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A classical analysis has been made of the paramagnetic resonance of a gas composed of a collection of mag-
netic dipoles in an external static magnetic field H, for both circularly and linearly polarized radio-frequency
fields at right angles to Ho. Assuming that during collisions the dipoles have components only along the H,
direction one obtains for the circularly polarized case equations similar to those of Bloch with the single
parameter 7, the mean time between collisions. The expression for paramagnetic absorption thus obtained
suffers from the defect that at zero external field it does not reduce to the Debye formula, as it should. If a
Boltzmann distribution of the x and y components of the magnetization is assumed during collisions, the
absorption formula is modified and correctly reduces to the Debye formula. For a linearly polarized radio-
frequency field, one obtains as the absorption formula the sum of two terms [Eq. (17)]. This again does not
reduce to the Debye formula. Introducing a Boltzmann distribution of magnetization during collisions one
obtains a corrected formula in which absorption does not vanish at low fields.

I. INTRODUCTION

XAMINATION of the macroscopic paramagnetic
absorption formula of Bloch! indicates that it does
not reduce to the Debye formula at zero field, as it
should and as experiment indicates,? but instead predicts
zero absorption at zero field. This suggests that it is
subject to the same restriction which troubles the
Lorentz theory of line broadening for a harmonic oscil-
lator which restriction was eliminated by the revision
carried through by Van Vleck and Weisskopf.®? We have
been interested in carrying through in detail a similar
revision of the Bloch equations. We consider the case
of a gas which is composed of a collection of dipoles
with 7 the mean time between collisions. Instead of the
harmonic oscillator treated by Lorentz and Van Vleck-
Weisskopf we follow the precessional motion of the
magnetic dipoles in the external field during and between
collisions as defined by their equations of motion.

II. THE CIRCULARLY POLARIZED CASE

If the dipole collection is placed in an external field
H, in the z direction and subjected to a circularly
polarized radio-frequency field in the plane at right
angles to z, the motion of each dipole is governed by the
following differential equations

dus

E= v uyHo+ p.H; sinwt], (1a)

Apy

—d——='y[:qu1 COSwt"—#xHo:l, (lb)
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p =[—p.H; sinwt— u,H; coswt ], (1c)
t

where p is the constant magnetic moment of each
dipole, ., py, u. are the components of x in the #, v, 2
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direction, H, the amplitude of the rf field, v the gyro-
magnetic ratio, w the angular frequency, and H,
=H, coswt, H,= — H, sinwt, H,=the external field H,.
A simple solution of (1) can be obtained by assuming
that u,=pu,=0, u.=p during collisions? and that u, and
u,<u, between collisions. The latter assumption implies
that p;~u so that u, may be considered constant.

The solution of these equations under the above
assumptions is

= Kemiotp Bygioot (2a)
u_= Keiwt4 Bogivot, (2b)
where
K=vHp,/(wi—w), wo=vHo, p4=ps+tipy,
and .
M= Mg Uy

If collisions are assumed to occur at the time /—6, then
pr=pu_=0 at this time. Thus

Bi=— K¢l (o) B,= _Ké—i<t—9) (wow),
and Egs. (2) become
= Ke—iwttl_ eiﬁ(w—wo):L (38,)
“_=Ke+iwt[:1__ —iﬂ(w—wo)]. (3b)

To average the components of the magnetic moments
over varying times of last collision, assuming random
occurrence of collisions with the mean time 7 between
them, we multiply uy and p_ by (1/7)¢7®/7 and integrate
6 from zero to infinity. We thus obtain

© u (w0—wo)??— 1 (w—wo)T
<“+>=f - —alrdg;]{e—iwz( 0 o ),
o T - 14 72 (w—wo)?

<l‘—>=fw‘i —Wfd@:Kgiwz((w~w°)27'2+i(w_wo)r).
0o T 14 72 (0—wo)?

4 Such collisions are known as strong collisions since the dipoles
have no memory of their orientation before collision (see refer-
ence 3). They are also assumed to be adiabatic (occurring in a
time short compared to the Larmor period). With these two
assumptions it is permissible to use, as we later do, a Boltzmann
distribution of magnetization during collisions.
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Here the angular brackets around uy and u_ represent
their mean values, so that the total magnetization of
the collection of dipoles is obtained by multiplying the
mean value by N, the number of dipoles per cm3. Thus
the x and y components of magnetization M, and M,
are given by the expressions

N<u+>+ ()
2

xz

(H1 coswt) T (wo—w)-+ H; sinwt
=woXoT )

14 72 (wo—w)?

