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Neutron-Proton Scattering with Spin-Orbit Coupling. II. Variational Fol~iulation
and Effective Range Theory I
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The variational methods of Schwinger et al. are used to give variationally correct expressions for the
three independent real parameters in the scattering matrix (Ss, hqe, and eq) for the "mixed" states, such
as '5&+'D&, of the neutron-proton system with spin-orbit coupling. The relation between these variational
principles and the effective range theory is discussed briefly. The effective range expansions are then derived
nonvariationally. The two leading terms are given for k' cot81p and for k 2 tan&&. The three leading terms
are given for k cotb1 .

l. INTRODUCTION

''N a previous paper, ' henceforth referred to as I,
~ ~ we have given the scattering matrix theory of
neutron-proton scattering with spin-orbit coupling. The
possible triplet states of the neutron-proton system fall
into two categories: single-channel states such as 'I'~,
in which the spin-orbit interaction cannot admix any
other state because of conservation of total angular
momentum and parity; and two-channel states, such as
'Si+'Di, in which the spin-orbit interaction admixes
the other state even if the ingoing wave contains only
one of the two states. The analysis of the single-channel
states is simple; in particular, the scattering matrix for
such a state contains only one real parameter, a phase
shift, and this phase shift can be found by the usual
variational methods. ' This paper is devoted to a
discussion of the two-channel states, in particular the
'Si+'Di state which makes the dominant contribution
to (triplet) low-energy neutron-proton scattering.

The general considerations in I have shown that the
scattering matrix for a two-channel state depends on
three real parameters, 8, bp, and e. The 6rst two are
eigenphase shifts, the last is a "mixture parameter"
which specifies which particular superpositions of '5&

and 'Dj wave functions are eigenfunctions of the scat-
tering matrix. Paper I contains an explicit formula for
the scattering cross section in terms of these parameters.
We were also able to determine the behavior of 8, bp,

and e close to zero energy. Beyond that, however, the
general theory is powerless; more specific assumptions
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must be made about the nuclear forces in order to get
useful answers.

Section 2 is devoted to the variational formulation of
the problem of finding the parameters 8, bp, and e.
Uariational principles for the two eigenphase shifts have
been given by Schwinger, ' and in that respect our work
represents only a slight modification of his. The vari-
ational principle for e given here has not been published
previously, to our knowledge. 4

In Sec. 3 we determine the coeKcients of a series
expansion of the parameters k cot8, k cotbp, and tane.
We choose to expand around zero energy, hence our
zero-order trial functions are the ones appropriate to
zero energy. Their asymptotic dependence for large r
has been given in I. We get an effective range expansion
for 8 (we recall that the n wave is by definition
predominantly of 'Si type at low energies), and similar
expansions for 8p and for e. The trial functions can be
improved systematically, using the results of calcula-
tions with lower-order trial functions, thereby yielding
a step-by-step procedure for 6nding higher terms in
the various series.

2. VARIATIONAL PRINCIPLES FOR THE SCATTERING
MATRIX PARAMETERS

In order to fix our ideas, let us restrict ourselves to
the 'Si+'Di state, and to a spin-orbit coupling of the
tensor force type, i.e., the potential is

V= V, (r)+V, (r)Srs,

where SI2 is the conventional tensor operator,

(2.1)

Sis——3(trr r) (es r)/r' —(wi es). (2.2)

V, (r) and Vt(r) in (2.1) delne the radial dependence of
the central and tensor potentials, respectively. We em-
phasize, though, that the contents of this section are
no] restricted to tensor forces; any Hermitian operator
leading to spin-orbit coupling may be substituted for
Vt(r)S». Furthermore, only trivial modifications are

s J.Schwinger, lectures, Harvard University, 1947 (unpublished).
4A brief report was made at the Cambridge Meeting of the
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required to make the variation principles derived here
applicable to other two-channel states (e.g. , the pFs+pFs
state).

