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The note is concerned with estimates of the accuracy of the one-term formula for the energy dependence
of the reaction cross section for charged particles. The second term in an expansion of the cross section in
powers of the energy is worked out for a one-body model. Comparison with data of Sawyer and Phillips
on the bombardment of Li and Be with protons and deuterons shows that the deviations from the one-term
formula are of the correct order of magnitude to be accounted for by the second term. This term was compared
with the eGect of the 107-kev resonance on the cross section of H'(d, e)He4. Employing a conservative central-
Qeld model the correction term to the one-body asymptotic form is found to be smaller than the eGect of
the resonance expected from the Breit-Wigner formula. The f-function generalization to L, &0 which has
been made by Breit is studied and a table facilitating its use for the calculation of reaction cross sections
is given.

I. INTRODUCTION

HE present note is concerned primarily with the
inQuence of the Coulomb field on the dependence

of nuclear reaction cross sections 0. on energy. It was
erst pointed out by Gamow' that the cross sections
should depend critically on the energy if the Coulomb
barrier prevents direct contact between the colliding
particles. In this somewhat qualitative approach it was
not important to specify the mechanism of the nuclear
reaction, since the Coulomb barrier eGect is to some
degree independent of the interaction between the
particles at distances smaller than that corresponding
to contact. On a tentative picture of the Qux of relative
motion being the determining factor, Breit' worked
out the asymptotic form of the cross section at low
energies in connection with estimates on the possibility
of nuclear transmutations by artificial sources of
charged particles. This work has been extended by
Ostrofsky, Breit, and Johnson, '

employing a more
detailed view of the reaction mechanism. It was
supposed by them that the inhuence of interactions
in the region of configuration space corresponding to
distances smaller than the contact radius b may be
schematically represented through the introduction of
an imaginary part of the potential energy and this
quantity was related to the inherent probability of
distintegration I' by means of the conservation theorem
for the number of particles. The quantity I' represents
the probability per second and per unit volume of the
space of relative motion of the colliding particles that
a disintegration should take place. This quantity is
used also in the present work, although its effect on the
damping of the incident wave is not taken into account

*Now at Lincoln Laboratory, Massachusetts Institute of
Technology, Cambridge, Massachusetts.

j'Assisted by the joint program of the U. S. Office of Naval
Research and the U.S. Atomic Energy Commission and the OfBce
of Ordnance Research, U. S. Array.' G. Gamow, Z. Physik 52, 510 (1928).' G. Breit, Phys. Rev. 34, 817 (1929).

sOstrofsky, Breit, and Johnson, Phys. Rev. 49, 22 (1936).
Hereafter this paper will be referred to as OBJ. The same point of
view regarding the role of nuclear absorption has been taken by
Feshback, Peaslee, and Weisskopf, Phys. Rev. 71, 145 (1947).

so as to simplify the form of the answers. In the work
of OBJ it was shown that the asymptotic form of a.

is independent of the value of the orbital angular
momentum L even though the centrifugal barrier
depends on this quantity. Their paper also shows that,
except for the entrance of a factor of proportionality in
0-, the same asymptotic form applies independently of
the value of I'. Generalizations of these results both
regarding generality of derivation and of applicability
to a wide variety of situations have been made by
tA'igner. ' The asymptotic form is in good agreement
with experimental data as has been shown by OBJ and
later work.

One of the main objects of the present note is to
present estimates of the energy region in which devia-
tions from the asymptotic one term form are negligible
and to assign approximate values to its probable
accuracy. This purpose is accomplished by deriving
the second term in the expansion of the ratio of 0- to
the value of the one term approximation of OBJ in
powers of the energy of relative motion E. Since the prin-
cipal interest here is to have an approximateestimate, the
eGect of P on the internal function is neglected. There
being no special reason for believing that the main
term and the correction term are aGected very diGer-
ently by the imaginary part of the potential energy, it
is probable that the estimates are valid also for non-
negligible absorptions.

