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Paramagnetic Resonance in Gases at Low Fields
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A classical analysis has been made of the paramagnetic resonance of a gas composed of a collection of mag-
netic dipoles in an external static magnetic field Ho for both circularly and linearly polarized radio-frequency
fields at right angles to Ho. Assuming that during collisions the dipoles have components only along the Ho
direction one obtains for the circularly polarized case equations similar to those of Bloch with the single

parameter v, the mean time between collisions. The expression for paramagnetic absorption thus obtained
suBers from the defect that at zero external field it does not reduce to the Debye formula, as it should. If a
Boltzmann distribution of the x and y components of the magnetization is assumed during collisions, the
absorption formula is modified and correctly reduces to the Debye formula. For a linearly polarized radio-
frequency field, one obtains as the absorption formula the sum of two terms LEq. (17)j.This again does not
reduce to the Debye formula. Introducing a Boltzmann distribution of magnetization during collisions one
obtains a corrected formula in which absorption does not vanish at low fields.

I. INTRODUCTION

XAMINATION of the macroscopic paramagnetic
~ absorption formula of Bloch' indicates that it does

not reduce to the Debye formula at zero field, as it
should and as experiment indicates, ' but instead predicts
zero absorption at zero 6eld. This suggests that it is
subject to the same restriction which troubles the
Lorentz theory of line broadening for a harmonic oscil-
lator which restriction was eliminated by the revision
carried through by Van Vleck and Weisskopf. ' We have
been interested in carrying through in detail a similar
revision of the Sloch equations. We consider the case
of a gas which is composed of a collection of dipoles
with v the mean time between collisions. Instead of the
harmonic oscillator treated by Lorentz and Van Vleck-
Weisskopf we follow the precessional motion of the
magnetic dipoles in the external held during and between
collisions as defined by their equations of motion.

II. THE CIRCULARLY POLARIZED CASE

If the dipole collection is placed in an external Geld

Hp in the. s direction and subjected to a circularly
polarized radio-frequency Geld in the plane at right
angles to s, the motion of each dipole is governed by the
following diGerential equations

dp, ~
=y[f„Ho+y+It siniot],

dt
(la)

='y[lsHt cosppf —li Hp] (1b)

dp,
='7[ figHt s&nppf —fi&Ht —coster],

dt
(1c)

' F. Bloch, Phys. Rev. 70, 460 (1946).
2 C. J. Gorter, Paramagnetic Relaxation

Company, New York, 1947).' J. H. Van Vleck and V. F. Keisskopf,
17, 227 (1945).
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where p is the constant magnetic moment of each
dipole, p, p„, p, are the components of p in the x, y, s

direction, H1 the amplitude of the rf 6eld, y the gyro-
magnetic ratio, co the angular frequency, and H,
=H1 cosmist, H„= —H1 since(, H, = the external field Hp.
A simple solution of (1) can be obtained by assuming
that p, =p„=0, p, =p, during collisions4 and that p, and
p„((p, between collisions. The latter assumption implies
that p, p so that p, may be considered constant.

The solution of these equations under the above
assumptions is

where

ge iut+g e iraot- —

IteiM t+g ei~ot

(2a)

(2b)

&=vHrfi. /(ido ip), o—io=vHo) fi+=u*+&lip,

p =p~ zpy.

If collisions are assumed to occur at the time t—B, then

p+ ——p, =0 at this time. Thus

g&—s(t—8) (coo—ci))
7

and Eqs. (2) become

—Ite—i(et[1 eio(a —(aa)]

fi =Ee+'"'[1—e 'P'" "'l].
(3a)

(3b)

To average the components of the magnetic moments
over varying times of last collision, assuming random
occurrence of collisions with the mean time r between
them, we multiply fi+ and p by (1/r) e "'and integrate
0 from zero to infinity. We thus obtain

r
"li+ ((io id p)'r' i (po

—ipp) r)— —
(li~) = e "dH =Ke- —

"o r & 1+r ((p—ido)

f fi— ((id —ipo) r +$(ip ioo)r)
(fi )= e "d8=Ee'"']-

~o r & 1+r (rp —
pop) )

4 Such collisions are known as strong collisions since the dipoles
have no memory of their orientation before collision (see refer-
ence 3). They are also assumed to be adiabatic (occurring in a
time short compared to the Larmor period). Kith these two
assumptions it is permissible to use, as we later do, a Boltzmann
distribution of magnetization during collisions.

1228



PARA MAGNETI C RESONANCE IN GASES

Here the angular brackets around y+.and p represent
their mean values, so that the total magnetization of
the collection of dipoles is obtained by multiplying the
mean value by S, the number of dipoles per cm'. Thus
the x and y components of magnetization M and N„
are given by the expressions

(Ht cosa&t)r(o;p —pp)+Ht sinut
=G)pgpT

1+r'(M p (o)'—

2i

(—Ht sin&et) r ((op—cp)+Ht cos(A=GOpgp T
1+r (Mp M)

From these and the relationship p,'+p„'+p, '=p', the
four constants of integration can be evaluated as

A =p(mrs/n', B=—a(t—0), C=pcs/n',

D = —2LLA/0)r.

substituting these back into (7) we obtain

p,,= (p/ns) (ppts coso8+6s),

S—8= (2is&rp/n) sinn8,

5+8= (2hpppr/ns) (cosn8 —1).

