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Regarding multiphonon coherent scattering, the gen-
eral situation is again the same as in the case of long
incident wavelength: in each outgoing direction the
scattered neutrons have a continuous energy spectrum,
with singularities resulting from two-phonon processes
and occurring at energies which vary with direction.

It has been the main purpose of this paper to put in
evidence the direct relationship between the energy
changes of neutrons scattered by a crystal and the dis-
persion law of the crystal vibrations as expressed by
the to;(q) and g(co) functions. We hope to have shown

that energy measurements on scattered neutrons pro-
vide a new approach to the problem of determining
these functions from scattering data. While the few

experimental data so far available""" do not as yet
permit an analysis along these lines, the foregoing dis-

cussion indicates that further experimental work in

this field would be of considerable interest.

"B.N. Brockhouse and D. G. Hurst, Phys. Rev. 88, 542
(1952).I R. D. Lowde, Proc. Phys. Soc. (London) A65, 857 (1952)
and reference (34a).
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The mathematical procedure employed in recent exploratory calculations of the energy band structures
of the diamond and germanium crystals is described. Some of the symmetry properties of the eigensolutions
of diamond-type lattices and the construction of an approximate potential for the diamond crystal are
reviewed.

The relative order of the crystal eigenva]ues E~(k) for a particular k was found to depend more upon the
symmetry of the crystal potential than upon the detailed nature of this potential. On the other hand, the
curvatures of the energy surfaces calculated by perturbation theory were found to depend in a rather
critical manner upon the exact form of the crystal potential.

It would appear that more reliable estimates of the energy band structures of actual crystals can be
obtained with the aid of Herring s method of orthogonalized plane waves than by means of other approxi-
mational methods requiring comparable e6ort provided (1) reliable crystal potentials are employed, (2)
calculations are carried to the point where the eigensolutions are satisfactorily "convergent, " and (3)
eigensolutions for more than just the points of high symmetry in the reduced zone are investigated.

A more elaborate calculation of the energy band structure of the germanium crystal has been undertaken;
the work is now in progress.

I. INTRODUCTION

ECENT developments in the field of semiconductor
physics' ' have stimulated widespread interest in

the diamond-type valence crystals. Although the gen-
eral behavior of these crystals can be readily under-
stood in terms of simple phenomenological models, a
detailed knowledge of their energy band structures
should prove useful in many problems.

This paper describes the mathematical procedure
employed in recent exploratory calculations of the
electronic structures of the diamond'4 and germanium'

*This paper is based on a dissertation submitted in partial
fu1611ment of the requirements for the degree of Doctor of Phi-
losophy, in the Faculty of Pure Science, Columbia University,
January, 1953.

' W. Shockley, Electrons and Holes in Semiconductors (D. Van
Nostrand Company, Inc. , ¹w York, 1950).

Semi Conducting Materi-aLs, edited by H. K. Henish (Butter-
worths Scientific Publications, London, 1951).' F. Herman, Phys. Rev. 88, 1210 (1952).

4 F. Herman, Ph.D. thesis, Columbia University, January,
1953 (unpublished); available on micro6lm through University
Microfilms, University of Michigan, Ann Arbor, Michigan.

5 F. Herman and J. Callaway, Phys. Rev. 89, 518 {'1953).

crystals. The method of orthogonalized plane waves
(OPW), 6rst proposed by Herrings and already success-
fully applied to metallic lithium and beryllium, ' is
used here for the first time to study valence crystals.

The exploratory studies of diamond and germanium
have revealed some hitherto unexpected features in the
energy band structures of these crystals.

In particular, the lowest conduction band states at
the central point of the reduced zone in each case were
found to be triply degenerate, rather than nondegen-
erate, as earlier work on diamond"" and silicon""
had suggested. Moreover, by means of perturbation-
type calculations, it was found that the states normally

' C. Herring, Phys. Rev. 57, 1169 (1940).
r C. Herring, Phys. Rev. 55, 598 (1939).
8 R. H. Parmenter, Phys. Rev. 86, 552 (1952).
9 C. Herring and A. G. Hill, Phys. Rev. 58, 132 (1940).
"G.E. Kimball, $. Chem. Phys. 3, 560 (1935).
"A. Morita, Science Repts. Tohoku Univ. 33, 92 (1949).

A numerical error has recently been detected in this work by
J. C. Slater and G. F. Koster (see reference 18).

u J. F. Mullaney, Phys. Rev. 66, 326 (1944)."D. K. Holmes, Ph, D. thesis, Carnegie Institute of Technology,
1949 LPhys. Rev. 87, 782 (1952)j.
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occupied by electrons, i.e., the conduction band states
of lowest energy, did not occur at the central zone point
but along the six (1,0,0) axes somewhere within the
reduced zone.

In the neighborhood of each of these six energy
minima, the surfaces of constant energy were approxi-
mately ellipsoids of revolution. Since eigensolutions
associated with only a limited number of reduced wave
vectors were actually determined, the exact locations
along the (1,0,0) axes of these energy minima were
not deduced.

The present computations also indicate that the
valence states of maximum energy in both diamond
and germanium occur at the central point of the reduced
zone. In each case these states are triply degenerate.
Unlike some earlier results, ""each pf the four valence
bands in diamond was found to have finite width.

In view of the strong current interest in the exact
shape of the energy surfaces in the diamond-type
valence crystals, ""a more elaborate calculation of the
band structure of the germanium crystal has been
undertaken. The work is now in progress.

2. CRYSTAL EIGENFUNCTIONS AND EIGENVALUES

The electronic structure of a crystal can be deter-
mined by solving the Hartree-Pock equations for all
the states belonging to the core and valence bands and
the low-lying conduction bands. In the ground state,
a cyclic crystal of the diamond type containing M' unit
cells must have as many occupied states as there are
occupied states in the 2M' atoms forming the crystal,
namely, 2Z3P, where Z is the nuclear charge. These
2ZM' states can be arranged into Z—4 core bands and
4 valence bands. Each energy band contains M' doubly
degenerate states corresponding to the 3P allowed
values of the reduced wave vector k.

In actual numerical studies, it is not possible to work
with so many electronic states. Instead, one may con-
sider a limited number of eigensolutions which corre-
spond to a representative set of k uniformly distributed
throughout the reduced zone. (Since the reciprocal
lattice of the diamond-type crystals is body-centered
cubic, the reduced zone is the truncated octahedron
shown in Fig. 1.) For example, one might choose the
256 k forming the simple cubic lattice one octant of
which is shown in Fig. 2. Only 19 of these 256 reduced
wave vectors are nonequivalent because the reciprocal
lattice is invariant to the symmetry operations of the

e
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FIG. i. Crystal model shovring reduced zone.

crystallographic point group 0&. Thus, a reasonably
detailed picture of the form of a particular energy band
could be obtained by evaluating 19 crystal eigen-
solutions.