For small absorption inside b the behavior of the
phase shift as a function of E can be represented
conveniently through the employment of the f function
of Breit, Condon, and Present' and its generalization
to L@0 made by Breit. ' In this representation the
critical dependence of El. on E at low E does not
interfere with a convenient graphical treatment of
experimental material somewhat as in the eGective
range plots for p-p and p-ss scattering. Since the phase
shift determines the value of the wave function at the
nuclear boundary it is possible to estimate the energy

4 E. P. Wigner, Phys. Rev. 73, 1002 (1948).
s Breit, Condon, and Present, Phys. Rev. 50, 825 (1936).
s G. Breit, Revs. Modern Phys. 23, 238 (1951).
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dependence of o by means of the f& function. The
present note contains, therefore, a table and a few

graphs facilitating the calculation of f~ and showing
eGects of varying L and other parameters on the
(fr.,E) curves.

Notation

The notation for the Coulomb functions is the same
as that used by Yost, Wheeler, and Breit, ~ and by
Bloch, Hull, Broyles, Bouricius, Freeman, and Breit.

IiI,,GI, regular and irregular Coulomb functions for
angular momentum Lk normalized to be asymp-
totic to the sine and cosine of the same phase
at large r with FI.)0 at small r. Where no
ambiguity arises the subscript L is omitted in
this note.

v =2I.+1.
r, v relative distance and velocity.
A=un/mls, where p is the reduced mass.
p=kr. In this note it is in most cases taken at the

nuclear boundary, r =b.
r) =ZZ'e'/hv = 1/ka.
x= (Spr)) &.

Cr —{2r/(2I+1) I){EI'+r)'X(I 1)s+r)sj
X(1+~'$}ic,.

Cs ——(2s r)/(e' &—1))&.

I regular solution of the radial equation for r(b„
normalized so that u(b) =1.

5=F'/F —u'/u; '=d/dp.
I' adjustable parameter representing probability of

reaction occurring if the bombarding particIe is
inside the nuclear boundary. In general diferent
values of I' can be chosen for diGerent L.

V depth of square well representing internal potential
in Mev. In all applications the centrifugal
potential is supposed to extend in to the origin
and is superimposed on this square-well potential.

IL EXPANSION OF THE LOW-ENERGY
CROSS SECTlON

OBJ derived the formula for the partial cross section
for distegration on the one-body model without spin in
the limiting case of no absorption, obtaining'

( )(F '/p')(u ')

(1 FrGzbr)s+F r4ozs—

which enters through the F' in the numerator of the
cross-section formula, contains the main energy
dependence and was kept intact. Except for the case
where a resonance occurs at a very low energy, the
term F42 is small enough to be neglected and it has
therefore been dropped. The result of the calculation
thus performed is

2rrF IIP M+xn+op
— 1+(1/rP)

e (R+Srr)' R+Sn

(x) ay 2mrl

+ I

—
I
—+ (2)

&2) P e's —1

where

II= vb (x/2) I—(x) = (v/g)gs(x/2) I (x)

R=—[v+1+2 (x/2)'/(v+1) )I„(x)Z„(x)

(2.1)

—P2 (x/2)s/ (v+ 1)7I, (x)K,+s (x), (2.2)

S—=—2I„(x)E„(x),

(v+ 2) (x/2)' v (v —1) (x/2)'
M—=

3 (v+1)

v(v —1)(v+1)' (x/2)4
I„(x)E„(x)+

24 3 (v+ 1)

(2.3)

(v —1)(x/2)'
I„(x)E„+,(x), (2.4)

12

this note will be assumed to be a constant, 1/b, for
simplicity, as in OBJ.