To obtain the mean value of these quantities we must
now average them over varying times of last collision
assuming again a random occurrence of collisions with
mean time r between them. Thus

1 2$corpr
(S—8)= -(S—8)e—P'de=

"p r 1+otsrs

where pp represents the static susceptibility. These are
similar to the 81och equations' with T2 replaced by 7..
Thus the imaginary portion of the susceptibility p" cor-
responding to the out of phase component of mag-
netization is given by

00

(5+8)= I -(5+S)e-'~ dt}=-
p 7

From these, since

26IJ,GOy7

1+nsr2

(5) we obtainX =gXWp~
1+r (Mp pp)

We now lift the restriction p„p„«p, (i.e., p,~p ).p

If the times between collisions are suKciently long this
restriction will not hold since p, , tM„, JM, can have all
values between +p. We transform Eqs. (1) by means
of the definitions'

COyP 7

(p.)= (sinppt —Ar cosppt),
1+n'r'

from which

(cop (cr) rHt cosppt+Ht sinppt

1+r (&gp u) +& HP rs
M, =.V&p.)=Xgopr (10)

into

p*+tpp=Se '"', o'=~i'+~', ~=a —~p, ~r=VHr, We thus note the appearance of the saturation term
y'H~'v-' as a result of lifting the restrictions on p, p„, p, .

dS/dt =iAS+i(harp„dp, /dt = sri(at (5 8). —
These have the solution

p, =A cos(crt+B)+C,
5—8= (2iAn/(ur) sin(ott+B),

5+8= (26A/cpt) cos(nt+B)+D,

(6)

(7)

III. THE LINEARLY POLARIZED CASE

If the radio-frequency field is linearly polarized, then
the equations of motion to be solved are

dpg/dt = "rppH p,

dpi'/dt= p(2p Ht cos(ot —p Hp),

where A, 8, C, and D are the constants of integration.
If we now assume that at time $—8, p =p„=O, p, =p,
then 5= (p +ip„)e'"&' "=0, and

p, =p=A cosLrr(t —(})+BfjC,
2iAo.

5—8=0= sin Ln(t —e)+B],

22 A
5+8=0=— —cosLn (t—fl)+B)+D

5 W. J. Archibald, Am. J. Phys. 20, 368 (1952).

with H =2H~ cosset, H„=O, and H, =Hp representing
the external deld. W'e again make the assumption that
collisions are frequent so that p,, p. If p+=p +ip„,
then (11) reduces to

dp+/dt+iyHp 2iypH, coapt. ——(12)
6If the saturation term is small compared:to 1 the previous

equation reduces to Eq. (4). It is of interest to ask what the
saturation term means in the collision broadening picture. Thus,
if in Eq. (7) one sets 6=0 (i.e., resonance), then n=yH& The time.
taken for p, to change from its extreme positive to its extreme
negative value is then I/yH~. If r&&1/pHz, collisions occur much
more frequently than the Rip frequency, thus preventing the
dipoles from diverging much from their collision values p, =p,„=0,
p, =p, and reducing the solution for M to that previously obtained
(i.e., Eq. (4)).
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The solution of this equation is

dt'(2~ytiHI cosMt')

(
Xexp( — iyHpdt" ~+CIe '""

TyHp cosMt+M sinMt
= 2$+pHy--- +C g i(dpi

(iPHo)'+M'
(13)

f P+
(ti+) = —e 8~'d8

Jo

C& may again be evaluated by assuming that @+=0 at
the time (t 8) T—hen.

2+pHy
ti+ —— {Mp cosMt —iM sinMt —

$Mo cosa&(t —8)
COO

—GP

8M—sinM (t—8)]e '""} (14)

and

gestive form

2MMor
X"=kX~or]

(1+r'(M 8+M)'&

1
xi +( 1+Tp(Mp —M)' 1+r'(Mo+M)')

Both the circularly and linearly polarized expressions
for g" thus vanish as the external Geld Bp or coo ap-
proaches zero, the linearly polarized one doing so much
more rapidly according to (17). Since neither formula
shows any zero Geld absorption as they should, the
assumption that the x and y components vanish during
collision appears to be the one to be modified. Assuming
a Boltzmann distribution for the x and y components of
magnetization after collision we correct CI in Eq. (13).
This correction to C& for the linearly polarized case, to
be added to the solution (14) is given by the expression

f
,

'

pe
—fJH c088'/kT COSo~dg

g J

2+pHy

7 COO GP

v.oro coscot —~r sin~t

gC&~
—&~o(t—8)

