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The Pseudoscalar Interaction and the Beta Spectrum of RaE
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It is shown that the theory of forbidden beta transitions, as hitherto used, does not provide a correct
treatment of the pseudoscalar interaction. This is demonstrated by the application of a canonical trans-
formation to the Hamiltonian of interacting nucleons and leptons whereby all odd nuclear Dirac operators
are eliminated from the theory. When this is done properly it is seen that the pseudoscalar interaction
makes a contribution to the P-decay process only by virtue of the fact that the lepton covariants are not
constant. The corresponding additional operators introduced in the other three interactions (S is pure even)
are examined and it is shown that, except in one case, these make trivial corrections which would not be
observed in practice. The exception occurs in second and higher forbidden transitions wherein the spin
change (tensor rank, strictly speaking) is lower than the forbiddenness order. By virtue of present knowledge
of the beta interaction these must be regarded as small correction terms. The possibility of calculating all
nuclear matrix elements using nonrelativistic wave functions based on some coupling model is discussed.
The results presented here also show that wherever P and T interactions interfere (spin change zero, first-
forbidden transitions) it will be possible to obtain the ratio of coupling coefficients (gp/gr for example) by
comparison with the observed spectral shapes. A method of reduction of the P-decay operators is described
and it is pointed out that the same procedure is very convenient for obtaining the nuclear matrix elements.
In this method the irreducible tensors are obtained automatically and the retardation expansion is a trivial
operation performed at the end of the calculation rather than at the beginning. The correction factors for
pseudoscalar (P) as well as P—T and P—A mixtures are obtained and the fact that the shape of the correction
factor is strongly modified as compared to the customary result is observed. The correction
factor is now more strongly Z dependent and this would perhaps account for the appearance of the P inter-
action only for heavy elements. The results of this investigation are applied to the RaE spectrum. No fit
with the assumption of zero spin for RaE can be obtained. It is suggested that the spin of RaE is unity, and
other evidence pointing in this direction is cited.

I. INTRODUCTION He' angular correlation' and the shapes of other first
forbidden spectra, ' one is led to a P-T mixture as the
only possible explanation of the spectrum if the spin 0
assignment is adopted.

Nevertheless, this analysis of the RaE spectrum in
terms of the T-P mixture cannot be accepted, because
the otherwise completely correct theory of forbidden
beta transitions is not correct insofar as the pseudo-
scalar interaction is concerned. The reasons for this
statement will be presented below in detail. At this
point it suffices to say that the proper correction factor
to be used for the P interaction and for all interference
terms with the P interaction di6'ers from those hitherto
used in a major way. There are also other cases in which
the correction factors are misrepresented in a non-
trivial way but these arise in circumstances which are
now known to be impractical. This remark will also be
amplified in the following.

At this stage of the discussion we may indicate in
what manner the customary treatment fails. The central
point involved is that in all forbidden transitions
wherein, in the conventional form of the theory, odd
Dirac operators are involved, one cannot make the
usual categorical statement that the nuclear matrix
elements are certain numbers independent of the
parameters describing the lepton Geld. Actually, in such
operators the small component of the nuclear wave
function is involved and this implies that the momentum

HE somewhat anomalous beta-spectrum of RaE
has attracted considerable attention in recent

years. It is a well-known fact that despite several
attempts to account for the observed spectrum, using
the well-established theory of forbidden beta transi-
tions, ' no success could be claimed until the analysis of
Petschek and Marshak' appeared. From that work one
would conclude that the RaE spectrum demands the
presence of the pseudoscalar (P) interaction in the beta-
coupling and in fact, a tensor-pseudoscalar (T-P)
mixture seemed to sufBce to account for the observed
results. '

The assumption upon which the aforementioned
analysis of Petschek and Marshak is based is the assign-
ment of zero spin to the decaying state and an a priori
reason for this assignment is based on the Nordheim
rule for minimum spin when neutron and proton con-
figurations belong to diGerent Schmidt groups. The odd

parity assignment of the shell model and the ft value
makes it quite certain that the transition is first for-
bidden and the fact that the spectrum shape is definitely
not that characteristic of a (hJ( =2 transition limits
the spin values to 0 or T. With the exclusion of the A

interaction by the results of the measurement of the

'E. J. Konopinski and G. E. Uhlenbeck, Phys. Rev. 60, 308
(1941), referred to as KU.' A. G. Petschek and R. E. Marshak, Phys. Rev. 85, 698 (1952
referred to as PM.

3 For example, L. M. Langer and H. C. Price, Jr., Phys. Re
76, 461 (1949).

)
4 B. M. Rustad and S. L. Ruby, Phys. Rev. 89, 880 (1952).

v. ~ H. M. Mahmoud and E. J. Konopinski, Phys. Rev. 85, 1266
(1952).
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of the decaying nucleon appears. Because of the point-
coupling of the beta interaction, this will introduce
terms directly dependent on the momenta of the leptons
(more exactly, the gradient operator acting on the
lepton covariant is introduced). Because the lepton
de Broglie wavelengths are so large compared to the
nuclear radius, such terms are always rejected. This, it
turns out, is completely justified in all but two cases
and one of these is the pseudoscalar interaction. In this
case, if one follows the usual treatment, there is eo
coltributiort from the psettdoscalar ilteractiort at all 'In.
this respect the pseudoscalar interaction is unique. In
fact, the word "peculiar" may be an appropriate de-
scription of such interactions.

The validity of statements made above become ap-
parent if one carries out a thorough reduction of the
beta-decay problem to the nonrelativistic limit so far
as the nucleon space is concerned. This is done in Sec. II
in such a way that one can see exactly what is neglected.
The error involved in such a step is exceedingly minute
so that the beta-decay problem can be described in a
greatly simpli6ed representation which is virtually
exact.