Yost, Wheeler and Breit' gave an expansion for 4
and sufIicient relations to obtain 4* as a power series in

1/rP (proportional to energy) and Breit and Hulls
obtained a corresponding expansion for 0 where the
coefficients are simple expressions involving Bessel
functions of imaginary argument as defined by Whit-
taker and Watson. "

These expansions were introduced into Eq. (1) in

order to obtain the second term in an asymptotic
expansion about zero energy of the cross section. The
quantity

C '= 2s-r)/(e'& —1),

(x/2)' v(v —1)(v+1)
+ I„(x)E„(x)

3(v+1) 12
where

b b

(ur, s)= Jt 'vvr, ur, sdv; ~t ter, (r)dr= 1.
(x/2)' (v —1)(x/2)'

I„(x)E„+s(x), (2.5)
Here the function el. is the relative intrinsic probability .3(v+1)
of inducing the disintegration in dr at r as in Bloch,
Hull, Broyles, Bouricius, Freeman, and Breit, ' and in 0—= (x/2)'S/4. (2.6)

~ Vost, Wheeler, and Breit, Phys. Rev. 49, 174 (1936). s G. Breit and M. H. Hull, Jr., Phys. Rev. 80, 561 (1950).' Bloch, Hull, Broyles, Bouricius, Freeman, and Breit, Revs. I E. T. Whittaker and G. ¹ Watson, Modere Analysis (Cam-
Modern Phys. 23, 147 (1951). bridge University Press, Cambridge, 1927), Sec. 17.7.
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TABLE I. Values of parameters corresponding to
typical nuclear interactions.

Reaction
x P/p2

iO»rp =1.4
X Z/p6

10»rp =1.7
X B/p2
10»rp =2.i

a+I
Cls+p
QTe2p+ p
SSQ+p
Li7+d
Q16+Q
Al»+iE
Li7+a
C12+a
Neap+a

0.0991
0.892
2.477
6.34
0.446
3.17i
8.37
3.92

15.70
43.6

1.027
2.241
3.183
4.38
1.935
3.79
5.35
3.62
5.91
8.61

5.70
2.264
1.545
i.102
2.034
0.983
0.649
1.464
0.822
O.S08

1.132
2.469
3.51
4.83
2.133
4.18
5.90
3.99
6.52
9.49

3.87
1.535
1.049
0.747
1.379
0.666
0.442
0.994
0.557
0.344

i.258
2.744
3.90
5.37
2.370
4.64
6.56
4.43
7.24

10.55

2.533
1.006
0.687
0.490
0.904
0.437
0.2898
0.651
0.365
0.2257

a The nuclear boundary is given by b =rpA& where A is the sum of the
mass numbers of the incident and the bombarded nuclei and 10»rp is 1.4,
1.7, and 2.i. Lengths are in centimeters and energies in Mev,

with energy-independent n, P, and y. It has been
assumed that the nuclear potentia, l does not extend
beyond b.

The relation of g to the bombarding energy in Mev is'

F= (0.1574ZZ')'M /i1' (4)

where 3f; is the mass of the incident particle. The
choice of a nuclear radius b determines

pt1=ZZ'pb/(2. 905&&10 "cm), (4.1)

and thus x, and establishes the relation between E and
p'. The phase s of the wave function at b can be
obtained from the knowledge of the internal potential.

II', E, S, M, S, and 0 are functions only of the external
region, and the other parameters in (2) are defined by
the expansions

pg'/n= a+ (1/r7') f 8(x/2)'—/8)+, (3)

Thus if U is the depth of a square well potential inside

b, the ratio of the square of the phase of the wave
function at fi to X+V is the same as that of p' to E,
and for zero energy s'/U= p'/E. In Table I values of
the parameters are given for various reactions.

The functions defined by Eqs. (2.2)—(2.6) are tabulated
in Table II for values of x less than 10. The functions
rr, P, and 7 are obtainable from their definitions, Eqs.
(3) and (3.1).

This expansion was compared for a simple case with
calculations using the Coulomb function tables. ' The
parameters chosen, x=2.76 and s=4, correspond to
C"+p with a square well potential of depth, U= 14.75

Mev and range, b=4.99&10 "cm. The proton energy
is obtainable as 8=0.892/i1' Mev.