As a further simplification, one could evaluate the
energy eigenvalues and the slopes and curvatures of
the energy surfaces at certain points of high symmetry
in the reduced zone. The energy band structure could
then be deduced from these results. Since the approach
outlined in the previous paragraph represents a formid-
able computational task, the treatment just mentioned
was utilized. In the study of the germanium crystal
now under way, the eigensolutions at each ot the 19
nonequivalent points on the mesh shown in Fig. 2 and
listed in Table I are being determined.

"G. G. Hall, Phil. Mag. 43, 338 (1952)."W. Shockley, Phys. Rev. 78, 173 (1950); 90, 491 (1953).
"Portis, Kip, and Kittel, Phys. Rev. 90, 988 (1953)."E.¹Adams II, Phys. Rev. 92, 1063 (1953); E. M. Conweli,

Phys. Rev. (to be published).
' J. C. Slater and G. F. Koster, Quarterly Progress Report,

Solid-State and Molecular Theory Group, Massachusetts Institute
of Technology, July 15, 1953 (unpublished), pp. 6-10."J.C. Slater, Technical Report No. 4, Solid-State and Mo-
lecular Theory Group, Massachusetts Institute of Technology,
July 15, 1953 (unpublished), pp. 76—89.

FIG. 2. Crystal model of one octant of a 256-point mesh
representing the reduced zone.
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d= drar+dsas+dsas, (2 1)

where dI, d2, and d3 are integers and a~, a2, and a3 are
the primitive translation vectors of a face-centered
cubic lattice, i.e.,

al (0 2+ 2rr') a2 (2a o 2+) as (2+ s+ 0) (2 2)

The Born-von Karman cyclic boundary conditions can
be used to replace the infinite translation group (2.1) by
a finite translation group. The cyclic crystal is assigned
M' unit cells by restricting the integers d; (i= 1, 2, 3)
to the range —-', M&d;&+-,'M, where M is a large
integer.

Another invariant subgroup of O~', known as the
factor group of O~', is composed of 48 operations which
may be enumerated as follows. First, there are 24 pure
rotations about any lattice site. These form the crystal-
lographic point group Td, . Secondly, there are 24 com-
pound operations each consisting of three successive
operations: (a) a pure rotation of Td about any lattice
site, (b) an inversion about the same lattice site, and
(c) a nonprimitive translation ~= (a/4, a/4, g/4). All
other symmetry operations transforming the diamond
lattice into itself and not included in the factor group

The diamond lattice is formed from two interpene-
trating face-centered cubic lattices. As shown in Figs.
3 and 4, each lattice site is surrounded by four others
situated at the vertices of a regular tetrahedron having
the first site as center. The outlines of the unit cell are
indicated, though not in full, in Fig. 4.

The symmetry operations which transform the
diamond lattice into itself form a group known as the
space group O~'." One of the invariant subgroups of
Ozr is the (infinite) translation group defined by the
displacements

defined above can be resolved into two successive
operations, the first belonging to the above factor
group, and the second to the finite translation group
specified by the displacements (2.1) and the large
interger M.

Some of the symmetry properties of crystal eigen-
solutions of diamond-type lattices will now be reviewed.

Crystal eigenfunctions may be written in the form

X,(k,r) =e""'U,(k,r), (2.3)

TAsz, E I. List of nonequivalent reduced wave vectors
k=o '(k~, k2, ka) belonging to 256-point mesh. N(k) denotes the
number of distinct k that can be generated from the listed k by
the symmetry operations of Oz. W(k) is a weighting factor:
Z(nonequiv. k)N(k)W(k)=256. The eigensolutions for k
=a '(-,', -'„0)can be shown to be identical to those for k =a '(1,-'„-,').

4k' 4km 4kg

0 0 0
1 0 0
1 1 0
1
2 0 0
2 1 0
2 1 1
2 2 0
2 2 1
3 0 0

N (k) W'(k)

1 1
6

12
8 1
6 1

24 1
24 1
12 1
24 1
6

4k1 4k2 4k8 N(k)

3 1 0 24
3 1 1 24
2 2 2 8
3 2 0 24
3 2 1 48
4 0 0 6
4 1 0 24
4 1 1 24
3 3 0 12
4 2 0 24

where the functions U, (k,r) are required to have the
same translational symmetry as the crystal potential,
1.e.)

U, (k, r+d) = U, (k,r), (2.4)

where d is a direct lattice vector defined by (2.1).
y is a band identification index.

Crystal eigenfunctions associated with a particular
reduced wave vector k can be arranged into mutually
orthogonal sets."" The members of each set have

distinctive symmetry properties. The symmetry of a
crystal eigenfunction can be described in terms of the
symmetry operations which transform the reduced wave
vector k into an equivalent reduced wave vector k'.
(The reduced wave vector k' is said to be equivalent
to k if k'= k+h, where h is a reciprocal lattice vector,
or if k'=Rfk}, where E is a symmetry operation
belonging to the crystallographic point group Os.)

The collection of symmetry operations transforming a wave
vector k into an equivalent wave vector forms a group known as
the group of the wave vector k which may be denoted by the
symbol G{k).Let the number of symmetry operations belonging
to G(k) be g(k), the number of orthogonal sets formed by the
crystal wave functions be c(k), and the degeneracy of a member

~, i=1, 2, .c(k) be f;. In the language of group theory/4 f;
denotes the dimensionality of the irreducible representation (IR) i.

FIG. 3. Crystal model of diamond-type lattice.
~ F. Seitz, Z. Krist. 88, 433 (1934); 90, 289 (1935); 91, 336

(1935);94, 100 (1936).

~'Bouckaert, Smoluchowski, and Wigner, Phys. Rev. 50, 58
(1936).

~ F. C. Von der I.age and H. A. Bethe, Phys. Rev. 71, 612
{1947).

s' G. F. Koster, Phys. Rev. 89, 67 (1953).
~ Eyring, Walter, and Kimball, Quantum Chemistry (John

Wiley and Sons, Inc. , New York, 1944), Chap. X.
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Using the notation just developed, we may now classify~ the
crystal wave functions X&(k,r) according to the set of symmetry
types G;~(k), where the index i=1, 2, 3, c(k) and the index
j=1, 2, ~ f,(k). For the general point in the reduced zone,
g(k) =1, the identity operation being the only element of G(k).
The sole symmetry type is then GI'(k). For the central point of
the reduced zone, k=a '(0,0,0), g(k) =48, since each of the 48
members of the factor group of the space group Op,

' transforms
h=c '(0 0,0) into an equivalent wave vector. It can be shown2' ~5

that c(0,0,0) =10 and that there are 4 nondegenerate, 2 doubly-
degenerate, and 4 triply-degenerate irreducible representations
belonging to G(0,0,0).

