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Influence of Extranuclear Fields on Angular Correlations"'

F. COESTER
Department of Physics, State IIniversity of Iowa, Iowa City, Iowa

(Received October 5, 1953)

General formulas exhibiting the inQuence of extranuclear fields on angular correlations of two or three
successive p rays are derived from first principles. They are applicable to polarization correlations as well
as to directional correlations. The eGect of transitions in the electron shell during the life of the intermediate
nucleus is discussed briefly.

the 5 matrix. ' In any case the angular correlation can
be written in the form

I. INTRODUCTION

HE qualitative picture of p-& angular correlations
is simple enough and well known. ' The source

nuclei decay, each emitting two p rays in succession.
Initially their spins have random orientation, but the
ensemble of nuclei having emitted the first y ray in a
definite direction has a nonuniform distribution of spin
orientations. The second p ray is therefore emitted with
a nonisotropic angular distribution with respect to the
first. The action of extranuclear fields on the magnetic
moments and the electric quadrupole moments of the
intermediate nuclei may significantly change their spin
orientations and thus aGect the angular correlation.

In the quantitative theory first given by Hamilton'
and refined by many authors' one does not have, how-

ever, a detailed description of the time development
corresponding to the picture just sketched. One merely
calculates from the time-dependent Schrodinger equa-
tion the relative probability for having two p rays
emitted in specified directions during a long time t.
Goertzel's theory4 of the inhuence of extranuclear fields
follows the same lines. The splitting of the nuclear
levels rather than any spin reorientation in time appears
to be directly responsible for the inQuence of extra-
nuclear fields on angular correlations. This theory is
necessarily restricted to time independent interactions.
Recently Abragam and Pound' have given a pre-
scription which modifies Hamilton's formula on the
basis of the physical picture in order to describe the
inAuence of time-dependent extranuclear fields as well.
Fano' has suggested a diferent approach which promises
a consistent quantitative theory in close parallel to the
physical picture. The decaying nuclei and the emitted
radiation can be described by a density matrix. ' When
extranuclear fields are negligible it suffices to consider
only the initial and final density matrix connected by

W= Tr(ep),

Lsee Eq. (I2)), where p is the final density matrix. But
if extranuclear fields are eGective, the final density
matrix must be obtained in terms of an explicit de-
scription of the intermediate stages.

It is the purpose of this note to provide an explicit
description in time of the decaying nuclei along the lines
suggested by Fano. While many of our considerations
apply to all kinds of cascade decay, we restrict ourselves
at first to p decay of long-lived isomers for the sake of
definiteness in the exposition. Gamma cascades pre-
ceded by P decay or E capture are discussed in Sec. IV.

II. DENSITY MATRICES IN SUCCESSIVE y DECAY

The density matrix p in (I) describes the ensemble of
all the nuclei in the source. It can be written in the form

N

p= Zp, —
g n=i

where n labels the individual nuclei in the source and p™
is the density matrix describing the nth nucleus.

We consider a sequence of nuclear levels a,b,c with
angular momentum j, m, ~ . The density Inatrix p
describes the system containing the nucleus o., its
environment and the emitted radiation. The matrix p
is obtained by taking the trace of p with respect to all
photon energies. Since e is the unit matrix with respect
to the photon energies it is p which we need to calculate
the angular correlation. We assume for the sake of sim-
plicity that only transitions between adjacent levels are
possible. At the time t=0 all the nuclei are in the level
a and no photons are present. The matrix p (t) then has
no og-diagonal elements connecting diGerent nuclear
levels and may be written in the form

* Supported in part by the U. S. Atomic Energy Commission.
' See, for instance, H. Fraunfelder, Ann. Rev. Nuclear. Sci. 2,

129 (1953).' D. R. Hamilton, Phys. Rev. SS, 122 (1940).' For references see reference 1.' G. Goertzel, Phys. Rev. 70, 897 (1946). See, also, K. Alder,
Helv. Phys. Acta 25, 235 (1952).' A. Abragam and R. V. Pound, Phys. Rev. 92, 943 (1953).' U'. Fano, Natl. Bur. Standards Rept. 1214, 1951 (unpub-
lished); Phys. Rev. 90, 577 (1953}.

For a definition see, for instance, R. C. Tolman, Primcip/es of
Statistical 3Iechanics (Oxford University Press, I. d ono1n938
Chap, 9.