The solid straight lines in Fig. 1 represent the
correction to the one-term low-energy formula due to
terms linear in energy in this case. For I.=O accurate
computations of cr using the Coulomb function tables

give the same result as the expansion. The agreement is

fortuitous in this case, as an examination of the energy
dependence of I—FG8 indicates that the nonlinearity
of p6 tends to cancel that of FG/p. For L,=1 the
difference of 10 percent when 1/i1'=0.5 between the
result of the computations using the Coulomb function
tables and those using the expansion is largely due to
the nonlinearity of 1—FG0. The results of obtaining the
values of the various components of the cross section,
2(m'), 1—FG5, and F/p, from their low-energy expan-
sions at 1/rP=O 5and the.n combining these numbers

directly indicate that terms of order 1/ri' are large

enough to be seen on an ordinary graph even at this

energy.

R 5TAsii-'II. Vnlnes oI coefficients
'

for different L

0

10

0
0
0.238
0.0312
0.362
0.0604
0.412
0.00567
0.436—0.197
0.449—0.609
0.458—1.292
0.464—2.308
0.469—3,72
0.472—5.60
0.475—7.98

1.000

0.680
[—0.0385]

0.445
[—0.1345]

0.3175
[—0.2736]

0.2437
[—0.453]

0.1968
[—0.673]

0.1649
[—0.934]

0.1417
[—1.237]

0.1243
[—1.581]

0.1106
[—1.969]

0.0996
[—2.394]

0.333
0.333
0.353
0.354
0.383
0.395
0.412
0.396
0.432
0.277
0.446—0.0360
0.455—0.612
0.462—1.516
0.467—2.813
0.471—4.57
0.474—6.84

0.3333
[0.333]
0.3149

[0.311]
0.2754

[0.251]
0.2345

[0.110]
0.1995

[—0.0665]
0.1713

[—0.288]
0.1491

[—0.553]
0.1314

[—0.860]
0.1170

[—1.208]
0.1055

[—1.600]
0.0958

[—2.027]

0.400
2.000
0.404
2.020
0.414
2.064
0.426
2.091
0.437
2.035
0.447
1.795
0.455
1.378
0.461
0.629
0.466—0.495
0.470—2.062
0.473—4.14

0.2000
[1.000]
0.1960

[0.979]
0.1853

[0.913]
0.1711

[0.799]
0.1558

[0.6351
0.1412

[0.422]
0.1279

[0.165]
0.1161

[—0.140]
0.1060
0.487]
0.0971

[—0.880]
0.0894

L
—1.308)

0.429
6.00
0.430
6.02
0.434
6.07
0.439
6.11
0.446
6.10
0.452
5.96
0.457
5,62
0.462
5.02
0.466
4.07
0.470
2.70
0.474
0.859

0.1429
[2.000]
0.1414

[1.979]
0,1372

[1.915]
0.1312

[1.806]
0.1239

[1.651]
0.1161

[1.448]
0.1083

[1.197]
0.1010

[0.902]
0.0940

[0.559]
0.0875

$0.1690j
0.0817

[—0.2557]

0.444
13.33
0.445

13.35
0.447

13.40
0.450

13.46
0.454

13.47
0.457

13.39
0.461

13,13
0,464

12.66
0.468

11.86
0.471

10.67
0.474
8.27

0.1111
[3.333]
0.1104

[3.312]
0.1084

[3.249]
0.1054

[3.143]
0.1015

[2.991]
0.0971

[2.795]
0.0924

[2.551]
0.0877

[2.265]
0.0830

[1.925]
0.0784

[1.540]
0.0741

[1.118]

a graphical or parabolic interpolation is recommendeg.
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The expansion has been used to investigate the eGect
of decreasing the nuclear radius while. increasing the
well depth so as to keep the same zero-energy value of
the logarithmic derivative of the wave function at b.
This makes s, and thus n, P, and y remain unchanged.
The correction to the one-term formula due to the
second term is given in Fig. 1 by the solid straight lines
when x=2.76, the dashed lines when @=2.48, and the
dotted lines when @=2.25. The corresponding radii b

are 4.99X10 "cm, 4.04X10 "cm and 3.32X10 "cm,
and the well depths are 14.75 Mev, 22.5 Mev and 33.2
Mev, respectively. For these cases Hp/(R+Sn)' is
given by 3.25b3, 2.18b', and 1.55b' for L= 0, and 1.80b',
0.409b', and 0.150b' for L= 1.

