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The usefulness of the conventional isotopic spin formalism is somewhat marred by the fact that it con-
tains superfluous formal elements which have no physical counterpart. It is demonstrated that application
of the "superselection principle" for total electric charge, recently suggested by Wick, Wightman, and
Wigner, is sufhcient to eliminate these superfluous elements and thus reduce the content of the theory to
that of the more conventional formalism in which neutrons and protons are distinguished ub initio. This
superselection principle applied to the conventional state-function representation of quantum mechanics re-
quires that admissable state functions be eigenfunctions of the total charge and that operators representing
observables commute with the total charge. The disjointness of the various subspaces in Hilbert space corre-
sponding to diferent total charge eigenvalues, demanded by the superselection principle, leads to the result
that many observables which are outwardly different in form are actually essentially equivalent. The con-
struction of all inequivalent observables compounded from nucleonic isotopic spin operators only is carried
out and it is shown that all such observables are simply functions of the square of the total isotopic spin
and its s component. The essentially uniqueness of the charge parity operator. introduced by Kroll and
Foldy is established.

1. INTRODUCTION resort to formal group-theoretical concepts, we feel
that no apology is necessary in case of such duplication.HE isotopic spin formalism' has proved to be a

very convenient means of dealing with the
similarities in properties of the proton and neutron, and
its employment has paid ample rewards as an aid in
recognizing and formulating the consequences of these
similarities for nuclear structure, nuclear interactions,
and meson-nucleon interactions. ' ' However, these
advantages are partly cancelled by the fact that the
isotopic spin formalism contains superQuous formal
elements which have no known physical counterparts.
These difhculties are best known in the following formu-
lation: while the projection of a vector in isotopic spin
space on the s axis has a definite physical interpretation
in terms of the electric charge of the system being de-
scribed, still the azimuth of the vector appears to have
no such absolute significance and only relative azimuths
of vectors having the same 2' component have at present
a clearly identifiable physical meaning.

The program of the present paper consists in the
separation of the physical from the nonphysical ele-
ments in the isotopic spin formalism by application of
the recently suggested "superselection principle" for
electric charge. It is likely that many, if not all, of the
specific results obtained here represent a transcription
into isotopic spin notation of well-known results from
the theory of symmetry groups. However, since the
avowed purpose of the present paper is to learn how to
work within the isotopic spin formalism itself, and
since all of our results are obtained by the use of
rather elementary operator algebra without direct

2. THE SUPERSELECTION PRINCIPLE FOR
ELECTRIC CHARGE

One of the fundamental principles of quantum
mechanics is the principle of superposition of states
according to which the states of a system form a linear
vector space. Thus if P and p represent two possible
states of a system then a linear combination of them,

+=aP+by,

where a and b are complex numbers, is also a possible
state of the system. It is usually understood that two
distinct state vectors represent two diGerent physical
states of the system except when one is a complex
numerical multiple of the other, in which case they
represent exactly the same state. Thus the linear
vector space is to be interpreted as a "ray space" in
which diGerent rays are associated with physically
distinct states. Hence a second linear combination of
the states f and P,

4'= a'f+b'p,
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will represent a diGerent physical state than that
represented by 4 if, and only if, (a'/b')W(a/b). The ex-
istence of an experiment which allows one to measure
the relative phase of any two states of a physical
system is therefore usually regarded as a necessary
implication of the conventional formulation of quantum
mechanics.

Recently, Wick, Wightman, and Wigner' have
pointed out that there exist situations in which the
above conditions are not satisfied. They have shown,
in particular, that in a situation in which the system
described has accessible to it both integral and half
(odd) integral eigenvalues of the total angular rno-

mentum, to grant the possibility of measuring the
rely, tip' phase of two states, one belonging to an
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integral, the other to a half-integral, value for the
total angular momentum, would be tantamount to a
violation of covariance with respect to Lorentz trans-
formations. They also suggest that a similar situation
may arise with respect to systems which have accessible
to them diGerent eigenvalues of the total electric
charge (or different numbers of "heavy particles" ), in
that it may be impossible to measure the relative phase
of states belonging to diGerent eigenvalues of these
quantities. Thus, within the usual framework of
quantum electrodynamics, this inability to measure
the relative phase of states of diGerent total charge
follows directly from gauge invariance considerations.
For by a gauge transformation of a particularly simple
character (constant gauge function) which reflects no
physical change in a system but only a change in its
descript'om the relative phase of two states of different
total charge may be changed arbitrarily.