() — () @
=y
2i

(— H, sinwt) 7 (wo—w)+ H; coswt

=wWoX 0T 5

1+ 7'2(w()~(40>2

where xo represents the static susceptibility. These are
similar to the Bloch equations! with T, replaced by 7.
Thus the imaginary portion of the susceptibility x’’ cor-
responding to the out of phase component of mag-
netization is given by

1

—_— 5
1+ rz(wo~w)2 ( )

x"'=¥xowor

We now lift the restriction ps, p,<Ku, (i.e., u~po).
If the times between collisions are sufficiently long this
restriction will not hold since ., m,, u. can have all
values between 4-u. We transform Eqs. (1) by means
of the definitions®

potip,=Se"®t  ?=wl+A%, A=w—w), wi=7vH),
into
dS/dt=iAS+iwwp,, du,/di="3%iw (S—8).  (6)
These have the solution
u=A cos(at+B)+C,

S—8=(2ida/w)) sin(at+B), (7

S+8= (244 /wy) cos(at+B)+D,
where 4, B, C, and D are the constants of integration.
If we now assume that at time {—0, u,=u,=0, u,=u,
then S= (u,+1iu,)e™ =0, and

p.=p=A4 cos[a(t—6)+B]+C,

_ 2tAx
S—8=0= sin[a(¢—0)+ B, (8)
w1
_ 2A4
S+8S=0= cosla(t—60)+BJ+D

w1

5W. J. Archibald, Am. J. Phys. 20, 368 (1952).
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From these and the relationship 2= wm2+u.2=pu?, the
four constants of integration can be evaluated as
B=—a(i—0), C=ulA?/a?
D= —2A4/w;.
substituting these back into (7) we obtain
1= (1/?) (cr? cosaf+A%),
S—8= (2iwin/a) sinad, ©
 S+8= (2Auw1/e?) (cosab—1).
To obtain the mean value of these quantities we must
now average them over varying times of last collision

assuming again a random occurrence of collisions with
mean time 7 between them. Thus

4 =”w12/a21

5—8y= [ 15— Fesrda= 22"
— — —(S— Qe b/7dh = -
j; T 14?72
_ | _ 2Apw17?
(S+S)=f —(S+8)e ¥ df= ——.
0 T 1+a?7?

From these, since
(patip)=4e 5t ((S— 8)+(S+3)),

we obtain
WINT

(sinwt— A7 coswt),

<l"z> =

from which

1427

(wo—w)TH 1 coswt—+ H sinwt
147 (wo—w)*+v*H 7

M:c: 17V<,uz> = XowoT

We thus note the appearance of the saturation term
v2H 7% as a result of lifting the restrictions on u., uy, uz.

III. THE LINEARLY POLARIZED CASE

If the radio-frequency field is linearly polarized, then
the equations of motion to be solved are

o/ dbt=yp, Ho,
duw,/dt="y (2u.H; coswl— pH,),

with H,=2H, coswt, H,=0, and H,=H, representing
the external field. We again make the assumption that
collisions are frequent so that p,~u. If u,=pu,+iu,
then (11) reduces to

d,u+/di+'i’YHo= Zi'y,qu COSwf. (12)

6 If the saturation term is small compared to 1 the previous
equation reduces to Eq. (4). It is of interest to ask what the
saturation term means in the collision broadening picture. Thus,
if in Eq. (7) one sets A=0 (i.e., resonance), then a=-yH;. The time
taken for u, to change from its extreme positive to its extreme
negative value is then 1/yH,. If 7<1/vH;, collisions occur much
more frequently than the flip frequency, thus preventing the
dipoles from diverging much from their collision values u,=u, =0,
u.=p, and reducing the solution for M ; to that previously obtained
[i.e., Eq. (4)].

(11)
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The solution of this equation is
t
= f dt’ (2éyuH; coswt’)
- t
Xexp(— f i’yHodt")—l—Cle"""“‘
M

iyH coswl+w sinwt

(iyHo)*+o?

= 2typH Creiont, (13)

C: may again be evaluated by assuming that u, =0 at
the time (¢—6). Then
2yuH,

2

By=

{wo coswt— 1w sinwt— [wo cosw (£—0)
we—w
—iw sinw (f—0) Je~iw?},  (14)

and

© Pt
o
0 T

2yuH, . .
=————————{ Two COSWI— w7 SINw?
7 (we— w?)
7(14i7wo)

—wy coswf——mmm
(1+47w0)?+ w72
wT?
(1+27w0) 2+ w?7?

7(14-37wo)
(1427wo)*+w?r?

— wo Sinw?

+ 2w sinewt

wT?

— 1w COSwt

— . (15
(1+irwo)2—}-w272] (15)

The imaginary component of the susceptibility can
now be evaluated using the u, component of p; in (15)
and the formula for the total absorption of energy per
unit volume per second

w t=27lw . w 27/
1‘10=—"Il H'dM=_f H:chz:
2w Jig 2w Jy
Nw 27/w
= 2H, coswid{u,y=2H2wx".

