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A general discussion is given for the angular and energy distribution of neutrons inelastically scattered
by a crystal, with special emphasis on those features of the distribution in which the dynamical properties
of the crystal manifest themselves most immediately. The direct relationship between the energy changes
in scattering and the dispersion law of the crystal vibrations is analyzed. While for x-rays, due to the ex-
tremely small relative size of these energy changes, the dispersion law has to be inferred indirectly from
intensity measurements, it is shown that the very much larger relative magnitude of energy transfers in the
case of slow neutrons opens the possibility of direct determination of the frequency;wave vector relationship
and the frequency-distribution function of the crystal vibrations by energy measurements on scattered
neutrons. The general properties of the outgoing neutron distribution in momentum space which are relevant
for this purpose are derived by first considering the particularly instructive limiting case of neutrons initially
at rest and subsequently generalizing the results to incident neutrons of arbitrary energy.

I. INTRODUCTION

HE diGraction of neutrons by crystals has been in
recent years the object of an increasing number

of investigations and has been recognized as a promising
tool for crystallographic research. ' Considerable work
has been done on elastic scattering, the coherent part
of which exhibits Bragg reRections in full analogy with
x-rays, and on transmission measurements, dealing with
total cross sections. The inQuence of crystal dynamics on
neutron scattering was discussed by various authors' '4'

and quantitative calculations of total cross sections
were carried out on the basis of a greatly simplified
model for the crystal elastic vibrations, the familiar

Debye model, in which the velocity of sound waves

(phonons) is assumed independent of wavelength, direc-

tion, and polarization.
From its success in describing specific heats, the

Debye model is known to be a fair approximation for
sects which involve the average of a smooth function
over all crystal vibrations. It gives, therefore, at least
for cubic crystals, a reliable estimate of the Debye-
Waller factor affecting Bragg refiections of neutrons
and x-rays and can be expected to provide a good
orientation as to the magnitude and energy dependence

'For surveys see: J. M. Cassels, Progr. Nuclear Phys. 1,
185 (1950);D. J.Hughes, Pile Neutron Research (Addison-Wesley
Publishing Company, Cambridge, 1953); G. E. Bacon and K.
Lonsdale, Repts. Progr. in Phys. 16, 1 (1953).' G. C. Wick, Physik. Z. 38, 403, 689 (1937).' I. Pomeranchuk, Physik. Z. Sowjetunion 13, 65 (1938).

' Halpern, Hamermesh, and Johnson, Phys. Rev. 59, 981
(1941).

s R. Seeger and E. Teller, Phys. Rev. 62, 37 (1942).' R. Weinstock, Phys. Rev. 65, 1 (1944}.
'A. Akhiezer and I. Pomeranchuk, J. Phys. (U.S.S.R.) 11,

1~7 (i947~.' Placzek, Nijboer, and Van Hove, Phys. Rev. 82, 392 (1951).
' J. M. Cassels, Proc. Roy. Soc. (London) A208, 527 (1951}.
"D. A. Kleinman, thesis, Brown University, 1951 (unpub-

lished) and abstracts in Phys. Rev. 81, 326 (1951);86, 622 (1952);
90, 355 (1953)."I.Wailer and P. O. Froman, Arkiv. Fysik 4, 183 (1951).

'~ P. O. Froman, Arkiv. Fysik 4, 191 (1951);5, 53 (1952}.
"G.Placzek, Phys. Rev. 86, 377 (1952).
"G.L. Squires, Proc. Roy. Soc. (London) A212, 192 (1952).
' ' G. Placzek, Phys. Rev. 93, 897 (1954).

of total inelastic neutron cross sections for the in-
coherent" part of the scattering. For other eGects,
however, in particular for the angular and energy
distribution of inelastically scattered neutrons, the
details of the vibration spectrum play a much more
important role and the theoretical discussion has to
take them into account. It is the aim of the present
investigation to show how they manifest themselves in
this distribution.

The analogous problem for the inelastic scattering of
x-rays has been the object of detailed theoretical and
experimental study'~" with the purpose of determining
from scattering data the actual vibrational spectrum of
the crystal, i.e., the exact relation co=to, (tI) between
frequency +, wave vector q, and polarization j of a
plane wave vibration (phonon) . This function manifests
itself directly in the wavelength shift of x-rays scattered
by one-phonon processes. Because of its extremely small
relative size, however, this shift is not readily accessible
to measurement, and hence the function co;(q) has to be
inferred from measurements of the scattered intensity.