Other typical points of high symmetry in the reduced zone are:
%=a '(1,0,0), the midpoint of a square face, where there are 4
doubly-degenerate IR; k= u '(-,', -'„-',), the midpoint of a hexagonal
face, where there are 4 nondegenerate and 2 doubly-degenerate
IR; %=a '(1,—,',0), a corner point on the zone surface, where there
are 2 doubly-degenerate IR; k=a '(-,', 4,0) and a '(1,—,', -', ), the
midpoints of edges on the zone surface, where there are 4 non-
degenerate IR.

Symmetry classification is also possible if k lies on lines or
planes of symmetry in the reduced zone. Thus, for k=u '(k, 0,0),
0 &k & 1, there are 4 nondegenerate and 1 doubly-degenerate IR;
for k=u '(k, k, k), 0&k&-.'„there are 2 nondegenerate and 1
doubly-degenerate IR; for %=a '(k, k,0), 0&k& 4,. there are 4
nondegenerate IR; for k=u '(1,k,0), 0&k&~&, there is 1 doubly-
degenerate IR; for k =a '(1,k, k), 0 &k & 4, there are 4 non-
degenerate IR; for k=u (k,—',,k,), k, +k, =1, —,'&k &1, 0&k, &~,
there are 2 nondegenerate IR; finally, for k lying on the plane
k, =0 or on the plane k =k„,there are 2 nondegenerate IR.

The energy E~(k) possesses certain important sym-
metry properties. E~(k) is invariant to any symmetry
operation which transforms the reciprocal lattice into
itself. Thus, E~(k+h)=Ev(k) and E~[R(k)]=E~(k),
where E is an operation belonging to the group O~.
The energy is a continuous function of k within the
reduced zone. If discontinuities in E„(k)es (unreduced)
k occur at all, they occur at the boundaries of a Brillouin
zone in the extended reciprocal lattice. "Since the four
valence bands are fully occupied in the ground state
and the lowest conduction band is separated from each
of these valence bands by a finite energy gap for all
values of the reduced wave vector, the diamond-type
crystals are insulators (diamond) or semiconductors
(silicon, germanium, grey tin). '

The principal objective of the present study is to
determine the form of the valence and conduction
bands, in particular, to find where in the reduced zone
the band limits occur. On the basis of symmetry
considerations alone, it is not possible to predict the
values of k for which the valence states of maximum

energy and the conduction band states of minimum

energy occur. Rather, it is necessary to solve the
Hartree-Fock equations, as will be described more fully
in later sections.

~~ The following discussion is based on the work of C. Herring,
J. Franklin Inst. 233, 525 (1942). Table XI of that paper is in
error. A corrected form of this table is available from Dr. C.
Herring. Dr. Herring has kindly called to the author's attention
a useful but unpublished manuscript by T. Sugita entitled "On
the representation of crystallographic space-group diamond-type
lattice. "

26 T.. Hrillouin, 8'ave Prop@gati orI, zrl, Periodic Structures
(McGraw-Hill Book Company, Inc. , New York, 1946).
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FIG. 4. Another model of diamond-type lattice. The transparent
rods indicate two interpenetrating unit cubes. All the hexagonal
and only a few of the triangular faces of the unit cell are shown.

It is instructive, however, to consider the energy
band structure of an "empty" diamond-type lattice,
i.e., the eigensolutions of a crystal having zero potential
but retaining its symmetry properties in ghost form.
These eigensolutions are the free-electron eigensolutions

X(h,k,r) = expL2z. i(h+k) r);
E(h,k) = (2w)'~ h+k j s,

(2.6)

where the energy bands are denoted by h instead of y
and k represents the reduced wave vector.

For the empty lattice, the energy profiles are para-
bolic, as indicated in Fig. 5. The "crystal" symmetry
introduces considerable degeneracy at k occupying
positions of high symmetry in the reduced zone. Since
various energy bands overlap, some accidental degener-
acies also arise.

If a perturbing potential having the symmetry of
the diamond lattice is introduced, producing a "nearly-
empty" lattice, many but not all the energy degen-
eracies are resolved. For example, the eightfold de-
generacy at h= a '(1,1,1) is decomposed into two
nondegenerate states and two triply-degenerate states.
In the notation of references 21, 22, and 25, these
correspond to symmetry types I'&, I'2 and I'», I'»,
respectively. The symmetry properties of the eigen-
solutions for the "nearly-empty" lattice, including the
degeneracies, can be deduced by standard group-
theoretical methods from the character tables given in
references 21 and 25.

As the perturbing potential is increased in strength,
so that it approaches the actual crystal potential, the
four valence bands are fully separated from the remain-
ing (conduction) bands. That the band limits do not
necessarily occur at the central point of the reduced
zone is suggested by the complicated structure of the
energy bands for the "empty" and the "nearly-empty"
lattices.
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3. CONSTRUCTION OF AN APPROXIMATE
CRYSTAL POTENTIAL

In the calculation of the electronic structure of a
crystal, there are two main problems. The 6rst, the
determination of a suitable crystal potential, is treated
in this section; the second, the numerical solution', of
the crystal wave equations, is discussed in the next
section.

As recently emphasized by Slater" and earlier pointed
out by Brillouin, " the Hartree-Fock equations for a
crystal may be written in the form

REDUCED WAVE VECTOR

FIG. 5, Energy profiles for "empty" diamond-type lattice.
The integers shown in and immediately alongside the diagrams
give the degeneracies of the various eigensolutions. Typical
crystal eigensolutions I see Eq. (2.6)g are listed in the abbreviated
form (hr+kr, ks+ks, ks+ks).

In the case of the "nearly-empty" lattice, the four degenerate
states marked (0,1,1) are resolved into two doubly-degenerate
sets, one belonging to the valence bands, the other, to the con-
duction bands. Similarly, the six degenerate states marked
(3/2, 1/2, 1/2) separate into a doubly-degenerate set of valence
band states, a doubly-degenerate set of conduction band states,
and two nondegenerate conduction band states.

where 0 denotes the volume of the unit cell (=a'/4)
and M'0 indicates the region of integration.

At the first stage of a self-consistent calculation, it is
necessary to construct a suitable crystal potential.
Similarly, in a less ambitious undertaking, where no
attempt is made to obtain a self-consistent set of
eigensolutions, an assumed crystal potential must be
employed. The physical reliability of investigations of
the second type depends in large measure upon how
successfully the actual crystal potential can be approxi-
mated at the outset.

We now describe how the crystal potential used in
the exploratory study of diamond'' was devised. In
the study of the germanium crystal, ' a similar procedure
was followed; however, an approximate exchange po-
tential was not included in the crystal potential for Ge.

In the study of diamond, a crystal model was con-
structed by arranging neutral carbon atoms in the form
of a diamond lattice having the experimental lattice
constant (a=3.5597A"). Each constituent atom was
assumed to be in the valence state, i.e., in the
(1s)'(2s)'(2P)' 'S state. This is the lowest state of the
free atom for which the four valence orbitals can be
hybridized into four tetrahedrally equivalent directed
orbitals.