Let u(r) and w(r) be the radial wave functions for
the '5 and 'D states, respectively, defined in the
conventional way. ' Let M be the nucleon mass, and E
be the energy in the center-of-gravity system. Then I
and m satisfy the coupled diGerentiaI equations

—(k'/M) (d'u/dr')+ V, (r) u(r)
+8iV, (r)w(r) =Eu(r), (2.3a)

—(k'/M) (d'w/dr') + (6k'/Mr') w (r)
+LV, (r) —2Vi(r) jw(r)+8iVi(r)u(r) =Ew(r). (2.3b)

where Fi(r) and Gi(r) are the regular and irregular
solutions of the radial wave equation for a free particle
of orbital angular momentum / and wave number k (as
defined in I, for example), and r& is the smaller one of
r, r'; r& is the larger one of r, r'. To avoid misunder-
standing, we write out explicitly the eGect of the
operation g on the state vector f,

p P

k 'Gp(r) ~ Fp(r')u(r')dr'
0

+k 'Fp(r) l Gp(r')u(r')dr'

We introduce a simplified notation in order to write
the formulas more compactly. We define the column
vector f by

k 'Gs(r) Fs(r')u (r')dr'
aJ 0

(2.11)

(u(r) q

(M(r) &

(2.4) +k 'Fs(r) ~ Gs(r')w(r')dr'
t'

The scalar product between two vectors fr and Ps is Let, be any solution of the force-free radial wave
equation regular at the origin; i.e.,

(Pi)Ps) = fur*(r)us (r)+xi*(r)ups (r) Jdr. (2.5)

We also introduce the wave number k,

k'-= ME/k',

and the kinetic energy operator T,

(2.6)

(—d'/dr'

o

0
!

d'/dr'+ 6/r—' &

(2 &)

Finally, we introduce an operator 8' which corresponds
to —(M/k') times the potential energy (the negative
sign is chosen so that 8' is positive for attractive
potentials, and the factor M/k' ensures that W has the
dimension crn '),

(Apk
—'Fp(r) )

(r ks)y. =O, —
(A k—'Fs(r)& ' (2.12)

where Ao and A2 are arbitrary constants. Then the
standing wave solution f, of the complete problem
associated with the free state p, satisfies the integral
equation,

0.=4 +glut' (2.13)

(k 'Fp(r) q ( 0

0 & (k 'Fs(r)&
(2.14)

It wiIl prove convenient to introduce an explicit
notation for the free-state solutions p associated with
pure 5 waves and pure D waves. We define

In this notation (2.12) becomes

& 8&Vi(r) V, (r) 2Vi(r)&—
4 a= Apl o+As4s. (2.12a)

With this notation, Kqs. (2.3) can be rewritten as

(T k')P =Wf. — (2 9)

/=principal value of !
&T —k'&

(Fo(r()Gp(r)) 0
=k—'! (2.10)

0 F,(r()Gs(r)) &

~ J. M. Blatt and V. F. Weisskopf, Theoretical lVeclear Physics
(John Wiley and Sons, Inc., New York, 1952l, Chap. II, Sec. 5D.

The operator T—k' can be inverted. We look for
standing-wave solutions (i.e., solutions of type N &" in
the notation of Lippmann and Schwinger'). The
Green's function operator then is

We now determine the asymptotic form of f for large
values of r. We use the asymptotic forms of F(r) and
G(r) given in I as well as formulas (2.11) and (2.13)
to get

( Apk ' sin(kr)
4.(r) =!

(Ask—' sin(kr —m)&

( (yo, Wf.) cos(kr)
(2.15)

E (gs, WP,) cos(kr —pr) &

where the scalar products (pp, WP,) and (@s,Wf,) are
defined by (2.5), (2.8), and (2.14).

We now look for eigenstates of the scattering matrix.
The eigenstates can be characterized by the requirement
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that the asymptotic form for large r is

Bpk ' sin(kr+8)
!0"(r)-I

(Bpk—' sin(kr —+5) &

(2.16)

w = (~o,o)~+(~.,e)~.
The matrix form of the operator F is

(2.19)

(k '.Fp(r)Fp(r')

0

0
&!. (2.19.)

k 'Fp(r)Fp(r') )
This operator satisfies the operator equation (T—k')5
=0, whereas the Green's function operator g (2.10)
satisfies the operator equation (2'—k') /= I where I is
the unit operator. We can now rewrite (2.18) as an
eigenvalue equation for k cot8,

(1—gW)f= k cot8 FWP. (2.10)

This equation still suGers from one defect: the operators
1—QW and PW are not Hermitian. We can remedy
this defect by premultiplying both sides of (2.20) by
the operator 8'. We therefore define the two Hermitian
operators,

where the eigenphase shift 8 is the same for both compo-
nents of f,. The two eigenphase shifts 8 and bs are
associated with different ratios of 82 to Bo. Comparing
(2.15) and (2.16), we get