Because of the diGerent relation between energy and
momentum the energy balance is entirely altered in the
case of slow neutrons. While this is generally true, it
may be exempli6ed more concretely by considering the
important particular case of coherent one-phonon
processes. For an incident wavelength of the order of
the lattice constant the absolute energy changes in a

"Using the same terminology as Hughes, reference 1, we call
coherent the interferent part of the slow neutron scattering, and
incoherent the noninterferent part due to spin and isotope dis-
order. The existence of these two types of scattering has been
discussed first by Wick (reference 2). Both types comprise elastic
as well as inelastic processes."J.Laval, Bull. soc. fran9. mineral. 64, 1 (1941)."K.Lonsdale, Repts. Progr. in Phys. 9, 256 (1943).

"M. Born, Repts. Progr. in Phys. 9, 294 (1943).
"W. H. Zachariasen, Theory of X Ray DQFraction in-Crystals

John Wiley and Sons, Inc. , New York, 1945)."P.Olmer, Acta Cryst. I, 57 (1948); Bull. soc. fran9. minsral.
71, 144 (1948).

n H. Curien, these, Paris, 1952; Acta Cryst. 5, 393 (1952).
n H. Cole and B. E. Warren, J. Appl. Phys. 23, 335 (1952).
n H. Cole, J. Appl. Phys. 24, 482 (1953).
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general direction are, for neutrons, not radically diBer-
ent from those for x-rays, being in both cases of the
order of average phonon energies. For neutrons, how-
ever, the energy corresponding to such an incident
wavelength is of the same order of magnitude and the
relative change in energy or wavelength is therefore of
order one, which considerably reduces the difhculty of
its direct measurement.

As the incident wavelength increases, the contrast
between the x-ray and neutron cases becomes even
more pronounced. For x-rays, in the case of a Bravais
lattice, the absolute energy change in a given scattering
direction becomes proportional to the incident energy,
with a relative change of the order of the ratio of sound
velocity to light velocity. For neutrons, on the other
hand, the absolute energy changes in a given scattering
direction do not systematically decrease with increasing
incident wavelength; in fact, they ultimately become
independent of it, tending to finite values. Thus, a
limiting case is approached for which the incident energy
and momentum can be put equal to zero both in the con-
servation laws which determine the energy shift, and
in the transition probabilities. Physically, this is the
case of a neutron initially at rest which takes up energy
and momentum by absorbing a phonon. For finite
incident wavelength this description will be adequate
if the outgoing wavelength is small compared to the
incoming one. Under this condition the transition
probability is approximately constant, and hence the
scattering cross section becomes proportional to the
wavelength. The actual wavelength beyond which the
condition is satisfied depends on the scattering direction
and on crystal structure, but it often lies in the access-
ible region of the subthermal neutron spectrum in which
transmission experiments are already quite common.
Scattering experiments in this region'4 still present a
certain intensity problem and may be easier at some-
what shorter wavelengths, which, as we shall see, have
to be used anyhow if one wishes to determine the
function &0;(q) for all q.

In the above remarks we have been concerned with
coherent one-phonon scattering only. The energy dis-
tribution of neutrons incoherently scattered by one-
phonon processes is also of considerable interest in
connection with crystal dynamics, especially for cubic
crystals, for which, as will be shown later, it is directly
connected with the frequency-distribution function of
the crystal. For multiphonon processes, coherent as well
as incoherent, the relation between neutron scattering
and dynamical properties of the crystal is much more
complicated, except for the limiting of high incident
energies. "For the purpose of the determination of the
frequency spectrum of the crystal from scattering data
these processes are therefore of less interest, and for this
reason we shall concentrate on one-phonon processes.

One has, however, to inquire under what conditions

~ P. Egelstaff, Nature 168, 290 (1951).

one-phonon scattering can be experimentally separated
from multiphonon processes. For a single crystal, one-
phonon coherent scattering is distinguishable from all
other processes by its energy distribution in each out-
going direction, which will be seen to comprise a finite
number of discrete energy values, appearing as sharp
peaks above the continuous background of one-phonon
incoherent and multiphonon scattering. Xo such direct
distinction is possible between neutrons scattered in
one-phonon incoherent and multiphonon processes.
While the contribution of the latter to the cross section
is always decisive at high incident energies and often
appreciable even in the limiting case of zero incident
energy, " it would, however, seem quite feasible to
carry out scattering experiments under conditions
(moderately low temperature and incident energy and
high nuclear mass) which make multiphonon effects
either entirely negligible or reduce them to the size
of a manageable correction, thus allowing the isolation
of the incoherent one-phonon processes.