A particularly interesting advantage which accrues
from this procedure is the possibility of calculating
nuclear matrix elements in terms of nonrelativistic
wave functions. The implication here is that one adopts
a specilc coupling model (j-j or L 5, for example-).
This representation of the beta-decay operators in even
form may be compared to the usual representation
where it is necessary to calculate matrix elements of odd
operators; the usual representation therefore requires
relativistic wave functions concerning which one must
profess almost complete ignorance. While our change of
representation is a formal step, it facilitates the appli-
cation of what one does know concerning nuclear forces
from a phenomenological point of view. In some cases,
(for mirror nuclei, say) no detailed knowledge of nuclear
forces is necessary, just as was the case for certain even
-operators. '

Finally, we mention the fact that initial attempts in
the direction we have here indicated were made by
others. ' However, these investigations did not lead to
correct results because the reduction to the nonrela-
tivistic case was not made consistently.

II. THE CANONICAL TRANSFORMATION OF
THE BETA-DECAY OPERATORS

Since, as implied above, the dBBculty in the conven-
tional formalism lies in the occurrence of odd Dirac

I This statement is almost rigorous. There may be extremely
small contributions; see Sec. II.

7 As a preliminary step we have investigated the matrix elements
of the (formerly) odd operators in the one particle j-j coupling
model, M. E. Rose and R. K. Osborn, following paper (Phys. Rev.
93, 1326 (1954)].

s Ahrens, Feenberg, and Primakoff, Phys. Rev. 87, 663 (1952);
T. Ahrens, Phys. Rev. 90, 974 (1953).Part of our results are con-
tained in the results of the latter paper, but to obtain the proper
correction factor large parts of Ahren's results are simply to be
discarded.

Ij&=—tr p —-LM„(1+r,)+M„(1—r,)j+V (2)
2

is the nuclear Hamiltonian, and

&e=Qx gxQx" P')Qx" (i)Q (3)

is the p coupling while HI, is the Hamiltonian for the
lepton field alone. In (2) as in all the subsequent for-
malism, our notation is that the operator product
co~'co" ~ ~ means Qs cages'cvq", where k is a particle
label. The only exception to this rule is the minor one
that wherever V, the nuclear force operator, occurs a
double summation is implied. Thus, in explicit form,

V=+;,' V;,=Q; V;V;,

where the prime means that i= j is excluded. Then, in
the following discussion, where commutators with V
appear, we recognize that

(v,~) =Z"'(v'~, ~'+~,)
=p; L(v;,~,)v,+V,(v.. .)],

where (A,B)=AB BA an—d aga—in cv=P~ ~~. But

Gl)M =
10 MIc)COIL

Our units are such that c=k= j. and later, when the
p-particle wave functions are introduced, m= 1. In Eq.
(2), M„and M„are the neutron and proton masses,
respectively.

In (3) only electron emission is represented explicitly.
The positron emission is obtained of course by adding
the hermitian conjugate of Hp. In the following we
consider electron emission wherever it is necessary to
be explicit. For positron emission the results are ob-
tained as usual by changing Z to —Z (and introducing
the sign changes in the Fierz interference terms") or,
if the central field in which the p particle moves is not
a Coulomb 6eld but is V„one changes V, to —V,. The
operators Qx&(E)Qx&(l) in (3) are the usual contracted
tensors in nucleon (Ã) and lepton (l) spaces and for
convenience only a single tensor index (y) is written
explicitly. Of course, X=S, V, T, 3, , and I'. If
Qx(1V) =co„~, then Qx&(t) =/*co„gy=L(&u„), where ay„ is

' L. L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29 (1950),
referred to as FW.

"M. Fierz, Z. Physik 104, 553 (1937).

operators, we eliminate these by a canonical trans-
formation (FW) s Alternatively, one can proceed by the
method of elimination of small components in the
nuclear wave function. However, this procedure is
cumbersome to apply in the case of a many-particle
nucleus and is also somewhat less desirable from a
theoretical point of view. '

For the system of nuclear sources coupled to the
lepton field the Hamiltonian is

P= H~+He+H (,
where
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a Dirac operator in lepton space, y is a positive energy
neutrino wave function, and C (=ipnsEe with Es
meaning complex conjugation) is the charge conjugation
operator. The lepton covariant, referred to above, is
just I (co„).Q is the operator which changes neutron into
proton. Except in special circumstances we need not
make this operator explicit. We adopt the special repre-
sentation

t'0 eq ]1 0 p

(e 0) EO —1)
(2')

S= — (Or+ Os).2' (9)

The commutator (S, —PM)= —(Or+Os), so that
these odd terms are removed by the canonical trans-
formation. The commutator of 5 and an even operator
is odd and can be removed by another canonical trans-
formation of the type (9). The even terms thus gener-
ated are of order 1/M' and are neglected.

For the nuclear force operator V it is legitimate to
assume a sum over pairs of terms which are symmetrical
between the interacting nucleons. Hence there should
be two types of interaction operators: direct products
of even operators and of odd operators. The direct
product of two even operators, V„gives rise to no
difhculty; see Eq. (11) below. The prescription (9) for
removing odd operators does not apply directly in the
case of two-particle operators (Ue) . However, the

in the Dirac space notation. Then our sign convention
is the one usually used in P-decay theory.

The FW transformation is applied to the total
Hamiltonian H with the purpose of removing odd
operators in II~ and Hp to a given order. ' That is, the
new Hamiltonian is

H'= esHe sH+ (S,H-)+ ;(S,(S,H))+-. , (7)

and we restrict our attention to just the three terms
written. However, as is well known, consistent results
are obtained if in the double commutator only the mass
term ( —pM) is taken. To this order, the mass dif-
ference M„—M~ is not essential for the new p-decay
interaction (Hs') but it will be for some subsequent
results (see Sec. III). Also, to this order the transfor-
mation of H& does not contribute anything to Hp'.
Superficially, it would appear that the expansion
parameter is of order p/M s/c (s the nucleon velocity)
but a more thorough investigation shows that, because
of the parity properties of the p operator, the expansion
parameter here is electively p'/M' 10 '.

