexp(ipx/k)dx. Here p is the total momentum of the annihilating
pair, I; and v; are the wave functions of the electron and positron
in the lattice (specified by wave numbers i and j).To obtain a
mean lifetime from this matrix element, one has to perform certain
averaging processes over the electron and positron distributions.
Now the wave functions I; and v; certainly change when the sohd