Sawyer and Phillips" have measured cross sections
at 90' for several of the reactions which occur when
lithium or beryllium is bombarded by protons or
deuterons in the 30- to 250-kev energy range. By
assuming an isotropic distribution of the reaction
particles they obtained values for the total cross
sections. For most of their reactions ln(o.E) was a linear
function of E ' with a slope not far from that predicted
by the one-term asymptotic formula

~9

I

.2 .3 A .5,6 .7
E (NEV)

o-E=Ae ' &.

M+Xn+Op x) 'y
+ -

I
- /, z.

R+Sn 2) P
(5.2)

For reasonable models the ratio of this slope to that
of the one-term formula was found to be of the same
order of magnitude as the ratio obtained from the
experimental curves. In the case of Lis(p, n)Hes the
ratio from experiment was 1.024 while the ratio com-
puted from the two-term formula varied from 1.020
when E=20 kev to 1.118 when E=250 kev. These
values were very insensitive to the nuclear radius
chosen, showing little change as the radius was increased
from 2.87X10 " cm to 4.02X10 " cm. The order of
magnitude is not very sensitive to the well depth in
the region of good convergence of Eqs. (3) and (3.1).
For the ratio quoted, the well depth had been adjusted
for a phase of 1.7 radians at the nuclear radius. The
ratio obtained from experiment for the Li'(d, n)He'
reaction was 0.967. If the well is adjusted to give a
phase of about 1.7 radian at a nuclear radius of
4X10 " cm, the calculated ratio varies from 1 to
about 0.97 in the energy range considered. The cal-
culated ratio shows considerable sensitivity both to
the radius and the depth in this case. These calculations
were made for L=O. No significance is being attached
to the possibility of fitting experimental values exactly.

"G. A. Sawyer and J. A. Phillips, Los Alamos Report LA-1578
(unpublished).

The slope corresponding to the two-term formula is

d}n(~Z)/dZ := 2~&Z&[i+—=-Z/—&~), (5.1)

where

Fro. 1. Correction factor, (1+(1/v~)[(M+iVn+Op)/(R+Sn)
+(x/2)4y/P7}, to the one-term formula for the reaction cross
section for C"+p as a function of the bombarding energy E. The
dotted lines 3 correspond to a nuclear well of range b =3.32)&10 "
cm and depth V=33.2 Mev, the dashed lines 8 to b=4.04X10 '3

cm, U=22.5 Mev, and the solid lines C to b=4.99X10 ' cm,
V=14.75. The points marked by circles represent the results of
an exact calculation using the Coulomb function tables for
parameters corresponding to lines C. The lower curves are for
I.=0 and the upper for I.= 1.

It appears appropriate to state again that in the
correction terms discussed above, the decay of the wave
function inside the nucleus is not taken into account.

fr, = pPCr, cotKI pL, 1I1'g—+re]/r}". (6)

This function was computed for some one-body
models for reactions between protons, deuterons, or
alpha particles and nuclei smaller than Si". Values of

f and vC' cotE/ri" were compared for several choices of

pr}, keeping U=O. For pr}=0.1, fs and fr are almost
constant, fs increasing from 79 to 81 as 1/r}' goes from
0 to 10 and fr changing from 5.4X10' to 5.5X104 in

the same range. VVhen pg=0.538, which represents the
interaction of a deuteron with Lir, fe changes almost
linearly from 1.5 to 3.4 while fr goes from 41 to 60 with

some curvature as 1/r}s goes from 0 to 10. These curves
are not illustrated but are similar to those for pg= 0.952
which corresponds to a proton incident on C" where
b=4.99X10 "cm. The pg=0. 952 curves, presented in

Fig. 2, illustrate the eGect produced by changing L

Behavior of the f Function

Breit' has generalized the f function for cases where
L&0.
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60,

25

20

fo—

'o i I I I

2. 3 & g 6 7 8 9
c (vcv)

FlG. 2. The fL, function as a function of the bombarding energy,
E, for Cn+P with b=4 99X10. "cm(pg=.952) and U=O.

and are reasonably well represented by the series:

fs 0.50+0.175/——rP+0.005/rj4; (7)

fr 2.45+0.055/—r—P+0.055/r14 (7.1)

fs 10.70+0.71——3/rP+0. 072/rj4; (7.2)

fs 25.70+2.24/——rp+0.084/rf'. (7.3)

For values of pg greater than 2, the term (—pluri+a)/rf"
tends to mask all the eGects of the phase shift. In these
cases a simple plot of Cl.' cotEr/rl" used in the spirit of
Breit, Thaxton, and Eisenbud" could still be useful.