Writing

Hrv=H~(e)+Or, Hs=Hs(s)+Os, (8)

where H~(e), Hs(e) are the respective even parts and
0», O~ the respective odd parts in Dirac space we have

removal of such terms can be eGected»» and the resulting
transformed operators appear only in terms of order
1/Ms. Consequently, these terms need not concern us
further.

Applying successive transformations of the type (9)
until all odd operators to the prescribed order disappear,
we 6nd

with
H'= H~'+Hp'+H), (10)

H~'= — PM ,'—bPr, +—-U„
2M

where 6=3f„—3f„and

1
Hp'= — P(Ot, Os)~+Hp(e)2' (12)

(13)

where I, v are the large and small components, respec-

"In the case of a two-particle Hamiltonian it has been shown
by Z. V. Chraplyvy, Phys. Rev. 91, 388 (1953), that a canonical
transformation which removes V0 can be constructed. While the
generating function S given in this reference is singular in the case
of two particles of equal mass, this difhculty disappears if the
canonical transformation is required to separate only states in
which both particles have the same sign of the energy. Extension
to the case of many particles presents no diKculty. LSee Z. V.
Chraplyvy, Phys. Rev. 92, 1310 (1953).g We wish to express our
thanks to Dr. Chraplyvy for communicating these results before
publication,

where (Ot,Os)+ ——OrOs+OsOt. Of course, terms quad-
ratic in the coupling constants g~ are dropped. The
results given in (11) and (12) are identical with those
obtained by the method of elimination of small com-
ponents when carried out to the same order in 1/M.

With the representation (2') the positive energy solu-
tions correspond to p= —1. We set p= —1 (in the
nuclear space) from this point on, realizing that no
approximation is involved other than that involved in
terminating the development given by (7). The zero
order nuclear wave functions are now truly nonrela-
tivistic ones. From (12) it is apparent that the P inter-
action contains only", even operators and that Hs(e)
which accounts for/allowed transitions as well as
unique matrix element transitions, is unaffected.

At this point one can begin to discern the role of the
lepton covariant. The S operator involves Pe.p/2M and
a gradient operation on I appears. In the pseudoscalar
case this is aN that appears. This fact becomes apparent
below when we explicitly compute the anticommutator
of (12). However, it is enlightening to see how this
happens when one uses the method of elimination of
small components. For this purpose we use a simpli6ed
one-particle model, but this simplification does not
change the essential ideas. Then, with the nuclear wave
function in the form
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tively, we have

P'rgL= ' 4'r P"rgLPg= —
(vy INg Nr—Lv;), (14)

where L=L(Py )5. Eliminating p by

w
—(W+M —V) 'n. pu

g PN2'
since 5'—M—V((2M, we have

where p acts only on I..The way in which the momentum
of the nucleon, entering through the small component,
introduces the lepton parameters (energy and V.) is
now clear.

For simplicity, we consider plane waves

I—I~e—iP'r (16)

where l.~ contains the lepton spinor amplitudes, and"

P=p, +q, (17)

with p„q the electron and neutrino momenta, respec-
tively. Then, with a retardation expansion,

n PLp(1 iP r )—.
2M ~

The 6rst term,

LpP 'J' 0')2'

Q 8;;P,P;,4' i~

Z

P') n r.
6M

The correction factor associated with the erst is the
same as that associated with 8;;&». in the KU repre-
sentation. The second part has a~@correction factor
which is the same as that associated with the matrix
element of Py&r'. In fact, we would say that

gives rise to the second forbidden transitions and cor-
responds exactly to the contribution of J'Pp, r in the
KU representation. The second term gives rise to two
terms:

in the sense that the matrix element on the left replaces
that on the right with the same correction factor asso-
ciated with each. In the KU theory the J'Pz&r' term
is supposed to be only a small correction to the J'Py~
contribution. It would there be called a third forbidden
correction. However, there is mo term corresponding to
J'Pys, which is the matrix element appearing in the
RaE analysis. Of course, we are using plane waves but
the results shown below verify that this is no real
restriction. The results obtained with this simplified
model are fully substantiated by the application of the
less restrictive FW transformation.

The question now arises as to whether the 0—+0, yes,
transition should be called third or 6rst forbidden. We
postpone the discussion of this until Sec. IV where the
pseudoscalar correction factor is obtained. For leptons
in a central Geld we shall show that the situation is very
diGerent and that for a Coulomb 6eld, for example, one
gets a correction factor whose largest contribution
(ZWO) indeed vanishes in the Z=O limit and it has
been verified that the results reduce (for Z=O) to the
correction factor implied by the above. The matrix
element for the zero-rank tensor for nonfree leptons is
again J'n r. We expect to find the correction factor for
this term, which makes the sole contribution to 0—&0,

yes, in the pseudoscalar case, to be strongly Z- and
energy-dependent.

III. THE BETA-DECAY OPERATORS IN
NONRELATIVISTIC FORM

The recasting of the operators for forbidden transi-
tions resulting from Eq. (12) may now be exhibited
explicitly. The transformed (formerly odd) part of the
interaction now consists of two types of terms:
operators in which there appears a p operator acting on
the nuclear wave function and 8' operators in which

p acts only on the lepton covariant. That is, we write
(12) in the form

(2O)

and

&p(~) =L fBL(P)+—grL(1) grn L(Pn—)+g~n L(n)PQ
(2O')

In Table I we list the odd part of Qx&(Ã) Qx&(l) before
and after the canonical transformation. Of course, we
we may set P= —1 only for b and b'.

TABLE I. Seta-interaction operators in odd and even form.