The crystal charge density was then set equal to the
sum of the charge densities of each of the 2M' atoms
forming the cyclic crystal

Mg 2

pcrysta&elec(r) —P P patomelec(r d t~)
li 40=1

(3.3)

where the electronic charge density of a free carbon
atom was assumed to be

patom t '(r) =2LRts(r)]'+LRss(r)]'+3(Rs„(r)]'. (3.4)

In (3.3), the summation on d is taken over the 3P
direct lattice vectors of the cyclic crystal, the summa-
tion on co, over the two basis vectors ti= (a/8, a/8, a/8)
and ts ——(—a/8, —a/8, —a/8) locating the two atoms
in the unit cell. (In what follows, the origin of coordi-
nates is chosen at the midpoint of the unit cell. ) The
R„t(r)appearing in (3.4) are normalized radial wave
functions, i.e.,

L
—V' —Vcrystaty(k, r)]Xv(k, l) =Ey(k)Xy(k, r), (3.1)

where the crystal potential appropriate to the state
(k,p)& Vcrystat&(k, r), is assumed to contain all Coulomb
and exchange. terms. The crystal eigenfunctions of (3.1)
will be assumed normalized in the volume of the cyclic

"J.C. Sister, Phys. Rev. 81, 385 (1951).
ss L. Brillouin, J. phys. 5, 413 (1934).

These were obtained from Jucys' self-consistent field
calculations for the valence state of the free carbon
atom. "

~' II handbook of Clzemistry and Physzcs (Chemical Rubber
Publishing Company, Cleveland, Ohio, 1943), twenty-seventh
edition.

m A. Jucys, J. Phys. (U.S.S.R.) 11, 49 (1947).
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Since the tightly bound (1s) electrons are probably
not strongly affected by crystal formation, the core
contribution to the crystal charge density is undoubt-
edly given quite reliably by the approximation (3.3).
On the other hand, the valence contribution should be
somewhat different from that estimated by (3.3) be-
cause the valence states are modified by the bonding
associated with crystal formation. For the sake of
mathematical simplicity, no attempt to improve upon
(3.3) was made. Recent work by McWeeny" and by
Schmid" describes methods for obtaining improved
estimates of the charge densities of atoms in bonded
systems.

The crystal Coulomb potential (including the self-
Coulomb potential of the state under consideration) is
a periodic function and thus can be represented by a
three-dimensional Fourier series:

Uczre&uicoui(r) —P z(h)coui exp(2zrsh. r)
h

(3.5)

It is easily shown, by, expanding the crystal charge
density, in a similar form and applying Poisson's
equation, that the Fourier coefficients of the crystal
Coulomb potential are given by the following relations 3'

z(000)coul —g I p z elec(r)r&dr ry ~

~o
(3.6)

B[Z—f(h)) cos(2zrh ti)
(h)""'= y (3 7)

hP+hP+hP

For diamond, A'=1.3832, 8=0.7576; for germanium,
2 = 0.3446, 8=0.4767. Z is the nuclear charge and f(h)
the atomic scattering factor:

f(h) = patome "(r) exp( —2zrih r)dr. (3.g)

As before, h= a '(hi, hs, hs) is a reciprocal lattice vector.
Since the reciprocal lattice is body-centered cubic, the
three indices h~, h2, h3 must be chosen either all even or
all odd. According to the approximation (3.4), the
atomic charge density is spherically symmetrical.
Therefore, the following simplification may be made:

sin(2zr
I
h

I r)f(h) = 4zr puzom"" (r) r'dr. (3.9)
(2 Ihlr)

In writing Eqs. (3.6) and (3.7), it has been assumed
that the charge density per atom is spherically sym-
metrical. Even though experimental evidence" suggests
that this is not exactly the case, we elected to work
with Eqs. (3.6) and (3.7) since our numerical results

"R.McWeeny, Acta Cryst 5, 463 (1952)..
~ L. A. Schmid, Ph. D. thesis, Princeton University, July, 1953

(unpublished); Phys. Rev. 92, 1373 (1953).
zzH. Frohlich, Electronen Tjzeorie der Metalle (J. Springer,

Berlin, j.936).
zz R. Brill, Acta Cryst. 3, 333 (1950).

for f(h) obtained from Eq. (3.9) agree reasonably well
with Srill's experimental results" as well as with the
f(h) computed by McWeeny" using an atomic model
similar to our own.

Since the core charge density per atom is more
localized in the atomic cell than the valence charge
density, the core contribution to the Fourier coefficients
(3.7) decreases more slowly with increasing IhI than
the valence contribution. In fact, the valence charge
density plays a significant role in determining the
numerical values of the coefficients n (000)""',z (111)""',
and n(220)""' only.

If z(000)""' is not known exactly, as is certainly the
case, the energy separation between the core band
eigenvalues and the valence and conduction band
eigenvalues will be incorrectly predicted. Since the
separation between the core states and the lowest
valence states is about 20 rydbergs in diamond, an
incorrect value for z(000)""' would have a negligible
effect upon the calculated energy band structure itself.

I Because the top-most core states lie quite close to the
bottom-most valence states in germanium, the choice
of z(000)""' in this case is more critical. )

If the assumed crystal charge density leads to a
signilcant error in v(111)""', the calculated energy
band structure for diamond or germanium would be
seriously affected. According to our estimates, the
probable error in v(111)""'in each case is small enough
not to be troublesome but large enough not to be
entirely ignored. Finally, it would appear that the
probable error in v(220)""' is so small that it need not
be considered further.

In summary, then, we have obtained the Fourier
coefficients of the crystal Coulomb potential on the
basis of our crystal model. The need for such compu-
tations would disappear if very precise x-ray work could
be performed to yield unambiguous numerical values
for the atomic scattering factors, for then the v(h)""'
could be obtained directly from the experimental f(h)."

We must now attempt to devise some method for
estimating the potential acting upon a valence or
conduction band electron due to exchange effects.
Although general treatments of the exchange terms in
the Hartree-Fock equations for crystals have been
given, rigorous solutions have been obtained to date
only for the case of a free-electron gas. '~' In studies
of actual crystals, exchange effects have been taken into
account by various forms of the free-electron approxi-
mation. '9

"R. McWeeny, Acta Cryst. 4, 513 (1951). In this reference,
McWeeny does not include the e8ect of bonding as he does in his
later papers (see reference 31).

"The author wishes to acknowledge an illuminating conver-
sation with Professor Brill on this point."P.A. M. Dirac, Proc. Cambridge Phil. Soc. 26, 376 (1930)."F.Seitz, The Modern Tlzeory of Solids (McGraw-Hill Book
Company, Inc. , ¹w York, 1940), Sec. 75.

~ G. V. Raynor, Repts. Progr. in Phys. 1S, 173 (1952). This
excellent review article contains a very comprehensive survey of
energy band calculations for actual crystals.
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The factor of rsappears in front of pcrystalstec(r) because
only half the electrons in the crystal have the same
spin as the state under consideration.