In the following sections, we discuss the angular and
energy distribution of neutrons scattered by one-phonon
processes, both coherent and incoherent. Sections II
and III deal with the limiting case of infinite incident
wavelength. Apart from its direct interest, this case
illustrates with particular clarity the essential aspects
of the problem. The complications arising for finite
incident wavelength are of a purely formal nature and
are taken care of in Sec. IV.'

Regarding the crystal structure, we consider for con-
venience a Bravais lattice, with one nucleus per cell.
For a lattice with more particles per cell, our discussion
has to be supplemented by consideration of a structure
factor and of optical branches in the frequency spec-
trum. With minor modifications, our treatment can
also be extended to neutron scattering by spin waves in
ferromagnetic crystals, a problem already studied by
Moorhouse" from a slightly different point of view.

II. ANGULAR Am ENERGY DISTRIBUTION FOR
INFINITE INCIDENT WAVELENGTH

In the limiting case of infinite incident wavelength,
energy can only be transferred from the crystal to the
neutron, and inelastic scattering is therefore possible
only if the crystal is at a nonvanishing temperature.
In one-phonon scattering, a phonon initially excited in
the crystal is absorbed by the neutron initially at rest
which picks up its energy. Energy conservation is
expressed by

ks = (2m/l'r) ce;(q),

where m and k are the mass and final wave vector of
the neutron; q, j, and hM;(q) are the wave vector,
polarization index (j=1, 2, 3 for a Bravais lattice), and
energy of the absorbed phonon.

Equation (1) holds for both coherent and incoherent

"For estimates see Squires, reference 14."R.G. Moorhouse, Proc. Phys. Soc. (London) 64, 10W (1951).
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scattering. For the latter it is the only condition relating
the phonon variables to the momentum hk transferred
to the neutron; Eq. (1) has then only to be supple-
mented by an intensity formula given in Sec. III. For
coherent scattering, the interference between waves
scattered by the various nuclei imposes a further re-
lation

k= q+2m. ~,

where z is an arbitrary vector of the reciprocal lattice. '
It is well known that the wave vector q of a lattice
vibration is only de6ned apart from 2~ times an arbi-
trary reciprocal lattice vector ~; the frequency o~;(q) is
accordingly a periodic function of q,

oi;(q+2vre) =re, (q). (3)

where c, ((/$), the sound velocity for long wavelengths
in the direction g/P, can be calculated from the elastic
constants. "

For incoherent scattering, the energy equation (1)
shows that the length of k is restricted to the interval

0&~k~&k .= (2moi /5)', (5)

where co is the maximum of oi;(q) for all q and j; the
direction of k is unrestricted. Equation (5) defines in
k space a sphere Z of radius k, and center k=0. Any
vector with endpoint inside or on Z is a possible value
for the outgoing neutron wave vector. Hence, neutrons
are scattered in all directions, with energies ranging
continuously from 0 to Ace, . This conclusion holds for
single crystals as well as for powders.

The restrictions affecting k are more severe for
coherent scattering. Combining Eqs. (1), (2), (3) one
obtains them in the simple form

l's'= (2m/Ii)o. , (k).

For each j, (6) defines in k space a surface 5;, which
may be composed of several disconnected parts. The
surfaces S~, S2, S3 in general cross each other, and the
set of all three will be called S. We suppose the origin

27 The momentum kq thus attributed to a vibration is not to be
confused with the momentum of. the crystal considered as a
system of particles, and Eq. (2) has nothing in common with
momentum conservation in the sense of particle dynamics."H. A. Jahn, Proc. Roy. Soc. (London) A179, 320 (1941).