Inter-
aCtiOn $QX" (N) QX"(l) )odd

f
n r~— Py, r',

J aJ

(19)

~ In order to avoid confusion with the p operator we attach a
subscript to the electron momentum. Later, where no confusion
will arise we drop this subscript.

p

—L(n) n

I (Pn) Pn.
—L(v5)vs
L(Pv 5)Pv s

2L(n) p p L(n)
+in pXL(n)—»L(Pn) (&Xp) pL(Pn)—

~& pXL(Pn)—2L(v~)n. p —& nJ-(v)
0 —n pL(yg)
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The vanishing of hp confirms the results of the ele-
mentary considerations given above. In a formal
manner of expression this result arises whenever one
deals with a nonvector operator of the form of a direct
product of a Pauli operator and the Dirac operator p2.
The only operator of this form is pcs. It is also obvious
that, if L(pcs) were treated as a constant, the pseudo-
scalar contribution disappears. The fact that the only
nonvanishing term contains o"pL(Pys) and not L(Pys)
implies that the correction factors may very well be
changed in a serious manner, as turns out to be the case,

We shall show in succeeding paragraphs that, except
for the pseudoscalar interaction, only the (originally)
even operators Pii(e) and the h operators are important.
Thus, leaving aside the h' operators for the moment,
it is clear that for the S, t/', T, A. interactions the cor-
rection factors are identical with the well-known results. '
The only change, as is evident from Table I, is a replace-
ment of every odd operator by an even one. Thus, we
make the replacements:"

for the conventional and transformed operators, may
be made. For example, for the tensor interaction, the
customary matrix element would be written, with

L(pn) = Lre

f
Mr(KU)=J Pe L7 (1 i—P r )

Z

=L, p —+PI,„
2 s7'

2
X A;, t'+ 'P( Xr);;+- ~"P(n. r)S,,3J

z Z

=Lr JtPn ——P.Lr i' Pe r+—(PXLr)
3 ~ 2

t PnX r——P P'Lz'A;, ~. (24)
2 7'

n~ (1/M—)y, iPe~(1/M) eXp,

y,~(1/M)e p.
(21)

For the matrix element of the transformed operators
one finds

This correspondence between operators, and of course
between matrix elements, extends to all higher rank
tensors formed by adjoining the position vector r. In
so doing y must operate to the right of r. Thus Lsee
Eq. (26d) belowj,

1
A;,~ q";, (r,p); A;;~—-—: -9",;(r, eXp), (22)

M

r;;(a,b) = (a;b,+a~b;——s,a.bS;;).~
~ (23)

Particular attention must be given to the order of the
operators because of the noncommutation of r and p.

One may now raise the question as to whether the
8~' operators eGect an appreciable change in the cor-
rection factors for interactions other than P. The erst
answer which one is tempted to give is that, since 8'
involves the lepton momenta while 8 involves the
nucleon momentum, the former should make very small
contributions in comparison with the latter. Actually,
this reasoning is not entirely correct although, for all
practical purposes, the conclusion is correct. In order to
investigate this question it suffices to treat the leptons
as free particles. Then a term-by-term comparison of
the matrix elements, together with correction factors,

"Essentially the same results were given by T. Ahrens and
E. Feenberg, Phys. Rev. S6, 64 (1951). We do not check their
sign in the case of y~ and, moreover, we feel that the present
procedure places the operator correspondence on a 6rmer founda-
tion where whatever approximation is involved may be explicitly
brought to light

e& simile Here v.',, (a,b) is the matrix element of the ij
component of a symmetrical second rank tensor with
vanishing trace.

1
3Ez ~t (1—iP r)t P Lr+ie PXLr —2iLr eXp]

P Lr t 1+sPXLr JI e—2sLr t eXp

+p L,P,9.,;(r, eXp)+PXL,

'

J
rX (eX p) ——s'Lr

PJ
"e rX p . (23)

The comparison shows that the correspondence
between operators is

1
pn (26a)

3
~~(1—se rXp),

2M -~
(26b)

1'
~P X IL' + X( Xp)], (26c)

1
-9,;(r, eXp).

M
(26d)

It is seen that in the second and third of these (26b
and 26c) both Sand 8' operators contribute. The reason
is almost trivial from a consideration of parity. The 8
operators involving p must combine with the P r
term of the retardation expansion while the h' operators
combine with the first term. Note that both pe r and
PeXr correspond to second-order forbidden. For Pe,
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TAnrz II. Transformation of 8 operators, see Eq. (29).

Interaction

—',V';;(r,r}=R;;
o'Xr
0"r

It will be recognized that the transformation of the
operators carried out above does not depend on any
detailed knowledge of the nuclear forces."It is pnssible
to simplify some of the 8 operators introduced above
but this simplification does depend on more specific
assumptions concerning these forces. Thus, for any
operator p' one may write

which enters in 6rst-order forbidden, the 8 operator
can combine with the large leading term of the ex-
ponential and the b' operator makes an extremely
trivial correction. For the case of the second rank
tensor K;;(r,eXy) which is, of course, a second for-
bidden matrix element, the 8' operator does not con-
tribute a like term until one includes (P r)' terms from
the exponential which, again, would constitute a very
small correction. We therefore conclude that for first
forbidden transitions the 8' operators are unimportant
while for second forbidden transitions they are unim-
portant for ( 6J (

=2; but for tensors of zero and first
rank (maximum 61=0, 1) they must be considered and
both 8 and h' enter. That they make contributions of
comparable magnitude is obvious from the fact that
for low-lying p-emitting states pp 1, p being the nuclear
radius. Also, both b and 8' operators are necessary in
order that the canonical transformation preserve the
hermitian character of the operators.