In order to facilitate the use of the f function, values
of the term (—p lnr)+q)/rf" have been computed for
1.&4 for values of 1/ ' if4(0 and are presented in Table
III.

For the case A=1, calculations were performed to
see the eGect of varying the range of the nuclear well.
The well depth was adjusted in each case to restore the

f function at zero energy to its previous value. The well

depth is increased to 5.05 Mev when pg is decreased to
0.72 which corresponds to C"+p where b=3.77X10 '
cm. Similarly V=24.16 Mev when pg=0.50 for which
b=2.62&(10 " cm. The results are shown in Fig. 3.
The straight lines indicate the f function as found from
an expansion in powers of the energy similar to
Eq. (2). The slope at zero energy rapidly steepens as
the nuclear radius is decreased, illustrating the fact:,
pointed out by Breit, s that for zero range Bf/8E= —po

for 1.&0.
In order to investigate the eGect of changing the

n Breit, Thaxton, and Eisenbud, Phys. Rev. 55, 1018 (1939).

Coulomb 6eld, the eGect of changing a proton to a
neutron in a reaction was considered. As f is propor-
tional to y "it was necessary to introduce a modification
for zero charge. The function, (e'/mc'a) "fr,, was used,
the dependence of a on the charge Z canceling that of
r), and the length, e'/mc', being introduced to reduce
the function to a convenient order of magnitude. For
zero charge the term, —p Inr)+g, reduces to zero. In
Fig. 4, comparisons are made for 1.=1 between C"+p
and C"+e, the nuclear radii and the potentials inside
the nuclear boundary being the same as those of the
lower two curves in Fig. 3. The case corresponding to
pg=0. 952 is not shown, as the phase shift would vanish
since U=O so that the modified f function would be
ininite.

In changing from a proton to a neutron reaction some
consideration must be made of the eGect of the change
in the internal potential. To estimate this the potential
corresponding to a uniform distribution of charge
inside the nucleus was calculated. The average value of
this potential was then added to the depth of the
internal well for the neutron reaction calculations.
The modified f functions are shown by dotted lines in

Fig. 4 for the same radii as above but with larger well

depths. When b=3.77&&j.0 " cm the well depth is
increased to 8.15 Mev and for b=2.62)(10 " cm,
U= 28.61 Mev.

The cross section of H'(d, m)He' has recently been
studied at energies below 120 kev by Arnold, Phillips,

I I I I I

0 I I

0 ~ P. 3 q 5 6 r 8 e

E (f1E.V)

Fro. 3. The effect on the f function for I.= 1 of decreasing b and
increasing U to keep the same zero-energy intercept. The curves,
representing C~+p, have parameters: b=4.99X10 " cm (py
=0.952), U=O; b 3 77X10 "c=m (.ps=0.72), U=5.05Mev;and
b 2.62X10 ~s c=m (pg=0. 50), U=24. 16 Mev. The straight lines
indicate the zero-energy slopes as obtained from an asymptotic
expansion.
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Sawyer, Stovall, and Tuck, " as well as by Argo,
Taschek, Agnew, Hemmendinger, and Leland'4 and by
Conner, Bonner, and Smith. " At the peak of the
107-kev resonance the total cross section is 4.95 barns.
Within experimental error it is isotropic" with angle
at the resonance as well as at lower energies. There is no
special objection therefore to assuming the reaction to
be caused by incident deuterons in s states. Since in the
comparison of resonance and potential well eGects one
is primarily interested in relative values the exact
interpretation of the cross section in terms of contribu-
tions from diQ'erent values of total angular momentum
J is probably not too important. For this reason only
the two extremes were tried in assignments of partial
cross sections to J=—,'and —,', it being assumed that the
whole cross section at resonance is associated with one
or the other of these values of J. The experimental
value of 4.95 barns is large enough to exclude the assign-
ment of the reaction to J= 2.""ForJ=2, the resonance
denominator has the approximate form

giving a variation in a- of a factor z as one changes E
from about 60 kev to 20 kev. The denominator of the