To a phonon of wave vector q+2vre can be attributed
a momentum fi(q+2w~), and in this sense Eq. (2) is
conventionally regarded as expressing momentum con-
servation. "

The conservation laws determine the main features
of the angular and energy distribution of scattered
neutrons. To show this, we shaII use the following
properties of the o~, (q) function, valid for any Hravais
lattice: for each j= 1, 2, 3, oi, (q) is a continuous function
with the periodicity (3) of the reciprocal lattice; for q
approaching 2m~, it has the form

k=0 not to be counted as a point of S. For neutrons
scattered coherently with absorption of one phonon, the
outgoing wave vector is thus restricted to have its
endpoint on S.

In order to discuss the general properties of the
surface 5, let us call lattice vectors in k space the
reciprocal lattice vectors ~ multiplied by 2m, and let us
speak accordingly of lattice points and cells in k space.
We state

(i) The surface S is entirely contained in the sphere Z.
(ii) Each radius of the sphere Z crosses 5 at least once

and in general a 6riite number of times not smaller
than 3.

(iii) Each connected region of k space inside Z which
contains a lattice point 2we&0 and a point ki,
where ce, (ki) =oi for some j, is crossed by 5;
in particular, S crosses any cell of k space, centered
at a lattice point 2m~/0 and fully contained in Z.

Property (i) is obvious. To establish (ii), we notice
erst that, S being a two-dimensional surface, if a radius
of Z crosses it at all, it will in general do so a 6nite
number of times. To show that every radius crosses S,
cons&der

q, (k) = k' —(2m/h)(o, (k)

as a function of k for fixed direction of k and fixed j:
for small k, Eq. (4) gives

y (k) = k' —(2m/)s) c, (k/k) k &0,

whereas, for k= k,„,
y, (k) = k '—(2m/h)ce, (k) = (2m/)s) L&o, —o~, (k)j)&0.

Since the function is continuous, it must vanish for at
least one value k, of k, giving a point on S. For general
directions of k, the three k, 's will be diGerent. Property
(iii) is established by a similar continuity argument,
considering p, (k) for the polarization j which gives
~;(kr) =co~, along a path in k space from 2m~ to ki.

The physical meaning of property (i) is quite trivial:
it states that the outgoing neutron energy never exceeds
the maximum phonon energy hs&, . Property (ii) de-
termines the main features of the angular and energy
distribution for coherent one-phonon scattering by a
single crystal: neutrons are scattered in every direction
and for each direction the outgoing energy has a 6nite
number of discrete values, in general three or more.
Measurement of outgoing energy as function of direc-
tion determines the surface 5 and thus yields oi, (k)."
This type of scattering is, therefore, particularly well
6tted to give information on the crystal vibrations.

As mentioned in the introduction, the discrete nature
of their energy spectrum allows an experimental separa-
tion of neutrons scattered in one-phonon coherent
processes. It is, indeed, easily established that in

~ In order to measure in this way M;(q) for every q and j, one
has to use neutrons with nonvanishing initial momentum. See
Eqs. (17) and (18) below.
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multiphonon coherent processes, as weIl as in incoherent
inelastic scattering, the final wave vector k depends on
three or more parameters, giving in each direction an
outgoing energy which ranges continuously over one or
more 6nite intervals. The latter type of energy distri-
bution is also obtained for coherent one-phonon scatter-
ing by a powder, as is shown by averaging over orienta-
tions the energy distribution for a single crystal. In this
respect, powders are less convenient than single crystals
for study of the elastic vibrations by means of neutron
scattering.

Returning to one-phonon coherent scattering by a
single crystal, we have still to consider the implications
of property (iii) above. (iii) is of interest particularly
when the sphere Z contains a rather large number of
lattice points of k space. It then shows that the surface
5 is distributed in Z with a certain uniformity, since it
passes through every cell inside Z, except possibly the
cell centered at the origin. In every direction, the dis-
crete values of the outgoing wave vector k will be dis-
tributed over the interval 0~&4~&k, with a corre-
sponding amount of uniformity.