To describe the situation arising when for some reason
it is impossible to measure the relative phase of certain
states of a system these authors have coined the
phrase: a "superselection principle" operates with
respect to the quantity whose eigenvalues distinguish
the states whose relative phase cannot be measured.
To understand clearly the nature of a superselection
principle it is imperative to distinguish between it
and a universal conservation law. A conservation law,
such as that for total momentum, total angular mo-
mentum, electric charge, space parity, energy, etc., is
a condition which is satisfied by the Hamiltonian of
the system being described. It does not of itself in-
hibit the measurement of relative phases; in fact, the
measurement of such relative phases of states belong-
ing to diGerent eigenvalues of conserved quantities is
a regular concomitant of many physical measurements.
For example, the measurement of an angular dis-
tribution in a scattering experiment determines the
relative phases of states of diGerent angular momentum.
But a superselection principle is more than a condition
satisfied by the Hamiltonian describing a system; it
denies the existence of apparatus which is capable of
performing certain types of measurements on the
system. Some understanding of how such limitations
on the intrinsic capacity of available measuring ap-
paratus may arise in a natural way has been obtained
by Wigner in a recent investigation. ~

The existence of a superselection principle for the
total electric charge of a system (which is the only
superselection principle with which we shall be con-
cerned in this paper) has a profound influence on the
quantum-mechanical interpretation of a system which
is being described by means of the isotopic spin repre-
sentation. The object of the isotopic spin representation
is to encompass the dynamical behavior of systems of
diGerent particles in a single dynamical scheme by
treating the diGerent particles as diGerent states of

~ E. P. Wigner, Z. Physik 133, 101 (1952}.

the same particle. Such a general scheme has decided
advantages in at least two cases (which often occur
together). The Grst occurs when the difFerent particles,
though distinguishable, possess certain similarities
which it is of interest to exploit in the development of
the theory, while the second occurs when actual trans-
formations of a particle from one type to another is a
natural part of the dynamical development of the
system. Since in the principal applications of this
formalism the diGerent particles which are identified
as diBerent states of the same particle possess different
electric charges, the abstract composite system with
which one then deals has accessible to it states of
diGerent total electric charge; hence the superselection
principle for electric charge immediately comes into
play.

To prevent our considerations from becoming too
abstract we shall limit ourselves now to the only
case which we shall discuss in detail in the later parts
of this paper, namely that in which we have a system
of nucleons only, described in an isotopic spin formalism
with neutron and proton regarded as two states of a
nucleon. %e consider first the case of a single nucleon,
and in the familiar manner, represent the proton state
of the nucleon by the function n and the neutron state
by the function P. A state function representing a
proton in a space-spin state g(r, o) would then be
written gn, while the state function representing a
neutron in the same space-spin state would be written
pP. The superposition principle would then suggest
that p(a+I') is also a possible state function for the
system. However, since the states ~ and PP are states
of diGerent total charge, their relative phase cannot
be discerned by an experiment and hence the state
@(n+P) would be indiscernable from the state p(n P)—
In fact each of these would now be interpretable only
as a statistical mixture (in contrast to a pure state)
with equal probabilities of the system consisting of a
proton or a neutron in the space-spin state P. That one
can hardly treat such state functions in the familiar
manner in which one usually operates in quantum
mechanics is made trivially, but strikingly, evident if
one applies the usual rule for obtaining the probability
than an observation will reveal that the system is in
the state p(n P) whe—n it has been projected into the
state p(u+P) by a previous preparation. In the custom-
ary procedure one forms the inner product of the two
state functions (after they have been normalized) and
identifies its absolute square with the desired proba-
bility. In this case such an inner product has the value
zero; this in spite of the fact that the two states de-
scribed by these functions are obsereati orally ieCks-

)Asguishable.
In view of these di%culties it would seem appropriate

to avoid the state function representation of the state
of a physical system altogether and pass over to the
statistical matrix representation which can-cope with
equanimity with both pure states and statistical



OPERATORS AND OBSERVABLES IN ISOTOP I C SPIN SPACE 1397

mixtures. ' However, if one desires to remain on the
more familiar quantum-mechanical ground of state
function representations, it is obvious that one must
modify the rules of the quantum-mechanical game.
The simplest such change, and one which is tacitly
observed when one works in situations where super-
selection principles operate, consists in limiting con-
siderations to state functions which are eigenstates of
the quantity with respect to which the superselection
principle operates —in our particular case, the total
electric charge. While state functions which have not
this character might still be given interpretations as
representing statistical mixtures, one nevertheless
simply ignores them and omits them from the theory.