Ap=k cot8(pp WlP, ) 4p ——k cotb(gp, Wf, ), (2.17)

and hence (2.13) can be rewritten, for the special case
of eigenstates of the scattering matrix, as

= k cot8[(gp, Wheal )@p+(Qp, WlP )PpJ+ /WING . (2.18)

This equation has the tremendous advantage that it
is homogeneous in P, and may therefore be considered
an eigenvalue problem with k cotb as the eigenvalue.
We simplify the notation by introducing the projection
operator 5,

matrix on a completely variational basis, we still need
a variation principle for the mixture parameter e defined
in I. Two eoevariafioeaI expressions for tan& follow
from (2.17).Let h be the n-wave eigenphase shift 8 and
P, be the corresponding eigensolution P . Then accord-
ing to Eq. (2.17) of I, the ratio of Ap/Ap is equal to
tan&, i.e.,

tanp= (Pp, WP )/(pp, WQ ). (2.23)

Now let 8 be the other eigenphase shift bp and compare
with Eq. (2.18) of I. The ratio of Ap/Ap is now —cote,
so that

tanp= —(gp, Wfp)/(Pp, WPp). (2.24)

Expressions (2.23) and (2.24) are homogeneous in P,
so that both are independent of the normalization of P.
Ke now search for a variational expression for tan&
which preserves this property.

It is well known that two eigenfunctions of the usual
eigenvalue problem Hf=XP, belonging to two different
eigenvalues P~ and X2, are orthogonal to each other;
i.e., (fi,Pp) =0 and also (fi,HPp) =3 p(PipPp) =0. By an
obvious extension of the usual proof to the modi6ed
eigenvalue problem ZP =XYif, we find that eigen-
functions P and fp of (2.21) belonging to two different
eigenvalues k cotb and k cotbp, respectively, satisfy the
relations

(4- YA) =o, (4-,ZA) =o (2 2. 5)

Let us now consider trial wave functions f, and pb
which are close to the eigenfunctions P and fp, respec-
tively. That is, we assume

4' =4' +rlE, pb=$p+rlEb, (2.26)

where E and E~ are arbitrary vectors and g is a sma11
parameter. If we compute Q,zfb) we find, using (2.22)
and (2.25),

(y Zyb)=(ybZy, )
= g (P,ZEb)+rl(gp, ZE,)+O(r&')
=gkcotB (Q, YEb)+rlkcotpp(fs, YE )+O(r&'),

Z=W —WgW and Y=WSW, (2.21) so that
to get

ZP= (k cotb) YiP. (2.20a)

From this it follows immediately that a variationally
correct form for the eigenvalue k cotb is

k cotb=
(P,ZP) (P,WP) (P,WHY)—

(2.22)
(O' Y4) (P,W &Wf)

Writing out the denominator explicitly, we find that
(2.22) becomes

(p„zpb) = k cotb Q, Ypb)

+k cotbp(fs, Fig,)+O(rP). (2.27)

We now use the definition of the operator I and Kq.
(2.23) in order to get an explicit form for (Q,Yfb);
that is„

(4 YA) (A W4 )(~p WA)+(A W4' )(4'2 WA)

(4 p, WA)= (pp, WQ.) (pp, Wfb) + tanp . (2.28a)
-(A WA)

(P,Wf) (f,W QWQ)—
k cot8=

I (~.,w~) I + I Q,w~) I'
(2.22a)

This variational expression for the eigenphase shifts
was first given by Schwinger' and

'
the derivation

presented here is identical with his except for notation.
In order to put the calculation of the scattering

Similarly, using (2.21) and (2.24), we get

(A Y4.)
= (4o WA) (A W4.)+ (A,WA) (4 p, W4.)

(4p W4.)= (pp, WQ ) (Pp, Wfp) —tanp+ (2.28b)
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According to Eq. (2.23) the expression (ps, Wit, )/
Qo, WP, ) is an approximation to tane homogeneous in
the trial function P with an error of first order. We
use the symbol t for this expression, i.e.,

zero energy wave functions:|uo. &"&
~ t' r—a.