The same conclusion follows with the vector and
axial vector interactions. The h and 8' operators are
equally involved for second forbidden transitions with
tensors of rank 0 or 1. Thus, for the V interaction,

3s i l. 1
n r: (1+-'ssr y), ' nXr .- — (e+rXy)

2M~ ~ M~

and for the A interaction

(e+2or(e y))
2M ~

These conclusions are not changed when one removes
the restriction of free leptons and considers the fact
that the electron moves in some central field. Moreover,
one can easily extend the rule to the eGect that for all
orders of forbiddenness n equal to or higher than
second, the correction factors would be appreciably
modified for (AJ),„(rs. However, if one accepts the
present experimental evidence that the beta interaction
contains both Fermi and Gamow-Teller constitutents
and that both types are present in appreciable amount,
then all these types of transitions with a modified cor-
rection factor become academic. They represent small
contributions to a lower order of forbiddenness where
the 8' operator makes a negligible contribution and
the correction factor is, to a very high degree of ac-
curacy, just that given in the usual theory. ' "

i4 See also E. Greuling, Ph s. Rev. 61, 568 (1942). Also D. L.
Pursey, Phil. Mag. 42, 1193 1951);A. M. Smith, Phys. Rev. 82,
955 (1951).

(%—W') ~x'=J (»x') (2&)

(29)

where Wo ——W;—Wr is the P-energy release.
The x operators (b type) to be considered are y,

v', ;(r,y) from the V interaction; o'Xy, K;, (r, o'Xy)
from the T interaction and e p from the A interaction.
We limit our consideration to first and second forbidden
transitions. Then with the aid of

(y', r) = —2iy, (p', r,~g,) = —2b,s—2s(r;p„+r„p,), (30)

one can find the appropriate g' operator for all these
tensors with the exception of K;i(r,a'Xy). The results
are exhibited in Table II. For the tensor 5;;(r, eXy)
one would expect that the x' operator is E;, (r, eXr)
= T;;, in the usual notation. ' Actually,

(p, v', , (r, eXr)) = —4iv;, (r, eXy)+2iv;;(o, L),

where L= r&(y is the orbital angular momentum
operator.

If one assumes that the nuclear force operator is
velocity-independent, which is plausible as a erst
approximation, "the rr~ —y/M operator is replaced by
—i(A —Wo) r. Thus, the A introduced by Feenberg" is
given byi6

2p=—(Wo—~)=—(Wo—a).
0!Z f QZ Z

J
r

"Strictly speaking, the commutator (V,r) does not vanish
unless one can also neglect the nuclear Coulomb energy or the
charge dependent interactions. Here we recall the suppressed Q
operator, see Ahrens and Feenberg (reference 13).The comments
based on the assumption that (V,r)=0 should therefore be
applicable to light nuclei.

'-' Sc:g also D, L. Pursey, referenct,"14,

where 5'f and 8'; are the Anal and initial eigenvalues
of the nuclear Hamiltonian H =II&', see Eq. (11).One
now attempts to And an operator x' such that
(p', x') = 2i—y for a given x. The term ', Ar, i-n (11)
contributes to (H~', x') and now the charge transforma-
tion operator e must be placed in evidence.

(28)

since y' is charge independent. Then, it follows that
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The same assumption of velocity independence of the
forces permits the elimination of 9';;(r,y) which is
replaced by i';; which also appears from the even
part IIe(e) of the interaction. The number of operators
involved in forbidden transitions is thus somewhat
reduced and there is less arbitrariness in fitting p spectra
than was hitherto supposed. If one considers a mixture
of two interactions, the ratio of matrix elements multi-
plied with coupling constants is, in some cases, reduced
to simply the ratio of coupling constants. In this way,
one may obtain vital information concerning the com-
position of the P interaction from the shapes of some
forbidden spectra.

It may be seen that for zero spin change, parity
change yes, transitions, the only operator involved in
both I' and T interactions is 0"r. This will appear ex-
plicitly in Sec. IV. Thus, the RaE spectrum provides
the possibility of fixing gi/gr if the transition corre-
sponds to AJ=O. Here eo assumption about nuclear
forces is involved. For the 3, interaction there are two
zero rank, odd parity tensors: cr r and e p. Only if one
assumes that (V, e r) =0 (spin-dependent nuclear
forces are sufhcient but may not be necessary) could
one reduce these two operators to a single one.

IV. THE CORRECTION FACTORS

The calculation of the correction factors, which are
presumably pertinent for RaE, is a fairly simple one.
However, we do not wish to restrict our consideration
to this case and prefer to consider a more general situa-
tion in which one need not specify the parity or spin
change (tensor rank) at the start. Instead, the general
correction factor for the P,"or any other, interaction
can be given with no more eGort than is involved in
calculating special cases. The formalism which is ideally
suited for our purpose is that which is involved in a
complete utilization of the angular momentum repre-
sentation. We have found this procedure to be highly
useful not only for the calculation of correction factors
but also for the determination of nuclear matrix ele-
ments. The formalism is therefore presented in the
following in some detail.

We designate the quantum numbers for the electron
and neutrino by a, p, and sc„, p„, respectively. Here ~, a
nonzero integer, gives both the angular momentum j
according to

and the correction factor is

4m' 2

Ce= PP IIp' .
p g +0 slav Pily

(35)

and a similar representation of the neutrino wave
function y with radial wave functions FK„and G.„ in
place of f„, g,. With the usual sign convention
[8$={—e.y —8+V,}iP7, the radial wave equation, of
which explicit use is made below, is

and for the neutrino we set the central 6eld V,=O and
replace W&1 by q. The f„and g„are real and, for a
Coulomb field are justj(harp/8')'* times those explicitly
given elsewhere. "For the neutrino,

I

F„=S„gji( „)(qr), G„=rJj i(„&(re), (38)

where j& is the spherical Bessel function. Throughout,
the normalization corresponds to one particle in a
sphere of unit radius.

In Eq. (36) the spin-angular functions are the usual
Pauli spinors:

x."(r)=Z. C(~.sj p rr)x Vi." '(r)—, (39)

where the C coefficients are the usual vector addition

coefficients

LC(jijsjs,mims) ='(jijsj—smt+ms ( jijsmimg) 7.

Their properties as well as those of the x„& spinors are
summarized elsewhere. " In (39) r is the unit vector.
Also x is a spin eigenfunction (r=+-,').