TAnLE III. Values' of ( pr, 1ng+qs)/n". —

1/g2

0

2b
3b
4b
6b
8b

10
12
14
16b
18
20
22
24b

28
30
32
34
36
38
40b

0.3089
0.4982
0.697
0.875
1.037
1.300
1.510
1.679
1.828
1.956
2.071
2.172
2.265
2.350
2.429
2.503
2.569
2.633
2.693
2.750
2.802
2.855
2.900

—0.453-0.612—0.632—0.540—0.383
0.138
0.851
1.711
2.689
3.777
4.94
6.211
7;517
8.915

10.36
11.84
13.39
14.98
16.63
18.30
20.00
21.80
23.40

1=2
—0.013—0.091—0.200—0.303—0.409—0.552—0.531—0.364

0.050
0.712
1.66
2.914
4.463
6.425
8.85

11.50
14.34
17.78
21.71
25.94
30.60
35.86
41.37

I.=3

—0.004—0.012—0.040—0.074—0.170—0.271—0.399—0.477—0.480—0.370—0.082
0.410
1.199
2.30
3.03
5.873
8.406

11.54
15.33
19.82
25.29
30.65

—0.003—0.007—0.020—0.049—0.099—0.162—0.235—0.310—0.363—0.381—0.325—0.140
0.180
0.695
1.502
2.617
4.159
6.172
8.861

11.67

a Linear interpolation is accurate to +0.03.
b Values were not calculated directly but were obtained graphically from

neighboring calculated values.

'3 Stovall, Arnold, Phillips, Sawyer, and Tuck, Phys. Rev. 88,
159 (1952}.

'4Argo, Taschek, Agnew, Hemmendinger, and Leland, Phys.
Rev. 8T, 612 (1952).

's Conner, Bonner, and Smith, Phys. Rev. 88, 468 (1952)."E.Bretscher and A. P. French, Phys. Rev. 75, 1154 (1949);
D. L. Allan and M. J. Poole, Proc. Roy. Soc. (London) A204, 500
(1951).
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Fro. 4. Comparison of (e'/mc'a)"fr, for C"+P and Cn+n
reactions. For the solid curves the parameters representing the
nuclear well are the same as for the two bottom curves in Fig. 3,
~is. , curves D and E represent a proton reaction where b=3.77
X10 " cm (pg=0. 72), U=5.05 Mev, and 5=2.62&&10 " cm
(pv=0. 50), U= 24.16 Mev, and the curves A and 8 represent the
corresponding neutron reactions (pv=0). For the dotted curves
the well depths have. been increased so as to take approximate
account of the Coulomb potential inside the nucleus. Thus for
curve C the well depth has been increased to 8.15 Mev, the radius
being kept at b=3.77&(10 "cm, and for curve Ii where b=2.62
&&10 "cm the well depth is 28.61 Mev. In order to ensure positive
identification of the graphs the triplet of symbols consisting of
the designation of the reaction particle (p or e), the radius in
10 "cm and the well depth in Mev are used as an additional label
for each graph. Thus graph A has the additional identification
(I, 5.77, 5.05}.

Breit-Wigner formula is readily seen to give a sufficiently
strong dependence on E to make the direct application
of Eq. (2) difficult. No attempt is being made here to
find the best one-level formula 6t since it is desired to
illustrate the lack of constancy of the denominator.
Even if one were to use 88 kev in place of 44 kev with
constant I' and no energy-dependent level shift, the
factor z would change to about j..6 which is still larger
than the one-body eGects unless the latter are made to
have distinct resonance features.
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