Now the simple change suggested above has some
consequences for the theory which are not trivially
evident. These arise with respect to the role played by
Hermitian operators as representatives of observables
in the theory. It is immediately evident that if a
superselection principle operates with respect to a
quantity Q, then no operator which has matrix elements
connecting states belonging to different eigenvalues of
Q can represent an observable; otherwise the measure-
ment of such an observable would be tantamount to an
observation of the relative phase of the two states, in
contradiction to the superselection principle. Hence,
in general, only Hermitian operators which commute
with Q, the total charge in our case, represent observ-
ables, and, in the absence of any other superselection
principle, we assume that every Hermitian operator
which does commute with Q does indeed represent an
observable. In actuality, however, in working in an
isotopic spin representation another principle closely
akin to a superselection principle does intervene. For if
one is working in such a representation it is essential
that the antisymmetrization (Pauli) principle be ob-
served if one is working with a system of particles
satisfying Fermi-Dirac statistics or that the symmmetri-
zation principle be observed in the case of Bose-
Einstein statistics if one is to obtain only the manifold
of state functions which one Gnds by observation.
This then means that, provided no further super-
selection principle intervenes, only symmetric Her-
mitian operators which commute with Q will represent
observables and conversely.

Now the observation which is not so trivially evident
is that within these restrictions many operators which
satisfy the above criteria and which are outwardly
quite different in form actually represent essentially
the same observable. To economize in our language
concerning this. point let us regard the function space
for the system under consideration as decomposed into
the various subspaces each associated with a given
eigenvalue of Q, or in view of our later considerations,
a given eigenvalue of the s component of isotopic spin
T, which is linearly related to the total charge Q.
Then the admissible state functions lie entirely in one
or another of these subspaces T,. Let 8 be a symmetric

Hermitian operator which commutes with T, and con-
sequently represents an observable. Then the operator
8f(T,)=f(T,)8 where f(T,) is any real function of its
argument, is also an observable which is essentially
equivalent to 8 in the following sense. In each subspace
T„8f(T,) is simply a numerical multiple of 8 itself,
though it will in general be a different numerical
multiple in each different subspace. Since one admits
state functions lying entirely in one of these subspaces
only, nothing is essentially gained by discriminating
between these operators, and it becomes of some im-
portance to recognize whether two outwardly diGerent
operators represent equivalent observables.

Actually our restriction that in order for an operator
to represent an observable it must commute with T,
and hence leave all the subspaces T, invariant is more
stringent than is necessary. It is certainly necessary if
the operator is to represent an observable in all sub-
spaces T,. Such observables we shall call complete
observables. On the other hand there may exist opera-
tors which leave one or more, but not all, subspaces T,
invariant and these will represent perfectly good ob-
servables in these particular subspaces. Such ob-
servables we shall call incomplete observables; an
example is provided by the charge-parity operator. '
Actually the distinction between complete and in-
complete observables is largely a matter of con-
venience, since to every incomplete observable we can
always 6nd an equivalent complete observable which
vanishes in all subspaces which the original does not
leave invariant. One has simply to postmultiply such
an incomplete observable by a polynomial in T, which
vanishes in every such noninvariant subspace.

Before proceeding further we make some remarks
concerning our notation. We employ the conventional
Pauli matrices to represent the three components r ",
7„", 7-," of the isotopic spin vector of the mth nucleon,
and in addition we shall sometimes use the notation
ro" for the unit isotopic spin matrix. The total isotopic
spin vector T is de6ned by

and its components are designated by T, T„, and T,.
In addition we shall write

While our earlier remarks are applicable to systems
composed of both nucleons and mesons, or perhaps
even more general systems, our further considerations
will be limited to nuclear systems composed of a number
A of nucleons.