The free electron exchange potential (3.10) is the
same for each state. Thus, the total crystal potential,

Vcrystaty(krr) = Vcrystat " (r)+ Vcrystat (r) (3.11)

is independent of k and y. In what follows, we will
replace the symbol V„„y,(tyk, r) by the more appropriate
symbol Vcrystat (r)

The numerical methods employed in calculating the
Fourier coe%cients of the total crystal potential, defined
by the relation

Vcrystal (r) =P n(h) exp(2mih. r),
h

(3.12)

are discussed inc detail in reference 4. To conserve space,
they will not be described here. The results indicate
that the exchange terms contribute to all the important
v(h) to the extent of about 10 percent of the respective
numerical values of the various n(h).

It is difBcult to estimate the reliability of the Slater
approximation for the crystal exchange potential.
According to Pratt's study of the Cu+ ion," the free-
electron approximation (3.10) leads to eigensolutions
about as good as one could obtain by solving Hartree's
equations except in the case of the is and the 3d states.
For these states, Pratt's eigensolutions based on (3.10)
are somewhat poorer and better, respectively, than the
solutions based on Hartree's equations.

In their work on beryllium, Herring and Hill esti-
mated that use of the free-electron approximation led
to a result for the total exchange energy correct to

'within about 6 percent. In his recent work on diamond,
Schmid" concludes that use of the same approximation
yields results having a still smaller uncertainty.

It would appear that further work is required in order
to establish on a firm quantitative basis the precision
with which the free-electron exchange potential can
represent the exchange potential appropriate to the
exact Hartree-Fock equations. "Also, the concept of a

' G. W. Pratt, Jr., Phys. Rev. 88, 1217 (1952).
st E. P. Wohlfarth, Phil. Mag. 44, 281 (1953).

In our study of diamond, we have employed a
technique recently discussed by Slater" and already
applied to a numerical study of the singly ionized
copper atom by Pratt. " According to Slater, the
exchange potential for an actual crystal can be repre-
sented to a good degree of approximation by the
exchange potential appropriate to a free electron gas
having the same local charge density at all points in
space as the actual crystal. Slater's expression for the
(approximate) exchange potential is

3 1
Vcrystat'"'"(r) = 6 ——pcrystat'"'(r) ry. (3.10)

4x 2

unipotentia1, 4' such as (3.11), assumed to be the same
for all states, deserves serious study.

For the present, however, we will make use of our
assumed crystal potential. Although this potential can
certainly be improved upon, we believe that it repre-
sents a reasonable approximation to the true crystal
potential.

4. NUMERICAL SOLUTION OF THE CRYSTAL WAVE
EQUATIONS BY THE OPW METHOD

A wide variety of numerical methods has been
proposed for determining the eigensolutions for a
periodic potential. Many of these have already been
applied to studies of actual crystals. " The method of
orthogonalized plane waves' was selected as the most
suitable for the investigations of the diamond and
germanium crystals for the following reasons:

(a) In studies based on the Wigner-Seitz-Slater
cellular method, 4' Slater's modified cellular method, 44

and certain forms of the scattering matrix method, ""
the potential within all or part of an atomic cell must
be assumed spherically symmetric. Since in diamond-
type crystals each atom has only four nearest neighbors,
it is desirable to avoid what may in fact be unrealistic
approximations. In the method of orthogonalized plane
waves, as in other methods employing Fourier series
representations of the crystal potential, " the cellular
potential may have any symmetry properties whatever.

(b) In calculations based on various forms of the
cellular method4' 44 and on methods utilizing difference
and integral equation formulations (see Appendix I),
special attention must be paid to boundary conditions.
On the other hand, since orthogonalized plane waves
automatically satisfy all the periodicity conditions
required by crystal symmetry, the numerical work
associated with the OPW method is considerably
simplified.

(c) It is difficult to estimate the mathematical and
physical reliability of the results of energy band struc-
ture studies not carried to the point where the eigen-
solutions are self-consistent in the Hartree-Fock sense.
However, by standard perturbation theory techniques,
it is possible (1) to estimate the truncation errors
associated with nearly convergent eigensolutions and
(2) to estimate the dependence of the results upon the
exact form of the assumed crystal potential. Such
calculations are particularly easy to execute in con-
junction with the OPW method.

(d) The computational labor required for the deter-
mination of a fixed number of crystal eigensolutions
would appear to be about the same whether the Wigner-
Seitz-Slater cellular method or the OPW method is
employed. On the other hand, the difference and

~ G. K. Horton anti R. T. Sharp, Phys. Rev. 89, 885 (1953).
~ J. C. Slater, Phys. Rev. 45, 794 (1934)."J.C. Slater, Phys. Rev. 51, 846 (1937)."J.Korringa, Physica 13, 392 (1947)."R. J. Harrison, Phys. Rev. 84, 377 (1951).
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In (4.1), fp(k, r—d —t„)is a localized orbital centered
at the lattice site specified by the direct lattice vector
d and the basis vector t„;bp(k, ~) is a phase factor.
It will be assumed that the imp(k, r) form an orthonormal
set and that the k dependence of the f~(k, r) may be
neglected. Thus, p~(k, r) =ip~(r) and

its *(r—d —t„)Pp(r—d —t„)dr
= 5 (P',P)8 (d', d) 8 (co',(u). (4.2)

In addition, it is assumed that the phase factors are so
chosen that the eigenfunctions (4.1) are normalized to
unity in the following sense

f
Xp*(k,r) Xp (k,r)dr = i.

'i M'0
(4 3)

Since there are two atoms per unit cell, (4.3) is satisfied
provided we set

~
bp(k, ca)

~

'=
2 for all P, k, and co.

Crystal wave functions for valence and conduction
band states are represented by linear combinations of
plane waves each of which has been orthogonalized to
all core wave functions (4.1) by the Schmidt process.
Writing the valence and conduction band wave func-
tions in the form

X (k,r) =g a (h,k) [(M'0): exp [2iri(h+k) r I

core
—Q A p(h+k)Xp(k, r)], , (4.4)

the orthogonality coeKcients As(h+k) are determined
by imposing the orthogonality conditions

Xs*(k,r)X (k,r)dr=0 (for all P and n), (4.5)
~ M3O

integral equations cited in Appendix I require consider-
ably more calculational effort. For practical numerical
computations, the OPW method appears to offer greater
convenience than localized orbital treatments" ""in
their present states of development.

We now describe how the problem of determining
the electronic structure of a diamond-type crystal is
formulated according to Herring's orthogonalized plane
wave method. We assume that a crystal potential has
been determined, for example, in the manner described
in the previous section, and that V,„~,i,i(r) has been
expanded as a three-dimensional Fourier series (see
Eq. (3.12)]. In what follows, the band index for core
states will be represented by P and the band index for
valence and conduction band states by 0..