Etvo. &"& J (—3qa./r')
(3.1a)

t= (rt&s—,WP )/(rt&o, WQ, ) = tane+O(r&). (2.29a)

V/e also introduce the symbol t' for

(Qo Wpb)/ (4 s,Wti'o) = tane+0 (&1). (2.29b)

Thus to an error of second order, we may write for
(2.28)

(4-,I'A) = (A, W4.) (APVo)L —1'+tane7+O(n')

(A I 4'o) = (4 os% ) (O' W&&t' ) Ll t 7+—O (r&') .

Substituting this into Eq. (2.27) and solving for tane,
we And an expression for tan& accurate to an error of
second order in r&, i.e., a variational expression for tane
hot&sogemeous in the trial wave fur&etio&ss

tanc = (k cotb&r —k cotb )
—' tk cotb» —('k cotb

(4.,~A)
(2.31)

In this expression &&t, must be chosen close to f~, Ps
close to lt», 1 and t' are defined by (2.29), and k cotb
and kcotb» are defined by (2.22) with f, a,nd fo,
respectively. Since (2.22) is itself a variational form,

the error introduced by its use is also of the order of
the square of the errors in P, and fb

Expressions (2.22) and (2.31) put the calculation of
the scattering matrix on a completely variational basis,
in terms of the minimum number of parameters. s Just
as the Schwinger variational principle for the diagonal
elements of the scattering matrix (the eigenphase shifts

essentially) is not confined to a two-channel system, so

the variational principle in (2.31) can be generalized for
determining the N(.V 1)/2 remaining 'ind—ependent

parameters of the scattering matrix for an S-channel
problem. This will be treated in a separate paper.

3. THE EFFECTIVE RANGE EXPANSION AND THE
VARIATION PRINCIPLE

The general considerations of Sec. 4 of I have deter-
mined the behavior of the parameters 6, 8p, and e near
zero energy. The same considerations moreover 6xed
the asymptotic behavior of the zero energy eigen-

functions. r Restricting our attention to 1=1 ('St+'Di
state), we find the following asymptotic forms for the

s The calculation ot Rohrlich and Eisenstein (see reference 1)
was variational only to the extent. that the eigenphase shifts were
computed variationally. The mixture parameters found by them
are correct only to a fIrst-order error.

'Note the misprint in Eq. 4.22 of I. The superscript 2J+l
should be 2J+3.

~
uo»t" &

~ &r
—15qr

0'osMos "'=
I I

=
I I (3»)

(tt&oot"&) & rs a»—s/Sr')

Utilizing the above as a boundary condition on the
two independent zero energy solutions of the wave
equation (2.9) leads to the desired zero energy eigen-
functions. With these as trial functions in the vari-
ational expressions (2.22) and (2.31) we can determine
k cotb and tan& to an error of order k'—the square of
the error in the trial functions. Greater accuracy can
be obtained with iterated solutions (see below) of the
Schrodinger equation (2.9) accurate to an error of order
k4, and we can thus systematically improve our results.

The variational approach leads in a natural fashion
to expressions of the form

ao+ aik'+ ask4+
k cot8=

bo+ bik'+ bsk'+
(3.2)

where ap, ay bp bj can be found from the zero energy
trial functions. Trial functions correct to order k' can
be used to obtain expressions for a2, a&, b2, b3, and so on.

The effective range theory is obtained by rewriting
(3.2) as a power series in k'; i.e.,

k cotb = co+cik"+csk + (3.2a)

It should be emphasized, perhaps, that (3.2a) is
equivalent to (3.2) only within the radius of convergence
(in the k'. plane) of (3.2a). In general, this radius of
convergence is very much smaller than the radii of
convergence of the series in the numerator and denomi-
nator of (3.2). Thus, the reduction of (3.2) to (3.2a)
gives rise to an appreciable reduction in the range of
validity of the expression for k cot6 .

The nonvariational derivations current in the litera-
ture' all lead to expressions of the form (3.2a). To the
extent that the variational form (3.2) is reduced to
(3.2a), the nonvariational formulations of the theory
are equivalent to the variational formulation. However,
this reduction need not be made in the variational
formulation, whereas it is made automatically [i.e.,
(3.2) is never obtained7 in the nonvariational formula-
tion. Thus, the two formulations of the effective range
theory are not equivalent, the variational one being
rather more powerful.