P =p:+ps +p. + (2)

Each term on the right-hand side of (2) has only
matrix elements with respect to the substates of one
level a,b,c, respectively. If the nucleus is in b there
is always one photon, in c there are two photons and so

), 'F. Coester and J. M. Jauch, Helv. Phys. Acta 26, 3 (1953)
quoted as I in the following.
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on. The Hamiltonian of the system is Hp+H, "(t)+H,
where Hp is the energy of the bare nucleus and the free
photons, H is the interaction of the nucleus with the
radiation field, and H, (t) is the Hamiltonian of the
environment in interaction with the nucleus. It has an
index o. since different nuclei do not in general have
identical environments. In the interaction representa-
tion the Schrodinger equation is

$ and M are photon quantum numbers. "Since

(j ~ IHljb&~b~)=VbL~bItflj. ~.)H~(k), (9)

y, is independent of sos, . More explicitly, (I) may be
written in the form

Bp, /Bt= i[—H, ,P, $ y,—p, , (10a)

p)pb /Bh= sI Ht tpb 3 Vbpb—+2snb, p~ Httb (10b)

where

Zae./ah= [H..+H(t)fe. ,

H (h)
—eiHptHe —iHpt

(3)

(4)

Similar equations hold for p, and further terms if any.
One can easily verify from (10) that the trace of
p =p +pb + is constant in time since

H, commutes with Hp. It is therefore the same in
the interaction representation and in the Schrodinger
representation. As a consequence of (3) p satisfies the
equation'

2pr Tr(Hb. p. H, b) =y.p. .

The solution of (10a), (10b), can easily be given
in terms of a matrix U (t, tp) which satisfies the equation

sBP /Bt=[(H. +II(t)), p (t)$. (5) soU" (t, tp)/at =H; U. (t,t,), (t& t,),
No attempt is made to integrate (5) from t = 0 to large t.
In fact this solution would not describe the physical
situation since the system is under continuous obser-
vation. The emitted photons are at least in principle
observed at all times; the system is therefore described
by a density matrix p (t) which is diagonal in the photon
numbers.

In order to get a useful equation for p (t) from (5),
we integrate (5) by perturbation theory between t and
t+5t The int.erval 8t is so small that (8tH, )«1, and

H, (t) is approximately constant in this interval.
Further St is small compared to the lifetimes of the
nuclear levels but large compared to the reciprocal
frequency of the p rays. We have then

and the initial condition U (tp, tp) =1. From (10a) and
(12) we find

p, (t)=e "U (t0)p, (0)U (t,0)+. (13a)

Since p, (t) is known, (10b) can be integrated. The
result is

pt

p (t)=27r Ch'e &b~' "~U (t,t')Hb, p, (t')H, U (t,t')+.
40

(13b)

In the same way we obtain the density matrix at any
level. For instance we get p, (t) by substituting a—bb,

tt &c in Eq. —(13b).
~t+St

p (h+Bt)=p (t) iQ[H, ,P ] —i—dt'[ H(t'), p (t)j IIL EXPLICIT ANGULAR CORRELATION FUNCTIONS

~
t+bt

dh' dh"[H(t'), [II(t"),p. (t)jj. (6)

Since the time dependence of H(t) is known according
to (4) we can carry out the integrations in (6) explicitly
and then take the trace with respect to the photon
energies. The matrix p (t) is diagonal with respect to
the photon number; therefore the first-order term in B
does not contribute and the result is

p (t+bt) p(t) = {i[H—, ,—p j+yp 2prHp H}Q, P)—
where y is a diagonal matrix whose eigenvalues y„y~
are the reciprocal lifetimes of the nuclear levels. For
instance,

v.=2~2 2 EI(~.j IHI jbktpsbM)I'

'A similar equation has been discussed recently by R. K.
Wangsness and F. Bloch, Phys Rev. 89., 728 (1953) fEq. (2.4)g.
Our treatment is analogous to theirs in many respects,

If the level c is the ground level (y,=0), the corre-
lation of the two y rays is, according to (1),

W= const Tr{ e(QiQs) p, (t)}, (14)

where e is the unit matrix with respect to all variables
except those describing the observed photons,

P.=—2 P. ,
a

and t is in (14) by definition the total duration of the
experiment. We shall see later that the angular corre-
lation is actually independent of t, as expected. From
(14), (15), and (13c) (not written out) it follows that.