According to the OPW method, crystal wave func-
tions for core states are expressed as linear combinations
of suitably chosen atomic orbitals, i.e.,

M3 2

Xs(k,r)=M &P e' '"'~P bs(k, ~ps(k, r—d —t„).(4.1)

whence
2

Ap(h+k)= P by*(k,~) expr 2iri(h+k) t„]
f

X Pp*(r) exp)2iri(h+k) r]0 'dr. (4.6)

In the OPW expansion (4.4), the a (h, k) are (as yet)
undetermined linear coefficients; the summation on p
is taken over all core bands whose spin assignment is
the same as that of the state under consideration; the
summation on h ranges from h= (0,0,0) over all
reciprocal lattice vectors h having moduli less than
some ~h~,„.Finally, let us denote by Ethe numb'er

of orthogonalized plane wave terms admitted to the
expansion (4.4).

To obtain approximate core eigenfunctions, the
atomic orbitals fp(k, r) may be replaced by the corre-
sponding (normalized) free atomic orbitals y„i (r).
For the core states, the band index P may now be
replaced by the four indices n, l, m, p, where p is a
parity index which may have the values +1 and —1.
If negligible overlapping occurs between atomic orbitals
centered on diferent lattice sites, as is actually the
case, the phase factors bs(k, &o) may be set equal to
&1/K2, the choice of sign depending upon the indices
/, p, and co. For a particular choice of the set n, l, m,
two nonequivalent crystal wave functions may be
formed using the relation (4.1), these being distin-
guished by the parity index p. For the special case
k= (0,0,0), the crystal wave functions corresponding
to p=+1, —1 are even and odd, respectively, with
respect to inversion about the midpoint of any unit cell.

To this degree of approximation, each of the states
belonging to a particular core band has the same energy
eigenvalue. In addition, core states constructed from
different indices m and p but from the same indices n
and l are degenerate. Denoting the crystal potential
appropriate to the core band P by V„~„,P(r), we may
write

pni *(r)L & Vcrystal~(r)]y~i~(r)dr. (4.7)
~atomic

cell

As a rough approximation, Ep ——E ~, where E„~,the
free atomic energy eigenvalue, is defined by

E„i—— ~q „i„*(r)[—V' —Vf„,"' (r)]y„i~(r)dr (4.8).
atom

On the second cycle of a calculation employing self-
consistent iteration, the approximation that Ep ——E„~
must be abandoned in favor of more reliable values for
Ep(k). Although it is reasonable to expect that the
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~II(h' h'k) —E(k)J(h' h'k)
I
=0 (4.9)

where the matrix elements are defined as follows:

H(h', h;k) = (27r)'lh+k~'8(h', h) —s(h —h')

core

+ P ~Ep(k) ~Ap*(h'+k)Ap(h+k); (4.10)

core

J(h', h;k) = 5(h', h) —Q A p*(h'+k)A p(h+k). (4.11)

In these expressions, h' denotes the row and h the
column of the matrix elements of H(k) and j(k).
8(h', h) is the usual Kronecker delta function.

Because orthogonalized plane waves do not form an
orthonormal set, the energy parameter E(k) appears
on the oG-diagonal matrix elements of the secular
determinant (4.9), as may be seen from the relation
(4.11).In actual numerical calculations, one may reduce
(4.9) to the canonical form LE(k) appearing only on
main diagonal) by finding the inverse matrix J '(k)
and then premultiplying the matrix equation (4.9) byJ '(k). In setting up a calculation in this manner,
about as much computational labor is required to obtain
the inverse matrix J—'(k) as to evaluate the eigen-
solutions of the canonical form of (4.9). We will not
discuss computational details here except to say that
the actual work was carried out with the aid of the IBM
Calculating Punch 602A using iterative matrix multi-
plication schemes. '~"

In the matrix element (4.10), (2sr)'~h+k~' is the
(repulsive) kinetic energy term, v(h —h'), the (attrac-
tive) potential energy term. The remaining terms
represent a (repulsive) pseudopotential arising from the
orthogonalization.

In general, it is found in actual studies' ' that the
orthogonality terms nearly cancel the potential energy
terms. Consequently, the oG-diagonal matrix elements
in (4.10) are considerably reduced in absolute magni-

"G. C. Fletcher, Proc. Phys. Soc. (London) A65, 192 (1952)."W. M. Kincaid, Quart. Appl. Math. S, 320 (1947).
4' H. E. Fettis, Quart. Appl. Math. 8, 206 (1950).IP. S. Dwyer, Linear Combinations (John Wiley and Sons,

Inc., ¹w York, 1951), Chap. 15.

most tightly bound electrons give rise to energy bands
having zero width, it is likewise to be expected that the
least tightly bound core electrons in a crystal, such as
the (3d) electrons in germanium, produce energy bands
having finite width. Recent work by Fletcher" on the
(3tE) bands in nickel indicates a possible approach to
the problem of obtaining an accurate representation of
the eigenstates of the loosely bound core states. In the
present work, such refinements were not attempted.

As erst shown by Herring, ' the energy eigenvalues
E(k) and the components of the eigenvectors X (k,r)
can be determined by evaluating the Eth order determi-
nantal equation:

tude by the orthogonality process. It is thus possible to
represent a crystal wave function by considerably fewer
orth, ogonalized plane waves than by ordinary plane
waves. In the latter case, there are no orthogonality
terms present. Thus, extremely high order secular
determinants must be solved before satisfactorily con-
vergent eigensolutions are obtained.

From another viewpoint, ' ' the atomic orbitals
appearing in the OPW's (4.4) account for most of the
atomic-like behavior which a crystal wave function
exhibits in the neighborhood of the crystal nuclei. The
remaining portion of the crystal wave function, being
relatively smooth, can be represented by a reasonably
small number of plane wave terms.

The partial cancellation of the potential energy terms
by the orthogonality terms has its disadvantages,
Unless both the crystal potential and the core eigen-
solutions are known with considerable precision, the
off-diagonal matrix elements cannot be accurately
determined. In the work on diamond' ' and germanium, '
it was found that one significant figure was lost in the
o8-diagonal matrix elements as a consequence of this
partial cancellation. Because there are more core states
in the germanium crystal than in the diamond crystal,
there are also more orthogonality terms. For this reason,
the cancellation was more complete in germanium than
in diamond. However, this is not necessarily the general
rule.

Even though the OPW method converges more
rapidly than the straightforward Fourier series meth-
od," very high order secular determinants must be
evaluated if reliable results are to be obtained. It is
therefore essential to simplify the problem by taking
full advantage of the symmetry properties of the crystal
eigensolutions.

We now focus our attention on the eigensolutions
corresponding to those reduced wave vectors which
occupy positions of high symmetry in the reduced zone.
These eigensolutions may be arranged in mutually
orthogonal sets, as noted earlier. The $&&E secular
determinant for a particular k may then be factored
into c(k) separate secular determinants, one for each
irreducible representation in the wave vector group
G(k). If a certain IR is f-fold degenerate, the corre-
sponding (separated) secular determinant may be
additionally factored into f identical and separate
secular determinants. Thus, instead of solving one
very high order secular determinant for each k investi-
gated, it is necessary only to evaluate several relatively
low order secular determinants.