For example, the series (3.2a) breaks down if the
scattering length is zero, i.e., if the coeKcient cp in
(3.2a) becomes infinite. This can happen when there

sH. A. Bethe, Phys. Rev. 76, 38 (1949); R. E. Peierls and
M. A. Preston, Phys. Rev. 72, 250 {1947);Batcher, Arfken, and
Breit, Phys. Rev. 75, 1389 (1949); G. F. Chew and M. L. Gold-
berger, Phys. Rev. 75, 250 (1947); see also G. Breit, Revs.
Modern Phys. 23, 238 (1951).
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is a repulsive core and an attractive outside region.
Expression (3.2), however, retains its usefulness even
when the scattering length vanishes.

Since wells with hard repulsive cores are becoming
increasingly fashionable, we may be forced to use
expressions of type (3.2) rather than (3.2a), in spite
of their more awkward form. In this paper, however, we
shall reduce all results to the power series form (3.2a).

We write these expansions in the form

k cot8 = —1/a +r k'/2 —Pr eke+ ., (3.3)

The coeScients r, rp, and q~ can be obtained ex-
plicitly in terms of the wave functions Ps and /os by
means of (2.22) and (2.31). Some care in carrying out
this reduction must be exercised in order not to misuse
the variational principle. "Let us denote by 'U (k'pP )
the variational principle for kcot8 given by (2.22).
Then, according to (3.3) we have

t'd*U )
',r.=-lim

]
k~+0 E dks )

k' cotilp ——(225/att') L
—1/ttp+rttk'/2+ g (3.4)

tane= qk'+qik'+
tt c'Utii'U 8$ )= lim] +

k~- o ( elks of elk'I
(3 6)

The lowest-order terms are known from Sec. 4 of I.
The coeQicient a is the usual triplet scattering length,
while r is the triplet eGective range. Tan& is a measure
of the mixing of the S and D states in the deuteron
problem, and to a first approximation, q is proportional
to the quadrupole moment of the deuteron. The coeK-
cients up and rp are the analogs of the a and r,
respectively.

The proportionality of Q and q can be seen in the following
way. 3 The quadrupole moment is given by the expression

Q= (v2/10) r'(ure 8&w') dr. —
0

Because of the smallness of the percentage D state in the deuteron
problem, it is a good approximation to neglect the m term in this
expression. Furthermore the factor r~ insures the major contri-
bution ( 90 percent in actual cases) will come from large dis-
tances, outside the nuclear interaction, but still in the region
where the centrifugal well dominates the behavior of the D state.
Thus it is sufficient to use the asymptotic forms:

N=Ae ~", re=A XCXe r'(1+3/yr+3/ysr'),

p=(M~Ee~)&/k, Re=deuteron binding energy.

The normalization can be determined approximately from the
effective range by neglecting the effects of the D state (this
procedure compensates slightly for the neglect of re' in Q). Thus
we take

A '=(1 yr )/2y, —
and then find that

C=—(1—~r.)2X~XQ~~.

But the constant C is the asymptotic ratio of D to 5 state, i.e.,
just the quantity denoted by tane for positive energy states.
Hence C is tan~ for the negative energy given by k= —ip, k'= —y~.~

Ke therefore get

(«ne)» - —,= —Vv'+ex' —".=(1—vr )'v2Qv'

To the rather moderate (perhaps 10 percent) accuracy of the
approximations made already, we can ignore the term in q& and
obtain

q= —(1 yr )'XVZQ— (3.5a)

This extension of positive-energy relations to include ground-
state properties is valid only for a restricted class of potentials V;
see R. Jost and W. Kohn, Kgl. Danske Videnskab. Selskab
Mat. -fys. Medd. 27, No. 9, 1—19 (1953),and other papers referred
to there. For central forces, a sufficient (but not necessary)
condition upon V is that V must decrease, for large r, faster
than the probability density rc (r) in the ground state; i.e.,

lim (e'r"V(r))=0
p'~ 00

Presumably a similar condition exists for tensor forces. Whatever
it is, we shall presume it to be satisfied for our present purpose.

j'O'U )= limI
k'~o ( c}k' )

The last equation results from the fact that i5'U /g
=0 for all values of k' by the stationary property of
(2.22). The limit k'~0 was taken in order to determine
a value for —,'r . If we do sot take this limit, however,
Eq. (3.6) yields an exact expression for d(k cotb, )/dk'
in terms of f alone, which is, to be sure, no longer a
variationally stationary result. The expression obtained
is, in fact, the precise equivalent to the usual starting
point for the nonvariational approach to the eQ'ective
range expansion.