In forming the pseudoscalar lepton covariant we use

PvsC =i o sEp
——T, (40)

where T is the time-reversal operator, and observe that

Here Fo is the well-known Fermi function. "
In an arbitrary central field the electron wave func-

tions are

( &f.x—-.")i

g.x." )

(32) T'x."= (—)'" '"'+'x. " (40')
and the parity (—)'"+' according to

t„= f.(+-,'(S„—1), (33)

where S„is the sign of a. Thus, j=l„——,'S„and (l„—L,
~

=1. The eigenvalue of j, is p, the magnetic quantum
number.

In terms of this notation the diGerential energy
spectrum is

2 lV 2

&R')=-—2 Z
X KKp ++gal

The procedure for evaluating matrix elements of any
operator (such as those of Table I) is simplified enor-
mously if one avoids a retardation expansion. This
expansion, which is simply carried out at the end of

'i M. E. Rose, Phys. Rev. 51, 484 (1937). Our present notation
differs only in the explicit use of ~ as an index and also in that F&~
as here defined differs by a factor (—)~ from the definition in Eq.
(2) of this reference.

's G. Racah, Phys. Rev. 62, 438 (1942); L. C. Biedenharn and
M. E. Rose, Revs. Modern Phys. 25, 729 (1953) and Rose,
Biedenharn, and Arden, Phys. Rev. 85, 5 (1952).
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the calculation, would, if performed at the beginning,
necessitate a separate treatment of each term and the
rather involved procedure whereby irreducible tensors
are introduced. In our case these irreducible tensors
appear automatically. For purposes of illustration the
calculation of the pseudoscalar. matrix element is
displayed.

We use the notation

1
pL(.PV3)

2M

to be used in (42) is

(. .")=(4-)-i(-)'-'" Z ~ (-)

where"
XC(jj Z &, &')Y '—(t), (4S)

(2j+1)(2j'+ 1)(2l„+1)(2l„+1)
X

2X+ 1

XC(/. /.4; 00)W(jj'/. /. ; )t-'2). (46)

Z( 1)'~—sPsL(-Pvs),
2M g

where (=&1, 0 and for any operator

Apt ——W2 t(A,+id„), As=A, .

Then from (36), (40), and (40'),

L(Pvs) =expLi~(/" —j.—~.)7Lg.G"(x.", x"-")

(41) To apply the rr p operator to L(Pys), we use

V.YP(t)e (r)

/ l+1 y
*'

~
C(/ii+1) Mm)Yr+, "'+™D(l)C

&2/+3)

( l
~

C(/1/ —1 kIm)Y1 1~+ D~(l)4, (47)
(2/ —1&

The inner product of the spinors is readily evaluated
from (39) and the coupling relation

where C is any radial function and

d l d l+1
D-(/) =—— D+(/) =—+

dr r dr r
(47')

(2/+1) (2/'+1) &

Yr"(t) Y1 "'(t)=P C(//')t, 00)
42r (2)~+1)

We are now in a position to introduce the irreducible
tensors Tz, 3~(A,B) for any two vector operators A, B.

XC(//IX ') Y "+"'(t) (43) These are defined by

The vector addition coeKcients imply that l, l', and 3

form a triangle. That is, ~l—/'j ~&)1~&/+/', etc. In
general, we refer to such a triangle relation by stating
that 6(//')1) exists. Also, C(//')1;00) =0 unless the parity
rule (/+l'+X= even integer) is satisfied.

The spin projection quantum number sum is readily
carried out by using the orthonormal properties of the
unitary C coefFicients after one performs a Racah"
recoupling according to the prescription:

C(jij2j mlm2)C(jj3j4 ml+m2 m3)

=Q,L(2s+1)(2j+1)71C(jsjss;msms)

XC(jisj 4, m1, ms+ms)W(jijsj4js, js), (44)

where W(abed;ef) is a Racah coeflicient, 12 implying the
existence of A(abe), A(cde), A(acf), A(bdf) The result.

"The properties of these coefTicients are discussed in aieden-
harn, Blatt, and Rose, Revs. Modern Phys. 24, 249 (1952). See
also G. Racah, reference 18. Numerical values are given by L. C,
Biedenharn, Oak Ridge National Laboratory Report ORNL-1098
(unpublished). These tables also give numerical values of
Z(abed;ef) see J. M. Blatt and L. C. Biedenharn, Revs. Modern
Phys. 24, 258 (1952) which is related to our R coeiiicients,
introduced in Kqs. (45) and (46), by

/t&(«I) ( )l~'+1' zi1 1 '(2K+1—) tZ—(/
—jf„~j' —X).

In all applications ) —l—l„r is an even integer so that both R and
Z coefEcients are real.

Tz1m (A B)=Q C (1/L —m', m+m')

X &g m'+m (A) ri/ na' (B) (48)—
and hence the inverse

g1"(A) yr"'(B) =pr. C(1lL; m'm) T~1~+~'(A,B) (48').

Here 'jlr (A) is a solid harmonic of degree l. Where
A=t, 'g1 ——Y1", of course. The rank of the tensor
TJ.~ is L, corresponding to the fact that TJ.~ trans-
forms under 3-space rotations according to the 2L+1
dimensional representation of the rotation group. "The
condition that 6(L/1) exists will be noted. The parity
of Tz1 (AB) is 2rz'2rz, so that if A=t, B=rr the parity
is (—)' while for A=t, B=p or rrXp the parity is

( )1+1

Applying (48') to (47), one obtains for any B but
with A=t,

(42r q '
p l+1 q

'
B.pY, C=ii —

i ( )
D (/)CT, , ~, (t,B)

4 3 ) (2/+ 1)

f' / I 'I—
I l

D+(/)C'T1. ~1 (t») (49)
l, 2/+1)

E. P. Wigner, Grtppentheorie (Friedrich Vieweg und Sohn,
Hraunschweig, 1931).
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Then the operator H~ becomes

(—)3&i
H&- P C(j j„'A; —p, —p„)(2K+1)-&

2M

Xl (X+1)&T»+g "(r,o)D (X)

—) 1T»,-"(r,e)D+() )]
3L

Tgp (A,S)=—B„h),),
4x

(55)

As an aid in transcription of notation we append the
following useful relations:

3k
Tot(A, B)= ——A Bb&q,

4x

where m= @+p„.
Each term in the X summation corresponds to the

angular momentum selection rule that D(jj„)%,) exists
and the parity selection rule ~= (—)"+', that is,
7I 1lf—7I where m; and m~ are initial and anal state
parities. The order of forbiddenness is, in this case,
n=X+1. On forming the square of the matrix element
and summing over p, and p„, it is seen that tensors of
diferent rank cannot interfere, as expected. In fact, if
we use the notation

i f3}
T»"(A,B)=——

l
—l(AXB) .