To factor the S'th order secular determinant for a
particular k, the linear combinations of orthogonalized
plane waves belonging to the various symmetry types
G;t(k) must be found. This is accomplished by applying
standard group-theoretical methods. '4 Some typical
"symmetrized" orthogonalized plane waves are listed
in Table II.

It is easily shown that the core wave functions
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arising from s, P, and d atomic orbitals belong to the
irreducible representations (Ft,I's ), (Fss,r»), and
P'». ,1'»,1'»,I'» ), respectively, at k= a '(0,0,0). Conse-
quently, the triply-degenerate valence band state I'»
and the lowest triply-degenerate conduction band state
I'» are automatically orthogonal to all the core states
in the case of diamond but not in the case of germanium. .

For states automatically orthogonal to all core states,
all the orthogonality terms in the symmetrized OPW's
vanish identically and the OPW method becomes fully
equivalent to the ordinary Fourier series method. '

As suggested to the author by Herring, " it is
possible to treat such cases as follows. To the sym-
metrized (ordinary) plane wave expansion, a suitable
set of atomic orbitals is added. Each atomic orbital is
required to behave properly near the nucleus, have the
appropriate symmetry properties in the atomic cell,
and vanish within half an interatomic spacing of its
center. Since both the atomic part and the plane wave
part are separately orthogonal to all core wave func-
tions, the augmented plane wave expansion is itself
orthogonal to all core wave functions.

In the study of diamond, '4 augmented. plane wave
expansions were not employed since it was thought
worthwhile to study the convergence of the ordinary
plane wave expansions for these special states and then
compare this behavior to the convergence of the OPW
expansions for the remaining states. In retrospect, it
appears that use of the augmented plane wave expan-
sions would have been desirable since the ordinary
plane wave expansions converged very slowly. On the
other hand, as already noted in the earlier announce-
ment, ' the convergence of the OPW expansions con-
taining nonvanishing orthogonality terms was quite
1apld.

After determining the crystal eigensolutions for k
occupying positions of high symmetry in the reduced.
zone, the slope and curvature of the energy surfaces
passing through these points were calculated by a well-
known perturbation method. """The eGect of the 4
valence bands and the 10 lowest conduction bands was
included in the calculation leading to the curvatures of
the various energy surfaces at the central point of the
reduced zone. The apparent discrepancy between the
form of our estimated energy bands and those recently
obtained by Slater' might arise from the fact that
Slater considers an energy band system containing four
valence bands and only four conduction bands.

5. DISCUSSION OF RESULTS

In judging the reliability of the results, ' ' three
factors must be kept in mind. First, the calculations
were based on assumed crystal potentials. Secondly,
the eigensolutions obtained were nearly but not fully
"convergent. "Finally, the energy band structures were

"C. Herring (private communication).
ss F. Seitz, Phys. Rev. 47, 400 (1935).
sr W. Shockley, Phys. Rev. 78, 173 (1950).

TAsLE II. Typical linear combinations of orthogonalized lane
waves belonging to some of the symmetry types of G(0,0,0 and
G(1,0,0). The column headings of the form P; and X; denote
irreducible representations in the notation of references 21 and 25.
The various symmetry tvpes are also expressed in the form G;7'.

In this table, each row corresponds to a particular orthogonalized
plane wave. Each orthogonalized plane wave [see the bracketed
quantity in Eq. (4.4)] is shown in the abbreviated form [h&+k& h2

+k2 h3+k3). To illustrate the notation, we write out in full the
three leading terms of the crystal wave functions belonging to
symmetry type GP(1,0,0):
X&'(100,r) =of(100)[100)+o&'(011){[011)—[011)+[011)

+[011]}+a/(120){[120)[120)+[102) [102]}.
In this expression, the aP(h+k) are undetermined linear coeffi-
cients.

(h+k j
1"1 F2~

G11 G&I

1'25r l'Ie
Gs' GP Gs' G4' G4' G48 G81 Gss

[00 0] +1
[111]
[1 11]
[111]
[111)
[1 1 1]
[111]
[1 1 1)
[11 1]

+1 +1
—1 —1
—1 —1
—1 —1

+1 —1
—1 +1
—1 +1
—1 +1

+1 +1 +1 +1 +1
+1 +1 —1 +1 +1
+1 —1 +1 +1 —1
—1 +1 +1 —1 +1
+1 +1 +1 -1 —1

+1 +1 —1 —1 —1

+1 —1 +1 —1 +1
-1 +1 +1 +1 —1

+1
—1

+1
+1
—1

+1

—1

[2 0 0)
[02 0]
[00 2]
[2o o]
[02 0)
[00 2]

+1 0 0 +1
+1 0 +1 0
+1 +1 0 0
—1 0 0
—1 0 —1 0
—1 —1 0 0

+2 0—1 +1—1 —1
—2 0
+1
+1 +1

t h+k1

[1 0 0]
[100]

[o1 1]
[o 11)
[011]
[01 1]
120]
1 2 0)
12 0]
1 2 0)
10 2g
102)
10 2]
102)

Xi
G11 G12

+1 0
0 +1

+1 +1
—1 —1

+] —1

+1 —1

0 +1
0 —1

+1 0
—1 0

0 +1
0 —I

+1 0
—1 0

Xs
G&1 G22

+1 0—1 0
0 +1
0 —1

0
11 0

0 —1

0 +1

Xs
G31 G82

0 +1
0 +1

—1 0
—1 0
+1 0
+1 0

0 —1

0 —1

x4
G41 G42

+1 0
+1 0

0 +1
0 —1

+1 +1

+1 +1
+1 +1
+1
+1 —1

+1 —1

+1

deduced from the energy eigenvalues, the estimated
slopes and the estimated curvatures of the energy
surfaces at a limited number of points in the reduced
zone.

Since it does not appear possible to determine in any
simple manner how closely the assumed crystal po-
tentials approximate the actual crystal potentials,
certain auxiliary calculations were performed. In these,
the assumed potentials were modified slightly and new
sets of crystal eigensolutions determined by perturba-
tion theory. The range of allowed variation of the
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crystal potential was &0.1e~~~, a reasonable measure of
the major uncertainty in the assumed potentials.

It was found that these changes in the assumed value
of v»& altered the various energy eigenvalues consider-
ably. The magnitude and direction of these shifts of
E (k) depended upon the symmetry type of the eigen-
solution in question as well as upon the order of the
secular determinant from which E (k) was obtained.
Fortunately, the relative order of su%ciently convergent
eigenvalues at k= (0,0,0) did not change as a result of
these arbitrary modifications of n~~~. It appears safe to
conclude, therefore, that the lowest conduction band
states at the central zone point in diamond and ger-
manium are the triply degenerate states I'» rather
than the nondegenerate state F2 even if our assumed
crystal potentials are slightly in error. The recent work
of Slater and Koster, " reported in detail by Slater, "
offers additional support to our conclusion in the case
of diamond.