3. INEQUIVALENT OBSERVABLES

We shall 6rst determine all of the linearly independ
eet observables formed from the isotopic spin operators
only. To do this we note that the most general operator
formed from isotopic spin operators will be a linear
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combina, tion of terms, each of which consists of A (the
total number of nucleons in the system) factors chosen
from the To", T+", 7 ", 7 with one and only one r for
each nucleon. All such terms are clearly linearly inde-
pendent and their total number is 4~. The linearly
independent observables must then be symmetric
functions formed from these by linear combination.
Each such linearly independent symmetric function
can clearly be designated by giving only the total
number of Tp s, 7-+ s, T 's, and r, 's occurring in each
term, of the sum; that is, by a Partition tip+@++I
+n, =A. We denote each such symmetrical operator
(with unit coeKcient for each term) by the symbol
(ep, e+,ri,n.).

However, not all of these symmetrical operators will
be observables since they do not all commute with T,.
In view of the discussion in the last section we may
limit our attention to complete observables. A simple
calculation gives us for the commutator of any of these
operators with T, :

L(np, m+,ii,n, ), T,)= (e —n+) (ep, m+, m, n, ),

whence it immediately follows that to obtain complete
observables which do not vanish in every subspace T,
we must include in our basic linearly independent set
only those (ep, e+,e,r4) for which n+ e=N——~&A/2
Hence we may now designate our basic set by (np, N, e,),
each associated with a partition np+2N+ri, =A

Now, while each of the operators of our basic set are
observable, many of these will be equivalent in the
sense of the discussion in the preceding section. To
select a basic set of observables which are inequivalent
we note that

(rip, N, n,)T,= ', mp(np 1,N-, n, +1)—+ ,'n, (np+1, N, m-, 1). —

Therefore (rip —1,N, 1) is equivalent to (mp, N, O) except
possibly in the subspace T,=O where the first vanishes
while the second may not. Repeated application of the
above recursion relation allows us to express (np, N, n, )
as (rip+r4, N, O) multiplied by a function of T,. Exami-
nation of these results shows that we will lose no non-
vanishing observables in any subspace if we choose as
a basic set of inequivalent observables the operators
(ep N 0) with Np running through all integral values
from 0 to A. In other words, any observable in any
particular subspace T, can be written as a linear com-
bination of the (np, N, O) with fixed coeflicients, or any
complete observable can be written as a linear com-
bination of the (ep, N, O) in all subspaces with coefficients
which are functions (polynomials) in T,. We may now
designate our basic set of linearly independent in-
equivalent observables simply by LN), where
designates the number of r+'s and r 's occurring as
factors in each term. The total number of observables
LN) will be (A+1)/2 or (A+2)/2 according as A is
odd or even ((0) is included in this count).

While we have determined the linearly independent,

inequivalent observables, it does not follow that they
are completely independent. Actually they are not, for
we shall now show that all of them may be written as
functions of T' and T, from which it follows that any
complete observable composed of isotopic spin operators
only can be expressed as functions of T' and T,.

For the proof we shall require the following lemma:
any polynomial in the operators T+, T, and T, in
which each term is of equal degree in T+ and T is a
function of T' and T, only. The proof is very ele-
mentary. We begin by noting that T'= ip (T+T +T T+)
+TP, whence, in view of the commutation relations
satisfied by these operators, T+T = T' T,'+—T,.
Now in the given polynomial consider first the terms
of highest degree, say s, in T+ and T . By the use of the
commutation relations rearrange each such term so
that all of the T,'s stand to the right of all T+'s and
T 's. All terms resulting from this process will still be
of degree s in T+ and T . Now by further use of the
commutation relations rearrange each such term so
that it is of the form T+T T+. ~ T+T times a power
of T, standing to the right. In this process new terms
will be generated which are of degree s-1, s—2, in
T+ and T . The terms of degree s will now be functions
of (T+T ) and T, only, and consequently by our
earlier result can be written as functions of T' and T,
only. One now carries out the same process on terms
of degree s—1, s—2, etc., whereupon the lemma is es-
tablished.