W= const Tr e(QiQs) dh'H, bpb(h')Hb, . (16)
0

%e assume that for every environment there is a large
number of nuclei uniformly distributed over the sub-

"We follow the notation of I,
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states of the level a and find from (13a) and (13b)

t

po(t) =—Q 2rr dt'e»&t -"'e &"'-p, (0)
Ã ~ Jo

X U-(f, f')H,.H.bU-(f, f')+. (13b')

p, (0) is here merely a normalization factor. Inserting
(13b') in (16) we write W in the form

out using Eq. (IB6)."The result is

W(QiQs) = const g g(00~ F,o(Qs)
~
kn)

X (kn~G~kts)(kn~Fo, (Q ) ~00), (22)
where

t t'

(kn, ~G~kts)= —Q P dt' ~ Ck"yoe»&"—"
a air Jo ~o

t gl

W=const dt' tent"e»&" "'&e &"' Xv & "t"(krt«it~G (f tf ) (krcKK), (23)

j.
X—Q Tr{e(QiQs)H oU (t',f")

XH&.H.,U.(t', t")+H„j. (17)

If c is not the ground level, but further decays are not
observed we must replace (14) by

(18)W=const Tr{e(QtQs)(p, +pa+ . . )).
Equation (18) leads again to (17) since by (10) and
(11)

8 Tl {e (pa+ ' ' ' )) /t)t = 'y Tl (op ). (19)

In order to evaluate the trace in (17) we use a repre-
sentation specified by the quantum numbers jm for the
nucleus, $V for the photons, and tt for the atomic
environment. The e%ciency matrix is in this represen-
tation:

The matrix elements of U- describing the influence of
the extranuclear fields are combined in the expression

(knss'
(
G.(I',f")

(
km'. ')

P (m,.
~

U-(I', I")~m,.)*
'JS Istic ft tÃbtrbg

X(ms'a'I U-(I', f") lms'. ') (—1) -- '

X (j,j,m, —mb'lkts) (—1)to-"t'

X (jb j&m& —m&'( ken). (21)

The matrix elements of the Hamiltonian are given by
(9) and a similar expression for the second transition.
All sums over magnetic quantum numbers are carried

(sm, gs)irlst&M&
~
e(QiQs) t

tt'm, 'fs Ms (i Mi )

=5(tt, tt')5(m„m, ') P (—1)™
kIny

X (L iLi'Mi —Mi'
~
kttti) (ft ~

e (ki,li,Qi)
~
$t')

X P (—1) ' ' (LsLs'Ms —Ms'~ ksns)
k2n2

X(q, ~.(k„~,;Q,) ~ t, '). (20)

(k~
~
F,.(Q,) t

k'~')

= Q Ho. ((i)Hb. (gi')(ti~ e(ki, tt„'.?,)!(, ')

X (kki«i
~

k'rt')(j. j.~
I'(jb jo&1Li k ) t

kki). (24)

The matrix element Ho, ($) is real. "F,b is obtained by
substituting a~b, b~c, and 1~2 in (24). For directional
correlations, "
(( I e(k,~; Q) I

P') =
t 4~l (2k+ 1)3'G.(t,Y) I'."(Q)'. (25)

In the absence of any interaction of the nucleus with
its environment U is the unit matrix. Equation (22)
reduces then to the unperturbed correlation:

W(QiQo) = const P(00
~
F,&(Q&)

~
ktt)(ktt

~
F&,(Qi) t

00). (26)

If B, is time-independent, the eigenvalues of
U (t', t") are of the form e'""' ".U (t', t") and there-
fore G (t', t") depend only on the difFerence t' t" and-
not on t' and t" separately. If on the other hand H,
is the interaction with randomly fiuctuating fields such
as occur in liquids, G(t't")=1V 'P G (t', t") again
depends only on the difference t' —t". This is a con-
sequence of the ergodic hypothesis which says that the.
ensemble average 1V ' P is equivalent to a time aver-
age. Equation (23) may then be simplified somewhat.
The duration of the experiment is always long compared
to the lifetime of the intermediate state pbbs))1. If it is
also long compared to the lifetime of the source
y,t»1 we may replace t in (23) by ~ and use the

"There is a misprint in the last line of (IB6). Instead of
W(acbf', btt) read W(acbf;btt) Delete the equa. lity sign at the
end of the previous line.

Note added irl, proof.—Coefficients closely related to the j. coeK-
cients of I have been introduced independently by many authors
in unpublished papers. Several of these definitions and their rela-
tions are given by H. A. Jahn and J. Hope (Phys. Rev. 93, 318
(1954)j. The I' coeKcients are related to the Wigner 9j symbol
according to
(cc' [ I'(aa'bb'd)

~
ef)

f a'e u= {(2e+1)(2f+1)(2c'+I)(2c+1)}&' b'f b
lcdc

The %igner 9j symbol is identical with Pano's x coeKcient
(Natl. Bur. Standards Report 1214, 1951, unpublished).

u S.P. I,loyd, Phys. Rev. 81, 161 (1951);F. Coester, Phys. Rev.
89, 619 (1953).