&
—

fJ,H cos8'/kTdQ

T (1+irMp)—coo CORot

(1+$TMp) +M T

—~0 singlet
(1+8TMp)'+M'r'

T (1+8TM p)
+8M SlnMt

(1+irM p)'+Mpr'

—Rv CORot (15)
(1+jrM )&+M2T&

The imaginary component of the susceptibility cari
now be evaluated using the ti, component of p~ in (15)
and the formula for the total absorption of energy per
unit volume per second

(g P t=2 ll / (87 (g p21l /40

Ao ——— H. dM= —
~

2x ~t=o 2% 0

gM 2 F/(al

2HI cosMtd(ti, )= 2HI'My".
2X 0

Substituting from (15) into the latter expression one
obtains for x".

X"=kX~or
~

(16)
&1+T'(Mo—M)' 1+r'(Mo+a)'&

which can be written in the equivalent but more sug-

2ypHg
cosM (t—8),

If this is averaged over 0 with the weighting factor
(1/r)e 81' we obtain

(Ati.)=Real Part
Xo+1

&i~(t—8)

vS &0

X (8kopp+ ~
—irap8) e 81rd8—

xoHI p (1/r) cosMt (Mp
—M) sinMt—

!
(1/r)'+ (Mo

—M)'

(1/T) cosMt+ (Mp+M) sinMtq

(1/T)'+ (M 8+M)'

where —pH coso' represents the potential energy of the
magnetic moment p in the fIeld H= 2HI cosM (t 8) and—
8' is the angle between p and the x axis. Thus

DCIe '""=(2xpHI/N) cosM(t —8)e '"p'.

A correction 2C2, corresponding to the integration
constant C2 in the solution of the equation de6ning p,
similar to that which defines p+, is given by

ACpe'""= (2xoHI/X) COSM(t —8)e' ".
The correction to p, is obtained by adding AC& and AC2,
i.e.,

Ati, = ', (ACIe '-"pi+ACpe'"")

(2xpHI/Ã) cosM(t 8) cosMp8.
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Since as the expression for the total absorption of
energy Ap indicates, only the sine terms in (Dp, ) con-
tribute to the absorption, we select those and obtain as
the correction to y" ..

o'p+ ppppp pp

(~X")= —pXpr!
&1+r'(ppp co)—' 1+rP (a&p+ pp)'&

yielding, when added to (16), the revised expression
for y".

I O&ll

O.l—

I I I I

In effect happ in the coeKcient of (16) has been replaced
by co and the sign between the two terms has been
changed. If now cop is allowed to approach zero, y"
approaches the expression:

x"=xp~r/(1+ r'~'),

which is the Debye formula for zero field absorption.
Figure 1 is a logarithmic plot, of the relative variation

Dg/g of g from its free spin value as a function of ppr,

obtained from Eq. (18) by maximizing y" as a function
of cops for constant cur. This is in conformity with
experiment, the field Pp=(op/7 being the variable
parameter used in determining the maximum of x" for
diiYerent constant frequencies co. 7. is assumed to be
constant over the observed range of frequencies and
field. hg/g is then defined as the deviation of ppp at
maximum y" from ~ divided by co. For cur) 1 an inverse
fourth power variation with cur is indicated. This di-
minishes as co~ approaches the value 1 and then increases
again when cov(1. Of interest is the disappearance of a
maximum in absorption when ur is less than 0.58.

No measurements have been made in paramagnetic
gases at low enough fields to check the above formula.
At this laboratory, 7 however, this variation of g as a
function of frequency at low 6elds, has been measured
in the free radical diphenyl-picryl-hydrazyl in the range
1&~r&2. The inverse variation of Dg/g with p&r was
found to be slightly larger than fourth power. This
appears to be consistent with the values indicated by
Fig. 1.

SUMMARY

An analysis has been made of the motion of magnetic
dipoles in a gas immersed in a magnetic field IIO and a

' A. H. Ryan and L. S. Singer (private communication).

0.0f-

Cb a~

0.00l—

O.OOOl
I I I I lilt

l.0
QJT

r i i I I ll

FH;. 1. Variation of g from the free-spin value. The slope measures
rl ln ag/g~1/(cur)"

cross rf held either circularly or linearly polarized. In
the first case, assuming zero x and y components of
magnetization during collision, the usual Bloch equa-
tion for absorption is obtained; in the second the dif-
ference between two Bloch type terms is found. Both,
however, predict no absorption at zero field. By as-
suming a Boltzmann distribution during collisions one
obtains for the linearly polarized case the sum of two
terms which show zero field absorption and reduce
correctly to the Debye formula. The absorption formula
thus derived predicts a change of g from the free spin
value varying inversely with cur from the fourth power
when cur) 1, decreasing as co7. approaches the value 1
and then increasing as cur sinks below i. This is verified
approximately for diphenyl-picryl-hydrazyl in the range
1 (zv'& 2.