Finally, to prove our main theorem we note that
LN) can be written as the coefficient of p~qN in the ex-
pansion of

S= II (1+Pr+"+qr "). -
I,etting

p= (x/y)& tanh(xy)&, q= (y/x)& tanh(xy)&,

we may rewrite S as follows:

S=Lcosh(xy)&) ~ II cosh(xy)&

sinh (xy) &

+(xr+"+yr ")
(xy)'-

= Lcosh(xy)') "IIexp(xr+"+yr ")

= Lcosh(xy)~) -4 expL2(xT+"+yT ")).
I

Note that xy is a function of pq only, and that x and y
are equal to p and q, respectively, divided by a func-
tion of pq. Then it follows that the expansion of S in
powers of P and q will have for the coefficient of p~q~
a polynomial formed from the sum of terms in each of
which the degrees of T+ and T are equal. The theorem
then follows from our lemma.
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4. UNIQUENESS OF THE CHARGE PARITY
OPERATOR

As an example of the preceding ideas, we shall
consider the question' of the uniqueness of the charge
parity operator' introduced by Kroll and Foldy as a
formal means of expressing the consequences of charge
symmetry for nuclear structure and nuclear reactions.
Formally this operator is defined to be one which for a
particular nuclear system changes all neutrons to
protons and all protons to neutrons. The above authors
elected to write this operator as

sion of

n 1

However, the following manipulations indicate that
this generating function is a function of T, only:

Q= (1+x')""g (cos8+ir, "sin8)

= (1+x')"I'g exp(i8r, ")
n=1

= (1+x') ~12 exp(i8T, ),

in which case it may be interpreted as the operator
which performs a rotation of 180' about the x axis in
isotopic spin space. It is clearly an observable only in
the subspace T,=O, and is therefore an incomplete
observable. Applied to a state function of a nucleus in
a state of nonvanishing T, it generates a state function
representing the corresponding state of the mirror
nucleus.

Now it is readily observed that there exist many
operators which perform the same function of changing
all protons to neutrons and all neutrons to protons. In
fact any product of A factors chosen from the 7.," and
v„" with one and only one ~ referring to each nucleon
will accomplish this result, as will any linear combina-
tion of such products. Since there are 2" such operators
which are linearly independent it is not at all clear
that the charge parity operator is a unique quantity,
and questions may be raised as to whether a unique
charge parity assignment can be made for states of a
self-conjugate nucleus when charge symmetry obtains.

In the present section we shall show that no real
ambiguity exists and that the charge parity operator
is essentially unique. We note erst that all of the 2A

operators formed as above are not observables since
they are not symmetric. However, by forming linear
combinations one can obtain A+1 linearly independent
symmetric operators each of which may be specified by
the number e of 7. 's and the number A —e of v„'s
contained in each term of the symmetric sum. We
shall now show that all of these symmetric operators
are equivalent in the sense de6.ned earlier. Thus, take
any of these symmetric operators and replace in each
term each of the v„s contained in it by its equivalent
—ir r, . This symmetric operator then takes the form
of the operator I' above multiplied by a symmetric
function of the r, 's. To complete our proof we show
that every symmetric function of the v, 's is a function
simply of T,. To accomplish this we note that the
linearly independent symmetric functions of the 7,'s
can be obtained as the coeKcients of x' in the expan-

' The question of the uniqueness of the charge parity operator
was raised with the author by Professor E. L. Hill.

where sin8=x/(1+x2)&. Our result then follows.
Thus all of the 2+ 1 symmetric operators are simply

multiples of the Kroll-Foldy parity operator9 in the
subspace T,=O. The argument further demonstrates
the essential uniqueness of the operator which trans-
forms any nucleus into its mirror nucleus, apart from
an irrelevant (because of the superselection principle
for total charge) phase factor. This last fact is useful in
establishing relationships between matrix elements
referring to pairs of mirror nuclei.

We may note also that the charge parity operator
may be converted into a complete observable by
multiplying it by the factor:

(P2 1)(T2 4)(P2 9). . . (P2 g2)

our results obtained in Sec. 5 also tell us that this com-
plete observable (which now vanishes in every sub-
space except T,=O) should be a function of T2 only.
That this is the case was noted in reference 5 where it
was shown that in the subspace T,=O, P has the
eigenvalue +1 in a state in which T =2t(t+1) with t
an even integer and the eigenvalue —1. in a state in
which t is an odd integer.