KZ &4~i

For second rank tensors one needs

3
Tpg+'(AB) =—A ggB~g,

4x

3
Tpi+'(AS) =——(A oB~x+Ay&Bp),

V2 4m

and
IIp ~ Qx (Sx T»+1 +SR T»—1 )

( ('
I~(o,&)=E T»+ I

~ T +p i '

3 p2)'
Tn (AB)=—

l

—
l (3ApBp AB). —

8 &3i

Thus, for any two operators A, B one has

which is the (real) invariant combination of matrix
elements, one obtains

=Pl (S),+)'I), (11)+2S),+Sq Iq(1—1)

Ip(11)=
16x2

3

tA B,

+(S~ )'I~(—1—1)j (51)
Ig(—1—1)=

16m'

Designating the angular momenta and magnetic
quantum numbers for the initial and 6nal nuclear
states by J,m; and Jfmf, respectively, one has, by the
Wigner-Eckart theorem"

Ig(00) =
9 2

)t'AXB,
(5&)

"T), ),~,
—"(A,B)=C(J;XJg.,

m; —m) (Jxll T&, &+&IIJ~) (52)

where the vector addition coeScient contains all the
magnetic quantum number dependence and the re-
maining factor is a so-called reduced matrix element.
The conditions that h(J, )%,J~) and A(jj.X) exist express
the over-all angular momentum conservation

Ip( —1—1)= Q l
v';;(A, B) l'.

64m';;

C1I.' =
3P'q'FpM' ~

Tp~(r &) Z(2j+1)

We now turn our attention to the correction factors
for zero rank tensors. For X=O we may write (35) in
the simple form"

J;+Jf——X=j+j,. (53) xL(f,+.)'+ (g.G.)'j,=,' (58)

Also m;=my+m=m~+p+p„. For the quantity which
should actually appear in the P-transition probability,
one.'sums (51).'over mr and", averages over m;. Thus,
using (52), the pertinent quantity is

1 2Jf+1
2 I~(») = 1(JillT»+~ll J') I' (54)

2J,+1m~mf 2$,+1
etc.

since Rp(m, ) = (—)'(2j+1)&8..„=—Ep(—Ic —g„),
(58) the prime denotes d/dr. The change in the cor-
rection factor, as previously noted, is directly traceable
to the appearance of these derivatives.

The result (58) expresses the correction factor in the
most compact form and the retardation expansion can

"Note that

W (abed;OI) = (—)'+' ~b~.pg(2b+1}(2c+1}i-&.
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Lp 1 (2Ps~p)
—lps —ss

(g 1,2+ f~2)

~.-t= (2P'Po) 'p "(go'+f-')

Ng, t=(2P'&p) 'p' "(f ag s—fsgp),

P„,—(2PsPo) &ps s&(g ss fss—)

Q. ,= (2PsP )-1.--(g:-f-")
RI r ——(2P'Po) 'p' "(f og—s+ fags).

(59)

be made by taking only the terms" a=~|. Con-
sistently, one replaces j&(x) by the 6rst term in its series
expansion; j&(x)~x'L(21+1)!!j'. We carry out this
operation and in addition we use (37) to replace f', g'

in terms of f and g. In this way the correction factor is
expressed in terms of well-tabulated quantities. "These
are'4 g2

+ (ULp —Ps+4—N p)
9

2

Ie r . (61)

For the A interaction, which is given for the sake of
completeness, both e. r and cr y are possible with the
specified rank and parity, and the correction factor for
the A-I' mixture is

2g—UQo+~o ——(2Qo+ No)
M 3

Tz&(r, eXp) the only zero rank tensor is r (eXp) which
has even parity. The interference term is now

1
f

2g
C pr ————UM p

—Qp+ —(2Mo+ UNp)
3

Thus, I.o, Mo, etc. , are exactly the same quantities which
these symbols have hitherto denoted. Using (55), the
correction factor becomes

g2 2

+ (Lo U—Po 4—R,) I ~—r
9

C, = f (U+1yr, —2UQ.
43P

3-:

URp+N p+ [UPp L—p+4Rp—
3

+-,'qf (U' —1)No+4(UMp —
Qp) j

g2

+—L(U +1)Lp—2UPp+ 16Mp
9

+8(UNp —Rp)j e r . (60)

q2p2—p'(UQ —Mo)j— (4Qo —URo+No)
9

Xs "nrl npf. (62)
t'

Here U=B'—V,—q and for most cases U= —V,. ln
(60) the term Usurp is dominant while the terms UQp,

UMO, and U2.70 each make about a ten percent cor-
rection for nZ/pWo))1. The remaining terms con-
tribute one percent or less. This statement is borne out
by a numerical calculation. This calculation also shows
that the coefficient of l Jb rl' in C&p (E», say) is a
monotonically increasing function of energy and that
for RaK it rises by 35 percent over the spectrum. This
is in contrast to 1.0, which represents the shape of the
hitherto used correction factor. Over the range of
energies corresponding to the RaE spectrum I.o in-

creases monotonically by 4 percent.
Proceeding in exactly the same manner as described

above, we Gnd the correction factors for I'-X mixtures.
For the T interaction the only zero rank tensor with

parity change, yes, is clearly Tp&(r, e) or e.r. From

~However, to check the Z=O limit it is necessary to take
~= +2 in those terms which vanish for !s!=1. This peculiarity
of the pseudoscalar factor is responsible for the appearance of a
correction factor which has the energy dependence characteristic
of third forbidden for Z=O.