While such conclusions are bound to be rather vague,
it is instructive to compare the size of the sphere Z with
the size of the lattice cell in k space. The ratio of their
volumes is

(4s'/3) kmsx &s (2moimsx )
(2s.)'/ss 6s' ( k

where ep is the volume per particle in the crystal.
The parameter P plays an important role in deter-

mining the general shape of the surface 5. When F is
very small compared to 1, the sphere Z is entirely in
the region where the approximation (4) applies with
v=0. Equation (6) reduces to

k= (2m/h)c;(k/k), (j=1,2, 3). (8a)

Hence, 5 is formed of three closed surfaces around the
origin of k space, intersecting each other and fully con-
tained in the lattice cell of center k=0. For slightly
larger E, 5 can be expected to have the same general
shape, but Eq. (8a) will have to be completed with
correction terms of relative order Ii &, Ii&, . .. For E&&1
on the other hand, the shape of 5 is again simple in the
region of k space where k is small compared to k

5 is there composed of three closed surfaces around
each lattice point 2m~/0, of approximate equation

&=4s'k '[2mc;(&/t)g '+, (j=1,2, 3),
(=k 2'~, (—8b)

with correction terms of relative order F &, F &, . . .. In
the region where k is comparable to k, , 5 behaves
quite differently: it runs continuously from cell to cell
in k space.

For actual crystals F seems to be larger than one,
but in general not large enough for (8b) to apply.
This is thus the case intermediate between those con-

sidered above. Here even the general shape of 5 cannot
be predicted without a fairly accurate knowledge of the
a&;(q) function. Conversely this case would appear to
be all the more favorable for the determination of the
rs, (q) function from the measured shape of the surface S.

The calculation. of Ii for an actual substance requires
the knowledge of co, which is accurately available
only for a very few crystals. It is, however, only the
order of magnitude of F which is of interest, and this is
easily obtained by remarking that the order of magni-
tude of eo is given by the Debye temperature 8

re —keg/k,

(ks ——Boltzmann constant). " The approximate value
of F thus obtained, de6ned by

vs (2mks9)&

k'

is given in Table I for a few substances.

III. INTENSITY FORMULAS FOR LONG INCIDENT
WAVELENGTH

The discussion of Sec. II has to be supplemented by
the consideration of the scattered intensity per unit
angular and energy range. This intensity is simply
expressed in terms of the differential cross section
do/dk per unit volume in k space.

We consider a single crystal and measure the coherent
cross section per nucleus in units of (a)A,' and the inco-
herent cross section per nucleus in units of (us)All (u)AII'.
a is the spin- and isotope-dependent scattering length.
The units are, respectively, the coherent and incoherent
scattering cross sections of the bound nucleus per unit
solid angle. With the aid of standard methods~ it is
then found that

lIIC
'Vp

expL —((k u) )„„j P dq
dk Mkp (2~)s i ~

[k e, (q) j'5[k' —2mb 's);(q)]
X (10)

k' exp[8;(q) j—1

do 2 [k e;(k)]'
exp[ —((k u)').,jP

dk Mks k'

6[k'—2mk 'oi;(k)]
(11)

exp[Poi;(k)g- 1

The suSx 1 in 0-~'"' and tT~"" refers to one-phonon
scattering. 3f is the ratio of nuclear to neutron mass.
In the Debye-Wailer factor exp[—((k u)')„„j, u is the
displacement vector of any nucleus in the crystal from
its equilibrium position, and the average is taken over

~ For tungsten, calculations by P. C. Fine (Phys. Rev. 56, 355
(1939)j give her /ks=336', as compared to 8=373' from the
elastic constants and 8=310' from specific heats.
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Introducing the frequency distribution function g(o&),
defined as the number of normal vibrations per unit
frequency interval, divided by the total number of
vibrations,

1 v()

g(~)d =-
3 (2~)s ~

we find:

dq,

o) & cog (q) & co+d(u

g(o)) = 0 for co)cs, ,

1I1C

exp[—k'(sos') A,]
dk Mkp

X
t "~*8 (k' —2mh —

'c0)
g(a&)dec,

exp (pa&) —1

the thermal equilibrium distribution. e, (q) is the polar-
ization vector of the phonon defined by jand tl, p is the
reciprocal temperature multiplied by kk& '. The inte-
gration over q in (10) extends over one cell in k space.
The argument of the 8 function in (11) gives directly
the Eq. (6) of the surface S discussed in the previous
section and the functions e, (k) as well as o&;(li) are
defined for all k through the periodicity condition corre-
sponding to (3).

The cross sections (10) and (11) correspond to transi-
tion probabilities for a neutron initially at rest, in con-
formity with the limiting case discussed in the previous
section. The incident momentum kko thus appears only
in the factor relating transition probability to cross
section. .This limiting case applies if k&)ko. For coherent
scattering, as follows from our discussion of the sur-
face S, k has a nonvanishing minimum, and hence (11)
holds for all outgoing energies as soon as ko((k; .
For incoherent scattering, on the other hand, there is
no such minimum. However small ko may be, therefore,
the limiting case will not apply in the small region of
the outgoing energy spectrum where k is not large com-
pared to ks. Here (10) must be replaced by the general
expression (15).

