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A Stokes-Parameter Technique for the Treaunent of Polarization in Quantum Mechanics
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A technique is presented orhigh adapts the Stokes method to quantum mechanics and serves to calculate
polarization eRects by means of Pauli matrices. Illustrative examples indicate that this technique may be
not only convenient mathematically but also physically more transparent than previous methods.

1. INTRODUCTION

HE treatment of the polarization of electro-
magnetic radiation in terms of Stokes parameters'

has been drawing increased attention, probably because
it relies on operational concepts and therefore is par-
ticularly suited to quantum physics. ~ Recent successes
in experimenting with the polarization of high-energy
radiations have stimulated theoretical studies of polar-
ization effects and thereby increased the desirability of
more powerful techniques for these studies.

No general technique for the quantum-mechanical
application of the Stokes method seems to be available
in the literature, even though the ideas of this method
are being utilized by an increasing number of workers.
Since such a technique is in fact amenable to a rather
simple formulation, it may be worthwhile to present it
in this paper. The method constitutes no more than a
transcription of established quantum mechanical theory.
A few very simple examples will illustrate the operation
of the technique.

2. THE STOKES PARAMETER METHOD

(a) Stokes Parameters

The intensity and the kind and degree of polarization
of a beam of light (or other electromagnetic radiation)
can be represented by four parameters as follows.
Take two orthogonal unit vectors Ar and As perpen-
dicular to the beam direction as a frame of reference.

The parameters are:

linear polarization A& and the intensity transmitted by
the "opposite" filter which accepts As,

(3) the difference Is between the light intensities
transmitted by a 6lter which accepts the linear polar-
ization (A&+As)/v2 and by the opposite filter;

(4) the difference Is between the intensities trans-
mitted by a Alter which accepts circular polarization
rotating from A& to As and by the opposite filter.

For convenience in the following applications we

write
I1=IpPg) I2=IpI'b E3=IpI', 0)

and regard the set of parameters as a four component
vector Io(1, P), where P= (I'r, Ps, I'„) is a vector of the
three-dimensional Poincare representation, which de-

scribes the kind. and degree of polarization (P &1).4

(b) Density Matrix

Since two independent states of light polarization
constitute a complete set, the quantum-mechanical
treatment of polarization is mathematically equivalent
(isomorphic) to the treatment of the orientation of a
spin ~ particle. Therefore the density matrix which

represents the polarization state of a light beam accord-

ing to quantum mechanics is a 2X2 matrix, which can
be resolved into the sum of a unit matrix X and of Pauli
matrices (&ur, cor, co„)= ra. (These matrices are taken in

the usual representation, with oor diagonal. ) The coeffi-

cients of this sum are the Stokes parameters and we

write the density matrix' in the form

&= sIs(&+P.~)

(c) Response of a Light Detector
(1) the total light intensity Io.,
(2) the difference Ir between the light intensity

transmitted by a filter (Nicol prism) which accepts the

' G. G. Stokes, Trans. Cambridge Phil. Soc. 9, 399 (1852).
~ See, e.g., U. Fano, J. Opt. Soc. Am. 39, 859 (1949).
s Hoover, Faust, and Dohne, Phys. Rev. 85, 58 (1952) (double

Compton scattering}; E. Bleuler and H. L. Bradt, Phys. Rev.
73, 1938 (1948); R. C. Hanna, Nature 162, 332 (1948); C. S. Wu
and I. Shaknov, Phys. Rev. 77, 136 (1950); F. L. Hereford,
Phys. Rev. 81, 482, 621' (1951) (sll on polarization of annihilation
quanta); F. Metzger and M. Deutsch, Phys. Rev. 78, 551 (1950)
(polarization-direction correlation of gamma-quanta); A. P.
French and J. O. Newton, Phys. Rev. 85, 1041 (1952); S. B.
Gunst and L. A. Page, Phys. Rev. 92, 970 (1953) (polarization
by transmission through magnetized iron); F. L. Hereford and
J. P. Keuper, Phys. Rev. 90, 1043 (1953) (polarization effects in
photoelectric eRect); K. Phillips, Phil. Mag. 44, 169 (1953)
(polarization of bremsstrahlung); D. H. Wilkinson, Phil. Mag.
43, 659 (1952);L. W. Fagg and S. S. Hanna, Phys. Rev. 88, 1205
(1952) (polarization analysis by deuteron disintegration).

1

A detector that serves as a polarization analyzer

responds to light of diferent polarizations with diBerent
eKciency. Maximum and minimum efFiciencies e~ and

e correspond to completely polarized beams which

have opposite polarizations with Poincare vectors P
equal, respectively, to Q and —Q (Q=1). Quantum-

mechanically, the detector is represented by an operator
with the eigenstates Q and —Q and with the eigen-

4 Unitary transformations of the frame of reference (A~, Ag) are
accompanied by rotations of the Poincare axes (g, $, g}. The
formalism described in this paper is independent of the choice of
the frame of reference.