On the other hand, the curvatures of the energy
surfaces at k= (0,0,0) were found to change only under
large modifications of the assumed potential in diamond
but under relatively small modifications in germanium.
Thus, it appears that the predicted energy band struc-
ture of germanium is much more sensitive to the
physical assumptions than that of diamond,

The convergence of the crystal eigensolutions was
rapid for all eigenstates in germanium and for the
eigenstates in diamond which were not automatically
orthogonal to all core states. Thus, the eigenvalues for
these states could be obtained to at least two significant
figures by solving eighth-order secular determinants.

The valence state I'25 and the conduction band state
I'» in diamond required special attention because these
symmetry types were not represented among the core
states. The eigensolutions of 16th-order secular determi-
nants for these states were neazly but not fully conver-
gent. The secular determinants for these symmetry
types were set up to 24th and even higher orders and
solved by perturbation theory using the 16th-order
eigensolutions as the "unperturbed" eigensolutions. In
this manner, the truncation errors for the 16th-order
eigensolutions were found to be not more than a few
percent.

The present work indicates that the estimated curva-
tures depend critically upon the numerical values of
the crystal eigensolutions and thus in turn upon the
exact form of the assumed crystal potentials. Although
the use of slope and curvature information to predict
the shape of the energy bands reduces the magnitude of
a computation considerably, the results are not to be
trusted to the same extent as those leading, for example,
to the relative order of the eigensolutions at a particular

A more detailed investigation of the energy band
structure of the germanium crystal has been under-
taken. In the study now in progress, an approximate
exchange potential is included in the assumed crystal

potential in addition to an approximate Coulomb
potential. Some refinements have been introduced in
order to improve the initial choice of the crystal
Coulomb potential. Considerable pains are being taken
to insure that the initial set of core eigenstates approxi-
mate the actual state of affairs closely. Instead of
relying upon curvature calculations, the energy band
structure will be deduced in the new work by deter-
mining the eigensolutions at each of the reduced wave
vectors listed in Table I.

APPENDIX I. DIFFERENCE AND INTEGRAL
EQUATION METHODS

The unit cell of the direct lattice can be represented
by a set of points u arranged in some convenient array.
All physically interesting quantities such as the crystal
potential and the crystal wave functions are defined
only at these points u. Let us assume that the crystal
potential is known. Then, with the aid of the variational
principle, we seek to determine the set of values
X~(k,u), one for each u, for which the energy

E,(k) =
P X,*(k,u) L

—|72—U,...t,t&(k,u) JX,(k,u)

P X,*(k,u)X, (k,u)

is a minimum, subject to two conditions: First, the
crystal wave function must satisfy the periodicity
properties imposed by crystal symmetry, and secondly,
the crystal wave function must be orthogonal to all
crystal eigenfunctions having lower energies and the
same reduced wave vector k.

The crystal eigenvalue problem thus formulated can
be solved, in principle, by difference equation methods
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exemplified by systematic iteration, ""relaxation, ""
or dynamical analogs" or by various iterative integral
equation techniques. " Unfortunately, even if the
crystal symmetry properties are fully exploited, reliable
results can be obtained only if extremely fine meshes are
employed.

"G.E. Kimball and G. H. Shortley, Phys. Rev. 45, 815 (1934)."J.B. Scarborough, Numerical Mathematical 4na. lysis (The
Johns Hopkins Press, Baltimore, 1950), second edition, Chap. XII.

'6 R. V, Southwell, Relaxational Methods in Theoreticat Physics
(Oxford University Press, London, 1946).

"G. Kron, Phys. Rev. 67, 39 (1945).
is W. A. Bowers, Phys. Rev. 82, 766 (1951);D. Slepian, Ph. D.

thesis, Harvard University, Sept. , 1949 (unpublished); M. Dank
and H. B. Callen, University of Pennsylvania Technical Report
No. 4, September, 1951 (unpublished); M. Dank, University of
Pennsylvania Technical Report No. 2, December, 1952 (unpub-
lished).

A rough estimate of the number of nonequivalent
mesh points u required for satisfactory convergent
eigensolutions may be made as follows. First, assume
that the crystal eigenfunctions for the valence and low-

lying conduction band states resemble atomic (2s)
orbitals in any atomic cell. Secondly, assume that the
interval of a suitable mesh at a distance r from the
nucleus is approximately equal to the corresponding
interval used in tabulating the (2s) radial wave func-

tions in Hartree-Fock computations. The number of
nonequivalent u of a mesh thus constructed is found

to be so large that calculations by the methods just
described appear to require the aid of the largest
automatic computing machines now available.
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The Schwinger variational method for three-body collisions is applied to the calculation of elastic scattering
of electrons by hydrogen atoms in the energy range 0—i0 volts. When a Born trial Geld is used, the contribu-
tions of the ground state and all the excited states including the continuum can be calculated. The former
contribution is equivalent to the static field approximation and the latter contributions give the corrections
to it. When these are included, the results do not agree with those of Massey and Moiseiwitsch who use a
different approximation. We conclude that the Schwinger variational method with a Born trial Geld is un-

satisfactory in this energy range.

I. INTRODUCTION

'PROBLEMS involving elastic three-body collisions
present two complications not encountered in two-

particle scattering problems. The first is the polarization
of the charge distribution of the scatterer by the in-

coming particle. The second is the phenomenon of ex-
change scattering, in which the incoming particle and
one of the particles of the scatterer exchange roles after
scattering. This is especially complicated when these
two particles are identical, and thus, by the Pauli
principle, there are interference terms in the scattering
cross section between the direct and the exchange
scattered wave.

Heretofore, three-particle scattering problems have
been treated by the Born approximation, ' by a static-
field approximation, ' and by a generalization of the
Hulthen' variational method which is due to Kohn. '
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The first of these methods is not likely to be very accur-
ate at low energies. The static-field approximation, by
its very nature, cannot treat the complications men-
tioned above. In using the last method, one can include
the eGect of polarization and exchange by suitable
choice of trial function.

Recently, the Schwinger variational method has been
extended to cover three-particle collisions. 4 In principle
this method has the advantage that cruder trial
functions could be used, since some of the features of the
problem (polarization e6ects, for example) are auto-
matically taken into account when one iterates the
trial solution with the Green's function of the unper-
turbed problem. This advantage is part of the limitation
of the method, since the integrations involving the
Green's function are extremely dificult to carry out.

In the present paper, we shall apply this last method
to the elastic scattering of slow electrons by hydrogen
atoms. This particular problem has already been treated

by several diGerent approaches. It has been solved ap-
proximately by the Kohn-Hulthen method. ' It has been
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