Equation (10) can be considerably simplified for
cubic crystals. As is well known, a quadratic form
Z~A~k, k„ invariant under the operations of any of
the cubic point groups is a multiple of Z k, i.e.,
A~ Ao~ (5~=Kronecker symbol). For cubic crystals,
this fact implies, firstly, "

((It u)')Av —k (ND)Av,

where No is the component of u in an arbitrary direction.
The Debye-%aller factor is thus independent of the
direction of k. Secondly,

h[k' —2mh 'o) (q)]
dife, *(q)eP (tf) =A8.„,

exp[ao&;(q)] —1
with

1
t

8[k'-2' 'co, (q)]A=-P dq
3 i ~ exp[j9oi, (q)]—1

TABLE I. The parameter F~.

Substance Lattice type &024 vo in cmg 8 in 'K

Pb
W
Fe
Al

cu face-cent.
cu body-cent.
cu body-cent.
cu face-cent.

30.0
15.7
11.7
16.5

88
310
462
398

3.6
12
17
19

ol

g& inc
g (hk'/2m)

exp[ —k'(uss)„„] (12)
dk Mrlks exp (Phk'/2m) —1

For cubic crystals the one-phonon incoherent scattering
has thus, for small ko, an energy distribution inde-
pendent of direction and simply expressed in terms of
the frequency distribution g(o&) of the crystal.

It has been shown elsewhere" that the g(~) function
of a general crystal contains a finite number of singu-
larities resulting from the periodic structure; they are
singular points co, in the neighborhood of which g(a&)
has one of the two forms

(13)
for ~&co.

or the same with co&co, and co&co, interchanged. The
constant 2 can have either sign; it is usually negative
for u, &oi „„and positive for oi, =oi [o&, is in general
a singular point of g(oi)]. The symbol O(o&—co,) denotes
a rest term of order Io&

—co,
I

for a&~,. The singular
frequencies &u, are simply related to the to;(il) function
of the crystal: apart from exceptional cases, they are
the values of co;(q) at the points where grad or, (q) =0,
(j=1, 2, 3)."We shall call them the singular frequencies
of the crystal. The general shape of the energy distri-
bution (2nsk/h') (do.r'"'/dk) (for fixed direction of lt) can
be predicted from the behavior of g(re) and a typical
distribution is given in Fig. i. Its singularities are of
the same analytical type as (13), o& being replaced by k
or the energy E=h'k'/2'"

Apart from (10), the inelastic incoherent cross section
contains terms due to multiphonon processes. In general
they depend on the direction of lt, but the energy dis-
tribution in each direction can be shown to be con-
tinuously diGerentiable. The energy distribution in each
direction for inelastic incoherent scattering by a cubic

"L.Van Hove, Phys. Rev. 89, 1189 (1953);in the formulas on
p. 1191 of this paper (v —v, )& must be replaced by v —v,

~

&. The
vector q there used is our present vector q divided by 2~. The
frequency distribution of a simple cubic crystal has been calcu-
lated with its correct singularities by G. F. Newell, J. Chem. Phys.
21, 1877. See also H. B. Rosenstock and G. F. Newell, J. Chem.
Phys. 21, 1607 (1953);H. B. Rosenstock and H. M. Rosenstoclt,
J. Chem. Phys. 21, 1608 (1953).

as All our statements concerning singularities in the g(~) func-
tion and in energy distributions of scattered neutrons hold for
general values of the force constants of the crystal. The origin
and nature of possible exceptions have been discussed by Van
Hove (reference 31).



G. PLACZEK AND L VAN HOVE

FIG. 1, Schematic shape of the energy distribution of scattered
neutrons for long incident wavelength in the case of one-phonon
incoherent scattering, E is the outgoing neutron energy, and co,
a singular frequency of the crystal.

crystal has, therefore, still the shape illustrated in
Fig. 1; its singularities in the first derivative are all due
to one-phonon processes and are the same in all di-
rections.