5. CONCLUSION

We may summarize our results by the statement that
the overgenerality of the usual isotopic spin formalism
represents a purely formal dif6culty which can easily
be overcome without destroying the conveniences of
the formalism. The apparently superQuous elements
contained in the usual isotopic spin formalism may be

9 Of course the uniqueness of the charge parity operator is
established here only to within a constant multiplying factor (of,
say, P,}.If one further requires the operator to be unitary, that
is that it preserve the normalization of the wave function, then
the constant multiplying factor is restricted to modulus unity.
If the operator is further restricted to be hermitian (in the sub-
space T.=O} then the factor must be &1. The choice between
these two is a matter of convention. The important point is that
the operator discriminate through its eigenvalues states of
different parity. However, note that if the charge parity operator
is defined as a rotation of 180' about an axis lying in the g-y
plane in isotopic spin space, then there exists no ambiguity, even
with respect to sign, to be resolved by convention.
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eliminated by proper application of the superselection
principle for electric charge and the recognition of the
consequent existence of equivalent observables. Under
these restrictions the isotopic spin formalism becomes
equivalent to a conventional representation in which
neutrons and protons are discriminated ab irido. It is
conceivable that someday new phenomena may appear
which will require the full potential content of the
isotopic spin formalism for its description, but at present
this does not appear likely.
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The general form of the equations of motion of a particle possessing multipole singularities of a neutral
scalar or pseudoscalar meson Geld has been found by Harish-Chandra on the basis of Dirac's method. In
this paper the general form of the multipole moment compatible with these equations is established under
the assumption that the spin and the 2"-pole moments of the particle are of constant magnitude and have
only spatial components in the system in which the particle is at rest. Then the general form of the equations
of motion and of the multipole moment compatible with them is established for point particles interacting
with a charge-symmetric scalar or pseudoscalar meson Geld. It is found that 2"-pole moments of diferent
types are possible for arbitrary e, and that a particle can carry an arbitrary combination of such moments.

l. INTRODUCTION

S EVERAL methods have been suggested recently to
avoid the infinities associated with point singu-

larities in classical 6eld theory. The method first used
by Dirac' for the case of point charges interacting with
an electromagnetic field was extended by Harish-
Chandra' to fields of any integral spin. He succeeded
in obtaining the general form of the equations of motion
of point multipoles of such (neutral) fields and the
explicit form of the equations for point charges and
dipoles in fields of spin zero and one.

Although the general form of the equations of motion
is thus known, this in itself does not mean that a self-
consistent theory of arbitrary point singularities is
possible. Except in the case of spin zero, the field
equations impose certain restrictions on the charge
density; furthermore the equations of motion inter-
relate the momentum, angular momentum, and charge
density of the particle. In addition it appears to be
desirable for the physical interpretation of the theory
to impose further restrictions on the spin and the
2"-pole moments of the particle. It is not inherent in
the method that it should be possible to satisfy all these
relations for any type of charge singularity.

*Assisted by the National Science Foundation.' P. A. M. Dirac, Proc. Roy. Soc. (London) A167, 148 (1938).' Harish-Chandrs, Proc. Roy. Soc.. (London) A185, 269 (1946).

Although many different types of "elementary" par-
ticles have been found in nature, it appears that present
theories (quantum as well as classical) are far too wide
in allowing an in6nite variety of such particles. The
present study was undertaken in the hope that it might
be possible to exclude at least some types of particles
by proving that they could not satisfy all the conditions
required. In the case of the scalar and pseudoscalar
meson fields it was found, on the contrary, that all the
conditions can be fulfilled for multipole singularities of
arbitrary order and also for arbitrary combinations of
such poles by explicit construction of the Inost general
form of such poles. The results obtained in the case of
neutral fields are summarized in Theorems I-IV of Secs.
III—VI. Then the theory is extended to charge-sym-
metric fields; the results are summarized in Theorem V
of Sec. VII.

IL THE EQUATIONS OF MOTION IN
NEUTRAL FIELDS

%e shall first outline the 6eld-theoretical derivation
of the general form of the equations of motion of a
point particle interacting with a neutral scalar or pseu-
doscalar meson field as given by Harish-Chandra. '
Except for minor changes we shall use his notation.

We consider a four-space with coordinates x„, Greek
letters taking the values 0, 1, 2, 3, where xo is the time
coordinate, Repetition of an index implies summation