"See Eqs. (I32) (I23), and (IC3).
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relation The evaluation of the trace gives, in analogy to (22),

t gl g/I

J, J, ~, J,
Ct' Ct" ~ = Ct" d(t' —t"), (27) gr t m v dt~ CtII dtII~ r.(v —el)—=cons ~~ ~~ e

which gives

(knI G
I
kzz) =p dtybe rb (kna/& I G(t)

I
kg«). (28)

KK alp

1
Xe ""-'"'e""—2 Z Z Z Zg ~ Iecnc Iec&c ~bnb kbnb

At this point we establish the connection with the work
of Abragam and Pound' by the relation

[(2ki+1)(2ks+1)]&
P(kst s«IG(t) Ik»i«) =

2Jb+1
XIII�(ki,

ks,ztt)zts)t). (29)

KK

The assumption y,t»1 which led to (28) is in general
not justified. On the other hand the lifetime of the
source is large compared to that of the intermediate
state, p,«pb. We may therefore use in (22) the trans-
formation

~t
cB dt"

~

d(t' t")—
dp Jp

t t

p t—t"
d(t' —t") (30)

and neglect the second term on the right-hand side,
since it is small of order y,/yb compared to the first one.
Since the factor 1—e & ' does not affect the correlation,
we may still use (28) in (22).

So far we have assumed that the resolving time of the
coincidence circuit is large compared to the lifetime of
the intermediate nucleus. If this is not the case and
delayed coincidences are counted, we have, instead of
(28):

(knlGIkzz) =p dte-»'yb(knsslG(t) Ikn.a), (31)
KK

where v& and ~& are the minimum and maximum delay
times; that means the second quantum is delayed with
respect to the first by a time t between v.

~ and v2. '4

Triple correlation functions can easily be derived
with the same methods. In analogy to (17), we get

t ~t gl I

W=const ~ Ct' ~ dt" dt"'e & t' ")-
J, J,

1
Xe rb" ' 'e & '" QTrfe(—QtQsQs)g a

XHe. U. (t', t")H.bU (t",t'")Hb.H.b

X U~(t",t"')+Hb. U (t', t")+H,e). (32)
'4 For a time-independent interaction L. C. Biedenharn and

M. E. Rose LRevs. Modern Phys. 25, 729 (1953)1have derived
a formula for delayed coincidence angular correlations LEq. (125)g.
Integrating this formula over t from ~1 to ~2 we obtain the same
angular correlation formula as (22) with (31). See also S. P.
Lloyd, Phys. Rev. 82, 277 (1951).

X (00 IFe, (Qs) I
kn, )(kn, KK

I
G, (t')t")

I
k I K'~")

x (k.zz
I
F b(Qs) I

&bnb)

X (kbnb)r'a"
I Gb (t",t"')

I kbrzbK)r)

X (kbnb IFb. (Qi) I
oo) (33)

where Gb is given by (21) and G, is the corresponding
expression for the level c. For time independent inter-
actions, Gb and G, are functions of t"—t"' and I,

'—t",
respectively. For liquid sources with randomly Ruc-
tuating fields, p G. (t', t")Gb (t,",t"') is a function of
t' —t" and t"—t"' only. In both cases we can simplify
(33) by changing the time integration according to

t ~l t OO

I dt' I dt" dt'" —+ ~ dt"' ~I d(t' —t")
J, J, , ~, J,

X Ji d(t"—t"') . (34)
p

This is not rigorous but only terms which are small, of
the order y,/yb or y,/y„are neglected.

IV. y CASCADES PRECEDED BY I5 DECAY
OR X CAPTURE

In many instances the initial state of a p cascade is
not a long-lived isomeric state, but a short-lived excited
state reached by P decay or Ecapture from a'long-lived
state, labeled 0 in the following. P decay or E capture
leaves the electron shell in an excited state which may
decay by x-ray or Auger emission during the nuclear
decay. We must then find a way to describe simul-
taneous decay of the nuclei and their electron shells.
Actually the electron shell decays through a sequence
of excited states which begins with very short-lived
states and may proceed through intermediate states
with lifetimes comparable to those of the nuclear levels.
For the sake of simplicity, however, we assume only
one excited electron state.