'The equivalence between the Stokes parameters and the
density matrix has been pointed out by D. L. FalkoR and J. E.
Macdonald, J. Opt. Soc. Am. 41, 862 (1951).
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values ~~ and e, i.e., by the matrix'

&=-', L(esr+e )I+(en —e )Q to]. (3)

(d) Probability of Interactions with Matter

The calculation of photon emission, absorption, and
scattering will be adapted to the Stokes formalism in
close analogy to a well known technique for calculating
the collisions of free Dirac electrons. ~ The quantum-
mechanical expression of interaction probabilities is
usually proportional to the square of a perturbation
matrix element Vf; which relates to the transition from
an initial state i to a 6nal state f If the in. itial and/or
final states are not "pure states" (e.g. , not completely
polarized), the transition probability is proportional to
a sum +~*P,*I Vf, I'; the asterisks indicate that the
sums must be carried out according to rules implied by
the statement of the problem (e.g. , over both photon
polarizations if the polarization is irrelevant to the
problem).

The perturbation matrix element Uf; for an inter-
action of photons with matter is a linear function of the
polarization vector A, for any incident radiation and of
the polarization vector Bft for any outgoing radiation
(the dagger denotes Hermitian conjugation). In turn,
A; may be expressed in terms of unit polarization
vectors A (n= I, 2) of the incident radiation and of a
two-component wave function a;,s A, =g a, A;
similarly Bft Qpfif ptB. p

When the Pf*P,*I U~, I' is formed, the P;*may be
factored out as P,*a, a, t and constitutes in fact the
density matrix (2) of the incident radiation,
=P,*a, a, t. Similarly the Pf*b~pb~pt may be fac-
tored out and regarded as the matrix (3), Op p, of an
ideal detector which accepts outgoing radiation with
the kind and degree of polarization specihed in the
statement of the problem.

In a scattering problem, which involves both incident
and outgoing radiation, the perturbation matrix element
U~, is a linear function of both B~t and A;. It can be
expressed as

v, ,(B,t, A,)=gp P. f„tv(Bp, A.)a... (5)
6 If Q points along |,the matrix (3) is clearly diagonal with the

stated eigenvalues; otherwise the diagonal form is achieved by a
unitary transformation of (A&, A2), i.e, , by a rotation of u.

~ See, e.g. , W. Heitler, QNaetlnz Theory of Radiatiori, (Oxford
University Press, London, 1944), second edition, p. 15k ff. The
operator (Hs+Epl/4Ep of Eq. (27) of this reference represents,
for unpolarized electrons of positive energy, the density matrix 8
which appears in (6); the operator {II+8)/2E represents a
detector 0 which accepts only positive energy electrons with any
spin orientation.

In the second quantization formalism, a; represents a
destruction operator.

The probability of response of this detector to a
light beam with the density matrix (2) is given by the
trace of the product of the matrices (2) and (3), namely,

Tr(nS) =~IsL(esr+e„)+ (e~—s„)Q Pj. (4)

where V(Bp, A ) may be regarded as a matrix Vp and
resolved, if desired, into a sum of standard matrices:

U(Bp, A-) =k{LV(Bt,Ai)+ V(Bs, As) j &

+LV(Bt, Ai) —V(Bs, As)]ter

+I V(Bt, As)+V(Bs, At)]&up

+sLV(Bt) A,)—V(Bs, A,)ga„). (5')

Accordingly, the +~*g;*IV~;I' takes the form of the
trace of a product of matrices, quite analogous to (27)
of reference 7:
Z»*Z'*I Uf'I'=2= pp ~p pv p-~- U- p'

=Tr(e Vevt) =Tr(vtevs). (6)

The core of the procedure suggested here is, then, to
represent the perturbation matrix element as a polar-
ization operator, according to (5) and (5'). In emission
or absorption processes the procedure seems to fail
because Vf; contains only one polarization vector, Aft
or 3;, respectively, and cannot be reduced directly to
a matrix Vp . However, in the event of emission, there
is no density matrix d which depends on the polar-
ization coordinates n, o.',. the factors V and Vt in

(6) constitute then a single polarization operator
U(Bp) Vt(Bp.)= (Vvt) pp. which can be resolved in the
manner of (5'). In the event of absorption, the operator
8 disappears from (6) and one can construct the
operator (VtV)

A basic set of conventions for the treatment of
polarization eBects in terms of Stokes parameters and
of matrices to, according to (6), (2), (3), and (5'), has
thus been completed. Products and traces of the
matrices u are carried out according to the standard
rules for Pauli matrices.

(e) Stokes Parameters of Emitted or Scattered
Radiation

To display the intensity and the polarization of
emitted or scattered radiation, it is not necessary to
inquire about the probability of a specihc event, such
as the response of the detector represented by the
matrix 8 in (6). Instead of constructing the full product
OV&vt in (6) and taking its trace, one may simply
resolve the product VSVt into the sum of a unit matrix
and of the polarization matrices u. The coeScients of
the matrices are proportional to the Stokes parameters
of the emitted or scattered radiation. Indeed VSVt
represents (here as well as in reference 7) the perturbed
density matrix. Selection rules on the types of polar-
ization resulting from particular processes become
apparent upon inspection of the polarization operators
which are contained in V and V~, as shown in the
following examples.