YVe do not give this derivation in this paper, however,
for the following reason: if the eGective range expansion
(3.2a) is all that is desired, it is simpler and more
straightforward to derive it directly from the diGer-
ential equations satisfied by the wave functions I and
z, along the lines of Bethe. ' We therefore do so in the
following section, and we would like to thank Professor
Bethe for permission to publish this material. " All
results have been checked independently by rederiving
them directly from the variational expressions given in
Sec. 2; however, since this derivation is much more
lengthy, we do not give it here.

Na = tt~ cose(cotl~tp+ Gs)i

to '"'= —ct. sine(cotb Ps+Gs).

(4.1a)

(4.1b)

"The point at issue here is that k cot5 and tane, as defined by
(2.22} and (2.31), are both ecciilicit functions oi k', through the
operators ff and g, and implicit functions of k', through the
wave functions lIt. The stationary property asserts only that the
first-order variations in tt cancel out, If one labels this variation
by k', it is clear that confusion with the explicit dependence on
k2 might arise.

"Professor Bethe has obtained Eq. (4.11) and its consequences
independently. We believe that Eqs. (4.19}and (4.26) represent
new contributions.

4. THE EFFECTIVE RANGE EXPANSION:
NONVARIATIONAL DERIVATION

We shall normalize the n-wave functions f so that
in the limit of zero energy, the normalization agrees
with (3.1a); that is, for large values of r (r) b), we have
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Denote by p 1 the a-wave function, normalized in this
way, at energy Fl, and by p 2 the n-wave function at
energy E2. They satisfy the diGerential equations

r=0. By using (4.4) and (4.1), we get

left side of (4.7)

(T kP)$—1=WP 1,

(T—k2')f 2=Wf 2,

(4.2a)

(4.2b)

= an Cosel COS02(kl Cot8nl k2 Cot8a2) ~ (4.8)

It remains to evaluate the integral on the right side of
(4.7). We use the identities

each set of two differential equations being written in
abbreviated form. We multiply the I part of (4.2a) byI 2, the w part by lp 2, we multiply the I part of (4.2b)
by I l, the m part by m l. Subtraction then gives

2d I 1/d» +lp 2d 22i 1/dr I ld I 2/«' 2p. ld —lp.2/«
(d/dr) (Na222 nl+2pa22p nl Nnl21 a2 2pallp n2)

(k2 kl ) (Nnlla2+lpal2pa2). (43) in order to get

I dr r 'F2(r) = Fl(a)/ka',

t dr r 'G2(r) =Gl(a)/ka',

(4.9')

3a t dr r (sine2 wal —sin el tVa2)
0

= —a ' sinel sine2(kl cot5 1
—k2 cot8 2). (4.10)

We combine (4.7), (4.8), and (4.10), divide both sides
by kl2 —422, and take the limit as k& approaches k2.
The Anal result ise =I &"~

211 =w 't"&+3a sine(kr) '
= —a sine[cot8 F2+G2—3(kr) 'j. d(k cot8 )

(4.43

[(~.)'+ (~-)'
d(k2) "0

The differential equations satisfied by P are, again
in the abbreviated notation,

—(21 )'—(2p )'idr (4.11)

A similar expression can be derived for the asymptotic
forms (4.1). However, this is not very useful because
zv &"& diverges at r=o. It is more useful to defLne a set
of functions, related to (4.1), with the property that
they are 6nite both as r approaches zero and as r
approaches infinity. These functions will be distin-
guished by bars, and are defined as follows:

0
(T—k2)$.=

(

& —3a sine r 2J
(4.5)

By a procedure analogous to the one followed to derive
(4.3), we get

(d/dr)[anil a2+lpallp a2 I alla2 lp allpa2]
= (kl k2 ) (Qalga2+2Ualloa2)

+3a r '(sine22U 1 Slllei W 2), (4.6)

+3a dr r '(sine2 lo 1
—sinel & 2). (4.7)

dp

where el stands for the value of the mixture parameter
e at energy El. In spite of appearances, the last term
of (4.6) is finite as r approaches zero. This can be seen
by using the series expansions of F2 and 62 in the
second equation (4.4).

Following Bethe, we now combine (4.3) and (4.6)
and integrate the resulting expression from zero to
infinity. This yields

i -/ -/ -/ — —/+al+ a2W~alN a2 al+a2 I al~a2

/ / 1 ao+a1+ a2 al a2WN alla2W~ ala2JO

= (kl' —k') [(0-1,4-2) —Q-1,4-2)j

This identity forms the basis for the nonvariational
approach to the eGective range theory. As remarked
before, the same identity can be derived from the
explicit derivative of the variational expression (2.22),
after a fair amount of manipulation.