The symbols a, b, c label the three nuclear levels with
the electrons in the ground state; a', b', c' are the same
nuclear levels with the electrons in the excited state.
8' is the matrix for the electronic transition. y is the
reciprocal lifetime of the excited electron state. The
correlation formula corresponding to (16) is now

t

W=const Tr e(Q)Qs) Ct'H, b(pb(t')+pb (t'))Hbs (35)
Jp
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t

pb(t)=const —Q dt'—e ~b&' "&e &'"U (t,t')

where pb(t) and pb (t) are to be determined from the and
following set of equations corresponding to (10):

+2srH spp Hp, (36a')

Bp. /itt= sT—H;,p. 5 y.—p. +27rH'p. "H',

BPb' /Bb= ik+, Pb j ('y—b+'y)pb"

(36a)

In the average over n, ps(t) is proportional to the unit
matrix, and its time dependence is given by the factor
e—&O'. Since the decay 0—+u is not observed and po(&p,
this is still true for p, (t). The desired solutions of the
Eqs. (36b') and (36b) are then

t

pb (t)=COnSt—p dt e '&"+&'&' '&e 'r"'
Jo

X U. (t,t')H,.H.,U. (t,t')+ (37)

+2srHb, p, . H b, (36b')

itpb /N= s[H—. ,pb j ybp—b +27rH'pb H'

+2srHb. p, H, b. (36b)

XHb.H.bU (t,t')++—P ~ d
o ~s

X27re Tb—(& t') e
—(ra+—r) t ' t"e y—ot"Ua—

(t t&)

XH'U (t', t")H,.H.,U. (t', t")+H'U. (t,t')+ . (38)

Inse~ting (37) and (38) in (35), we have clearly three
terms in the correlation function. The first term in (38)
describes those cases where the electron shell decays
while the nucleus is still in the level a; the second term
describes decays of the electrons during the life of the
state fi; (37) describes the nuclei whose electrons remain
in the excited state during the life of the state b. For
large y, the first term in (38) is predominant; for small

y, (37) is predominant. In both cases we have the same
correlation function as in Sec. III.

I wish to thank Dr. H. Frauenfelder for several
stimulating discussions.
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Gamma Radiation from Proton Bombardment of Li'j
ALPRED A. ERASES, JR.*

&ellogg Radiation Laboratory, California Institute of Technology, Pasadena, California
(Received December 7, 1953)

The capture p rays from the reaction Li'(p, p) have been investigated by measuring excitation functions
and angular distributions. In addition to the well-known resonance at 441 kev, the excitation curve exhibits
resonance at 1030 kev in proton bombarding energy corresponding to an excited state at 18.14 Mev in Bes.
Near this resonance the p rays have a nonisotropic angular distribution with fore-and-aft asymmetry. The
yield integrated over this resonance corresponds to a radiation width given by coF~=2 ev.

' 'N the bombardment of Li' by protons, p rays of
~ ~ 15- and 18-Mev energy are produced in the capture
reaction, Li (p,y). In addition, the first excited state
of Li~ is produced by inelastic scattering of the protons
and the decay of this state results in the emission of
478-kev p rays, the over-all process being indicated by
Lir(P, P'y). The excitation curve for the 478-kev y rays
exhibits resonance' at 1030-kev bombarding energy and
the behavior of the inelastically scattered protons near
this resonance has recently been studied in this labora-
tory. ' In addition, the cross section for the protons

f' This work was supported by the joint program of the U. S.
0%ce of Naval Research and the U. S. Atomic Energy
Commission.*G. E. Fellow in Physics, 1952—1953 academic year. Now at the
Department of Physics, The Rice Institute, Houston, Texas.

'Brown, Snyder, Fowler, and I.auritsen, Phys. Rev. 82, 159
(1951).' Mozer, Fowler, and Lauritsen, Phys. Rev. 93, 829 (1954).

elastically scattered by Li' shows a strong anomaly near
this resonance. ' The present investigation was con-
ducted to determine whether or not the capture p rays
for Li'(p, y) are resonant at this energy.

Evaporated lithium targets were bombarded with
protons from the 2-Mev electrostatic accelerator of the
Kellogg Radiation Laboratory. The p rays were de-
tected with a scintillation counter made of a NaI(Tl)
crystal 1~ in. in diameter and 2 in. long, cemented to a
5819 photomultiplier tube. The output was fed into a
linear amplifier and to two discriminators, each having
its output pulses counted on decade scalers. The system
was unable to discriminate between the 15- and 18-Mev
p rays from the Li (p,y) reaction. One discriminator
was set to count all events over 5 Mev, and the second
was set to count the 478-lcev (soft) p rays from the

s Waters, Fowler, and Lauritsen, Phys. Rev. 91, 91'l (1953).