'3 Rose, Perry, and Dismuke, Oak Ridge National Laboratory
Report ORNL-1459 (unpublished). These tables are for Coulomb
6eld wave functions. Corrections for finite nuclear size have been

~

~

~
~

~ ~ ~iven by M. E. Rose and D. K. Holmes, Phys. Rev. 83, 190
1951) and Oak Ridge National Laboratory Report ORNL-1022

(unpublished).

and

C1A =

2

Crr= ) o r ( p'qLp+Mp +qsNp),

2

e r (-,'q'Lo+~o ssqNo)+—
3P

(63)

2s t' (
rl n. p I (-;qL,—N, ).)

In (62) and (64) we have used the fact that the cross
product of matrix elements of e. r and e.p, when multi-
plied with i, is real."

24 By application of the time-reversal operator T, one can show
that all the cross products of matrix elements (with the factors of
i where they appear) are real; see C. L. Longmire and A. M. L.
Messiah, Phys. Rev. 83, 464 (1951) for a special case. See also
L. C. Biedenharn and M. E. Rose, reference 18.

From the discussion given in Sec. III, it follows that
both matrix element products are of the same order of
magnitude. However, for nZ/p))1 the part of the cor-
rection factor associated with the second matrix element
product is relatively unimportant.

To these mixture terms one must add the pure 7 and
A contributions'
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gP C1P+gPg TC1PT+gT C1T. (65)

Using this correction factor we have attempted to fit the
RaE spectrum, wherein comparison is made with the
data of Langer and Price" and of Xeary. 26 The ob-
served spectrum cV(W) is compared with XÃg(W)C
where So is the allowed shape, X is a scale factor and C
is given by Eq. (65). In minimizing

e'= Q[N'(W) —XN o(W) Cj'

where the sum is over the experimental points (1.20 ~& W
~&2.97), the parameters X and gi/gr are available as
adjustable quantities. The best 6t gives e= 0.14
&&$P 1P(W)fl. A relative root-mean-square error of
14 percent implies that the spectrum cannot be fitted
with a T-P mixture.

The conclusion to which this result leads is that the
spin of RaE is not zero but NwiIIy. That this is not an
isolated item of evidence leading to this conclusion can
be seen from the following considerations.

(a) If the RaE spin is unity it should be possible to
fit the spectrum with an S-T, or, less' likely, ' with a
V-T mixture. Actually, Yamada" has obtained a fit of
the spectrum with an S-T' mixture.

(b) The existence of a group of highly favored 6rst
forbidden transitions (logft=5-6) between nuclei near
the doubly magic 82—126 shell seems to point strongly
to the rule that such transitions are characterized by
AJ=O. On the other hand transitions in similar nuclei
with ~AJj =1 show normal first forbidden ft values
about 100 times larger. Examples of the first group
together with log ft values and the most plausible assign-
ment of orbitals are: Tl" —+Pb" (5.16)si—+pi; Pb"'—&

Bi"'(5 59)ggtg —+hgtg, Tl"'—+Pb"'(5 18)si proton, pi
neutron coupling to spin 0 in Tiggs; Hg"'—+Tiggs(5. 52)Pi
—+s;. On the other hand for the second group one may
cite Pb"s~TI"s (large ft)" p;~sf; and several other
transitions between slightly lighter nuclei; e.g., Au"'~

"L.M. Langer and H. C. Price, Jr. , Phys. Rev. 76, 461 (1949)."G. J, Neary, Proc. Roy. Soc. (London) A175, 71 (1940).
"M. Yamada, Progr. Theoret. Phys. (Japan) 10, 245 (1953).
'8 C. D. Coryell, quoted by A. de-Shalit and M. Goldhaber,

Phys. Rev. 92, 1211 (1953).

V. APPLICATION TO THE RaE SPECTRUM

The correction factor for a T-P mixture is given by
(60), (61), and (63) in the form

Hg"'(7. 73)d -+p*, ; Hf' '~Ta'"(7.2)"p —+d~. The decay
scheme" of RaE shows that the spins of the 46.5-
kev state and ground state of RaE should be dif-
ferent; i.e., either 0 and 1, respectively, or 1 and
0. The P transition from the 0+ state of Rao
with a log ft 5—6 and the 5-day transition from
the ground state with log ft=8 both fit into the
above if and only if the RaE spin is unity. The transi-
tions Pb"'—+Bi""(5.17)0+~0 and Bi'"~Po"'(7.22)1
—R+ also fit into the same scheme for similar reasons.

(c) The optical spectrum of RaE as investigated by
Fred" shows that the A,3067 line of Bi2" shows no hfs
splitting. The conclusion from this, that the magnetic
moment of the RaE ground state (0.18 nuclear
magneton, is at least consistent with a spin 1 assignment
(hg/g proton, ggtg neutron orbitals).

It is of interest to note that a natural explanation of
the favored d J=O first forbidden transitions in heavy
elements is a8orded by the interaction as described
above. From Eq. (60) the correction factor is fairly
accurately represented by

gi 'Cip = (crZ/2p)'(gi"/3P)

The strong Z dependence exhibited by the P interaction
contribution which would enhance transitions of the
aforementioned type, could be cited as evidence for the
existence of the P interaction. However, in order that
the P contribution be comparable with that arising
from the T interaction, it is necessary that g&/g& 50.
It should be emphasized that this conclusion is not a
necessary one and if gr/gr«50, which would require an
independent explanation of the favored erst forbidden
transitions, one would conclude that the P interaction
plays no practical role in the P interaction.
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