3. EXAMPLES

(a) Dipole Emission of Light

In the theory of dipole emission, V is proportional to
the displacement of electric charge, r. In a transition
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r Birt Bi—r 82rt 82,

r Bi rt 82+r 82 rt Bi,

i(r. Birt. 82—r. 82rt Bi)=ir)&rt n,

(7')

(7")

(7///)

where n= BiX 82 indicates the direction of emission.
The expression (7) for the total emission along n is
trivial and familiar; the expression (7"') for the degree
of circular polarization may be somewhat more trans-
parent than usual.

(b) Rayleigh Scattering

In the nonrelativistic approximation', the essential
factor of V is the scalar product of the polarization
vectors of the incident and scattered waves. If the
unit vectors Ai, Bi are laid in the plane of scattering,
Eq. (5') yields that V is proportional to

—',[(1+cos8)f—(1—cos8)a/r],

where 8 is the angle of scattering. The product VSVt
is then proportional to

-', [(1+cos8)I—(1—cos8)a/riIp(x+ P ni)

X[(1+cos8) l—(1—cos8)a/r$

=—,'[1+cosV —sinVPr]X+ rr[(1+cos'0)Pr —sin'8]a&r

+~ cosPPra/t+ 2 coster ~&. (9)

The results contained in this formula are rather well

known. Notice how the anticommutation property of
the co's operates as a selection rule: the coefhcient of
each co vanishes for the scattered wave whenever it
vanishes for both the incident wave and the operator V;
one might say loosely that the output contains any
one kind of polarization only if that kind is present in
the input or generated by the interaction.

(c) Bremsstrahlnng

The bremsstrahlung cross section has been calculated
relativistically in the Born approximation, taking into
account polarization eRects, by May and by Gluck-

' M. May, Phys. Rev. 84, 265 (1951).

between fully specified states, r represents a speci6c
matrix element; in general one may treat rrt as an
operator whose expectation value can be determined
later by a procedure such as (6). Proceeding as sug-
gested in 2e, we resolve VVt, or r 8rt Bt, which
amounts to the same, into a sum of Pauli matrices.
Equation (5') shows that the Stokes parameters of the
emitted light are proportional, respectively, to

r Birt Bi+r B&rt 82——r rt —r nrt n, (7)

stern, Hull, and Breit. 'e "Equation (15) of reference 11
shows this cross section as consisting of four terms. The
last term, independent of polarization, arises from spin
effects (these effects should also yield a polarization if
the spin orientations were not averaged out in both the
initial and final electron states). The first three terms
depend on the components, in the direction of the
polarization 8, of the electron momentum before and
after the collision, poi and pt, they are proportional,
respectively, to poP, 2po~p~, and pP, which are written
in our notations as yo 8 yo'Bt, yo'8 y' Bt+y' 8 yo' Bt,
and y 8 y Bt. These quantities can be expressed as a
sum of Pauli matrices by means of (5'). Calling n the
direction of the bremsstrahlung, 80 and 8 the angles
between yo and n and between y and n, and p the angle
between the planes (yon) and (yn) and laying Bi in
the plane (yen), with yo Bi)0, we find

yo 8 yp 8&=-', [)+&or] sin'eo,

yo' 8 y' Bt+y 8 ya Bt
= r2 single sin6[(I+a/r) cos2rp+a/t sin2y J, (10)

y 8 y Bt= -', sin%[I+a/r cos2p+&ut sin2q j.
The Stokes parameters of the bremsstrahlung are

obtained by replacing pep, 2po&p&, and pp in (15) of
reference 11 with the expressions (10) and separating
out the coeKcients of the unit matrix and of the various
Pauli matrices. The coeKcient of the unit matrix is the
Bethe-Heitler formula for the total intensity. The
coefIicients of ~~ and co~ characterize the partial linear
polarization (the coefficient of a/~ is bound to vanish
when the direction. of y is averaged out). The absence
of a/, in (10) indicates the total lack of circular polar-
ization which is stressed in reference 11.

(d) Comyton Effect

The relativistic treatment of Compton scattering
yields a polarization which diRers from that of Rayleigh
scattering owing to the eRect of electron spin. If the
spin orientation before and after scattering is averaged
out, the spin effects modify (9) only by the insertion of
a new term in the coefficient of the unit matrix and in

the coe%cient of I'„~„.The results for a nonrandom
initial spin orientation are more complicated and are
given in reference 2. The calculation for a nonrandom
initial orientation combined with an analysis of the
final orientation is still more complicated; it is being
completed now by Tolhoek and Lipps" by means of a
technique of the type presented in this paper.

I Gluckstern, Hul], and Breit, Science 114, 480 (1951).
' Gluckstern, Hull, and Breit, Phys. Rev. 90, 1026 (1953).

~ I wish to thank Dr. Tolhoek and Mr. Lipps for information
on their work and for participating, together with Dr. S. Berko
and Dr. F. L. Hereford, in stimulating discussions.