For noncubic crystals, the one-phonon incoherent
cross section cannot be expressed in terms of the fre-
quency distribution g(co) of the crystal. The polarization
terms of Eq. (10) cannot be eliminated, and the energy
distribution of scattered neutrons varies with direction.
In each direction, however, it has the shape illustrated
in Fig. 1 and its singularities, unaQ'ected by multiphonon
processes occur, as for cubic crystals, at neutron
energies E, independent of direction and related by
E,=k~, to the singular frequencies of the crystal. "As
mentioned later, the singular frequencies of the crystal
do not show up in coherent cross sections. Incoherent
scattering of neutrons, for crystals where it is appreci-
able, seems to be the simplest phenomenon singling out
these frequencies, which are important in determining
the analytical singularities of the frequency distribution
of the crystal.

The foregoing discussion was concerned with single
crystals. For inelastic scattering by a powder, according
to (12) nothing is changed for a cubic crystal, whereas
Eq. (10) must be averaged over orientations in the non-
cubic cases. As we have seen, however, the singularities
in the energy distribution occur at energies independent
of direction and are thus retained in the averaging;
consequently, the qualitative behavior shown in Fig. 1
remains unchanged.

Turning now to coherent scattering, we note that in
one-phonon processes, the neutrons scattered in a given
direction have a discrete energy spectrum, correspond-
ing to outgoing wave vectors ki, k, , From (11) the
cross section per unit solid angle for the outgoing beam
of energy k'k;s/2m is

(do.,co~ ) 2
ex' —((k' u)')"7

dQ ) a; 3fkp
[k,"e;(k;)7'

(14)
{expp&p;(k;) 7—1) .

~
2k,—2mb 'de;/dk

~

's L. Van Hove (to be published).

where j is the polarization index for which k
=2mb 'cu, (k,), and the derivative of &p, (k) is taken at
k= k;, for fixed orientation of k. For a powder, Eq. (14)
must be averaged over all crystal orientations, pro-
ducing in each direction an outgoing energy distribution
continuous over finite intervals.

As mentioned before, multiphonon coherent scatter-
ing by a single crystal gives in each direction a
continuous energy distribution of outgoing neutrons.
Without entering into its detailed discussion, we shall
mention that the energy distribution contains again, in
general, singularities of type (13), produced by two-
phonon processes. In this case the singularities occur
at energies unrelated to the singular frequencies of the
crystal and varying with the outgoing direction con-
sidered. They are thereby distinguishable from the
singularities resulting from one-phonon incoherent scat-
tering (which occur at the same energies in all direc-
tions), and for a powder they disappear by directional
averaging.

To summarize the results obtained in the previous
sections, we shall now briefly recall the main properties.
derived for the angular and energy distribution of
inelastically scattered neutrons by single crystals in the
limit of long incident wavelengths. In each outgoing
direction the energy distribution of scattered neutrons
contains a discrete part, resulting from one-phonon
coherent scattering, and a continuous part produced by
incoherent and multiphonon coherent scattering. The
discrete part gives direct information on the crystal
vibrations: the outgoing momentum k verifies Eq. (6)
for some j.The continuous part has singularities of the
analytical type (13) (with &p replaced by outgoing
energy), the shape of which is illustrated in Fig. 1.
Some of these singularities occur at energies E, inde-
pendent of direction: they are produced by incoherent
one-phonon scattering and h 'E, are the singular fre-
quencies of the crystal. The other singularities, which
occur at energies varying with direction, originate from
two-phonon coherent scattering.

IV. EXTENSION TO ARBITRARY INCIDENT
WAVELENGTHS

The previous considerations are easily extended to the
inelastic scattering of neutrons of arbitrary initial mo-
mentum hkp. The only important change is the occur-
rence of scattering with energy transfer from the
neutron to the crystal. Apart from this fact, we shall
see that all essential features of the angular and energy
distribution are retained. As the discussion runs entirely
parallel to that presented in Secs. II and III, we shall
make it very brief and restrict ourselves to scattering
by a single crystal.