21l‘ 0

Substituting from (15) into the latter expression one
obtains for x”’:

1
). o
1472 (wo—w)? 1472 (wotw)?

which can be written in the equivalent but more sug-
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gestive form

" ( 2wwor? )
X" =xowor( ———————
: 14 72 (wotw)?

1
X + Y
(1+ 2 (wo—w)? 14 Tz(wo-f—w)z) an

Both the circularly and linearly polarized expressions
for x”’ thus vanish as the external field H, or wo ap-
proaches zero, the linearly polarized one doing so much
more rapidly according to (17). Since neither formula
shows any zero field absorption as they should, the
assumption that the x and y components vanish during
collision appears to be the one to be modified. Assuming
a Boltzmann distribution for the x and y components of
magnetization after collision® we correct C; in Eq. (13).
This correction to C; for the linearly polarized case, to
be added to the solution (14) is given by the expression

ff:ue_#H cost’ kT ¢80’ dS)
ffe—pH cos@'/deQ

2x0H:

Acle—iwu(t—d) =

cosw (¢—90),

where —uH cosf’ represents the potential energy of the
magnetic moment u in the field H=2H; cosw({—6) and
¢’ is the angle between u and the x axis. Thus

AC g0t = (2x0H1/N) cosw (t—8)e—i,

A correction AC,, corresponding to the integration
constant C, in the solution of the equation defining u_,
similar to that which defines u4, is given by

AC g0t = (2XOH1/N) COSw (t—@)e"“’“".
The correction to u, is obtained by adding AC; and AC»,
ie.,
Apz= 3 (AC e~ wot4- ACeiw0t)
= (2x0H1/N) cosw(—0) coswe.

If this is averaged over 6 with the weighting factor
(1/7)e %" we obtain

xoH1
(Apz)=Real Part{ f giw (=)
0

TN

X (giwoﬂ_'__ e—iwoﬂ)e—olfdo }

_X0H1( (1/7) coswt— (wo—w) sinw?
™N (1/7)*+ (wo—w)?

(1/7) coswt+ (wo+w) sinwt)

(/774 (wotw)? '
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Since as the expression for the total absorption of
energy A, indicates, only the sine terms in (Au,) con-
tribute to the absorption, we select those and obtain as

the correction to x”’:
wo—w wotw )
b

147 (wo—w)® 147 (wotw)?

yielding, when added to (16), the revised expression
for x’:

1
x'= %Xowf( + ) (18)
14+ 2 (wo—w)? 14 7 (wotw)?

In effect wo in the coefficient of (16) has been replaced
by w and the sign between the two terms has been
changed. If now w, is allowed to approach zero, x'’
approaches the expression:

X" =xow7/ (14 7%7),

which is the Debye formula for zero field absorption.

Figure 1 is a logarithmic plot, of the relative variation
Ag/g of g from its free spin value as a function of w7,
obtained from Eq. (18) by maximizing x’’ as a function
of wor for constant wr. This is in conformity with
experiment, the field Ho=wo/y being the variable
parameter used in determining the maximum of x’ for
different constant frequencies w. 7 is assumed to be
constant over the observed range of frequencies and
field. Ag/g is then defined as the deviation of wo at
maximum x’’ from w divided by w. For wr>1 an inverse
fourth power variation with wr is indicated. This di-
minishes as wr approaches the value 1 and then increases
again when w7 <1. Of interest is the disappearance of a
maximum in absorption when w7 is less than 0.58.

No measurements have been made in paramagnetic
gases at low enough fields to check the above formula.
At this laboratory,” however, this variation of g as a
function of frequency at low fields, has been measured
in the free radical diphenyl-picryl-hydrazyl in the range
1<wr<2. The inverse variation of Ag/g with wr was
found to be slightly larger than fourth power. This
appears to be consistent with the values indicated by
Fig. 1. .

(o)== o

SUMMARY

An analysis has been made of the motion of magnetic
dipoles in a gas immersed in a magnetic field Ho and a

7A. H. Ryan and L. S. Singer (private communication).
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Fic. 1. Variation of g from the free-spin value. The slope measures
nin Ag/g~1/(wr)™.

cross rf field either circularly or linearly polarized. In
the first case, assuming zero x and y components of
magnetization during collision, the usual Bloch equa-
tion for absorption is obtained; in the second the dif-
ference between two Bloch type terms is found. Both,
however, predict no absorption at zero field. By as-
suming a Boltzmann distribution during collisions one
obtains for the linearly polarized case the sum of two
terms which show zero field absorption and reduce
correctly to the Debye formula. The absorption formula
thus derived predicts a change of g from the free spin
value varying inversely with wr from the fourth power
when wr>1, decreasing as wr approaches the value 1
and then increasing as w7 sinks below 1. This is verified
approximately for diphenyl-picryl-hydrazyl in the range
1<wr<2.