The determination of the eGective range r from
(4.11) is immediate. All we have to do is to take the
limit as the energy approaches zero. The left side is
then equal to —,'r, as can be seen from (3.3). On the
right side, the function w vanishes in this limit, and
I =I &") becomes equal to np =r—a, according to
(3.1a).We therefore get (denoting zero energy functions
by the subscript 0)

r =2(a ) ' [(N0 &"&)'—(u0 )'—(2210 )']dr. (4.12)
0

We now turn to the beta-wave solution, and the
expansion (3.4). We again normalize the function fp
at arbitrary energy E so that it reduces to the standard
zero energy solution (3.1b) at F.=O. That means

up "'= (1/15)k'ap' sine(cotbpF0+G0), (4.13a)

wp&"& = —(1/15)k'ap' cose(cotbpF2+G2), (4.13b)

and we define the barred functions, which are regular
at zero, by

The terms on the left side of (4.7) all vanish at
infinity, and only the barred functions contribute at

Np ——Np&"),

top=lpp&"'+ap' cose/(5r').

(4.14a)

(4.14b)
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d(k' cot5p) = 2k' sin'e cot8pd(k cot8p) 225 I'"
L(up)'+ (wp)'

(k') ap'o J o —(u, ) —(wp)'jdr. (4.15)

d(k')

225
+ (up'"')'+ (wp'"')' (—up)' (—w p)'

a 1QJ
Equation (4.15) is valid for all positive energies.
However, difhculties arise when we try to go to the
limit as the energy approaches zero, in order to obtain
the quantity rp in (3.4).

Looking back at Eq. (3.4), the quantity

apso cosoo t' 3 2kQGQq —,

+
75 &r ro )

Unlike (4.15), this equation is also valid in the limit
as the energy (k') approaches zero. In this limit the
erst term on the right of (4.19) vanishes, and we get
the following expression for rp in (3.4):

225 2
k' (k cotbp) =

d(k')
——rp+

ap apk 2

By using the same methods as before, we obtain an or, equivalently (using 4.14)
equation entirely analogous to (4.11), namely,

and hence diverges as k'—&0. The quantity of interest
to us is not this, but rather

(k' cotlp) =k4 (k cotlp)+2k' cotlp. (4.16)
dk' d(k')

In order to obtain an equation involving this quan-
tity, we examine the integral on the right side of (4.15)
in the limit as k —&0. In that limit, the integrand is

(uop)' —(uop)'+ {wop)'—(wop)'
= (—15t7r)' (uop—)'+r' —(wop)'. (4.17)

For large values of r, (4.17) becomes

0+ro —(wop&" &)o= ro —
I

ro —(apo/5ro)go,

and this contains a term proportional to r. In order to
avoid this difFiculty, we add and subtract in the inte-
grand the term

f ap coso
2(wp —wp&"&)

I

— k' cotbpP& I,
15

rp=2ap ' ~ L(uop~"&)'+r'(2wop&"& —r')
0 —(uop)' —(wo p)']dr. (4.20)

It remains now to determine the coefFicient q1 in the
expansion for tano, Eq. (3.5). Again the nonvariational
derivation of such a limited result is more straight-
forward than the derivation starting from the vari-
ational expression (2.31). By methods entirely analo-
gous to the ones used so far, we derive

aaap 5

k„cosoy coso2(ko cot8po —k~ cot5 ~) (tanoo tano—g)
15

(kl k2 ) (ualup2+wa1wpo
J0

u~upo —w&wp&) —dr (4.21).

Dividing (4.21) by (kp —koo) and going to the limit
k1—+k2 yields

X t (u n,p+w ep uup w„wp)dr —(4.2—2).
60

( k'ap' coso
2(wp —we'"')

I

15
cotbpP, Idr Again we encounter difFiculties in going to the limit

k'~0. We really need
a 10

= —2 cos'o k' cot8p. (4.18)
225

d (tanc ) d
I
=k-' (tan. )—k-4 tan. . (4.23)

d(k') k k' ~ d(k')
By combining (4.15), (4.16), and (4.18) we obtain
the equation

d(k' cotbp) = 2k3 sin'e cot8

In the limit k'-+0, the integrand in (4.22) becomes,
for large values of r,

(—3qa„) ( apo)
wo wop —wo ~ ~wop~ ~ =0—

I I I
r —

I
~ (4.24)

r' ) ( 5ro)

d(k')

225
+ L(up)'+ (wp)'+ (2/15) (wp —wp'"')

a 10'

&& (ap' coso k' cotlpPQ) —(up)' (wp)']«, —
This contains a term proportional to r, which can be

(4.19) considered as the limit of a cross term between Iio and

which is that part of the cross term causing the trouble.
(The complete cross term is 2(wp —wp~"&)wp, but using k

—& (tan, ) =15La apo cosoo(ko cog —ko cogp)$
this would introduce a divergence at the origin. ) The dk'

integral of this added term can be evaluated from (4.9)
and is
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1/r', just as in (4.17). If we add in, and subtract from,
the integrand the terms,

order k'. It is probably simplest to proceed directly
from the differential equation (2.9). Define

(—a sine cot8 Po) (u&p&"& —tUp)

(—ap
+ I

- cose k' cotbpPo ! (w. &"&—e ),
& 15

4o—.+kQo.+k'V4.+ . .

Then from (2.9) we have

(4.28)

(4.29)

then these troublesome cross terms are cancelled, and
the integrals still remain well behaved at the origin.
Using (4.9), the integral of these added terms is found
to be

The boundary conditions on fo are first that it
vanish at the origin, and second that it have the
asymptotic behavior specified by (4.1). Expanding
(4.1) in powers of k' and using (3.3), (3.5) we get

pO

—a» slue cog»Po(wp ~ & —tVp)

(
—r'/6+a r'/2 ra r/2 )—

a.q/2 -3a.q,~-
(4.30)

cose k'cotbpP. (w &"&—I ) dr

a ay' sine cosa
(k cot8 +k cotlp).

15
(4.25)

Any solution to (4.29), vanishing properly at the origin,
is equal to the desired solution Po plus undetermined
amounts of the two independent solutions Ito and fop
of the homogeneous equations. Let a solution of (4.29)
be denoted by x& .According to the diGerential equation
(4.29), the asymptotic behavior for large r of the
solution X2 must be

Combining (4.22), (4.23), and (4.25), we get

d &rtane)
!
= 15[a apo cos'e(k' cot5 —ko cotlp)] '

d(k') ( k' )
2——a ap' cosa sine k cotb
15

+ o7«Qp+ u&»u&p u«up u&«u&p- —
J0

—a«sine'cott&»'Po(wp~ & —t0p)

ap'

15
cose k' cot5p Po(w. '"' —u&.) «(4 26)

We can now go to the limit k'—+0, to obtain the coeK-
cient q, in Eq. (3.5):

Equations (4.12), (4.20), and (4.27) give the first
two terms in the power series (3.3) to (3.5). For
purposes of estimating the error in this approximation
higher terms are needed. We shall con6ne our attention
to the "P" term in (3.3), the so-called "well shape
parameter. " According to the stationary property of
(2.22), both P and the term of order k' can be deter-
mined exactly from trial functions accurate through

q, = (15a )
—' ~ Luo &"&uop&"&—3qa.r

0

uo uop —u&o wop1—dr (4.27).

(A+ Br+a r'/2 r'/6 )—
!Xo-'"&=

I

Cr o a,q/2+—Dro )
(4.31)

where A, 8, C, and D are constants which can be
determined by a numerical integration. By comparing
(3.1), (4.30), and (4.31), we see that

It'o. =Xo + (A/a )4o.—Mop (4 32)

Furthermore, comparing the coefFicients of r and r 2 on
both sides of (4.32), we get the identities

—r a /2=A/a +15qD+B, (4.33)

—3a q&
——C—3qA+ap'D/5. (4.34)

other words, a given solution to (4.29),
(numerically determined for example) automatically
yields a value for both r and q&

—quantities known
already from the zero energy solutions fo and fop.
This feature of the calculations aGords a useful check
on the numerical accuracy of the work.

An explicit formula for P utilizing Ito is readily
determined from (4.11). Differentiating this equation,
and taking the limit for |P—+0, one 6nds

—wo»wo» jdr. (4.35)

Similar coef5cients can be determined for k cotbp and
tane, by using (4.19) and (4.26), respectively, but we
shall not consider them in this paper.