Considering first one-phonon incoherent scattering,
we find for the case of energy gain by the neutron that
the final wave vector k has in every direction a length
ranging from kp to (kps+2mk '&o,„)&, whereas for
energy loss by the neutron, k ranges from ko down
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to 0 if kp'&&2mk 'rd, „, or to (kps —2mk 'rp, )&, if
ko') 2m' 'co,„.The diGerential cross sections are

111C 'Vp

pL —(( )').] 2 ~de
dk Mkp (2ir)' r ~

[ p e;(q)]'
X X

Ik —k,
I

+-', (1w1)
exp+or;(q)] —1

5[k'—kp'+2mb '(o;(q)]. (15)

The upper (lower) signs correspond to scattering with
energy gain (loss) by the neutron, i.e. , to k) kp (k&kp).
The integration is extended over one cell in lt space.
hie, with sc= k —kp, is the momentum transfer.

For cubic crystals, Eq. (15) can be simplified with
the help of the frequency distribution function g(rp):

111C —exp[ —«'(up')A, ]X
dk iVmkp

I

k' —kp'I

r 1 ~xI—
(exp(PkI k' kp'I /2m) ——1

Xg(&I k —kp I/2m) (16)

For cubic as well as noncubic crystals, the energy dis-
tribution in each outgoing direction has singularities of
the type shown in Fig. 1 and Eq. (13) (rp being replaced

by the neutron energy), occurring at energies

h' k/2m= (k'kps/2m) ahcp

where the cv, are the singular frequencies of the crystal.
Multiphonon incoherent scattering produces no such
singularities.

For coherent scattering the situation is again similar
to that prevailing in the limiting case of ko ——0. For one-

phonon processes with energy gain by the neutron,
momentum and energy conservation are expressed by
the single equation

k' —kpp= (2m/h)Gl;(k —kp)y j= 11$ 2y 31) (17)

the obvious generalization of Eq. (6). Equation (17)
defines in ir space a surface located between the spheres
of radii kp and (kps+2mk 'rp, ) l, centered at the origin.
Each radius of the large sphere intersects the surface at
least once, in general a finite number of times, and each
cell of k space contained between the two spheres is
crossed by the surface [compare properties (i), (ii), (iii)
in Sec. II]. Some points of the surface may, however,
correspond to a vanishing energy transfer: they give
rise to elastic coherent scattering. If we include them,
the main feature of the angular and energy distribution
is, therefore, retained: neutrons are scattered in each
direction with a discrete energy spectrum.

The situation is slightly more complicated for one-
phonon coherent scattering with energy loss by the
neutron, which is governed by the equation

kp' —k' = (2m/k)cp, (k—kp). (18)

This equation has no solution, and the type of scattering
considered is thus impossible when ko is smaller than
a minimum value ko('&; it is only for ko larger than a
value ko())kp~ ~ that neutrons are scattered in every

direction. Both for kp) ko& & and kp(ko( & the scattered
neutrons have a discrete energy spectrum in each out-
going direction. The actual values of ko('& and ko~'

depend on the details of the rd, (q) function. It is, how-

ever, generally true that

k,&»~&«„

kpi" & (2mb
—'rd .„)&,

(19)

(20)

where ro is a reciprocal lattice vector of minimum
length. '4

The differential cross section for one-phonon coherent
scattering is

2 [sc e;(sc)]'
exp[ —((sc u)')~„] P

dk Mkp i
I

k' —kp'I

CO11

X +-,'(1~1)
exp[Pro, (sc)]—1

)&b[k' —kpsa2mk pp, (x)], (21)

Pk
exp[/(p, (x)—1]=Pip, (x) =

I

k' —k
2'

r sc—2~~ )
=PcyI

The nature of the conservation laws for this special
case was discussed by Seeger and Teller Wailer and
Froman" gave a detailed treatment of the differential
cross section. '4

"The condition k0&~2i.7.0 insures the possibility of the type of
scattering under discussion for some but not all orientations of
the crystal. It can be written ) 0 ~& Xz where ) 0 is the incident wave-
length and Xg= (2Tp) ' the Hragg cut-off wavelength. It was first
given by Wick (reference 2). The inequality (20) applies to an
arbitrary orientation of the crystal.

'4'Note added ie proof.—See also the recent paper by R. D.
Lowde, Proc. Roy. Soc. (London) A221, 206 (19S4).

with the same use of double signs as in Eq. (15). An
expression similar to (14) is easily deduced from
Eq. (21).

There exists for one-phonon coherent scattering a
special case deserving a discussion of its own: it is the
case when Itp approximately verifies the Bragg con-
dition

I
kp+ 2prs

I

s ~kps.

Inelastic scattering with x nearly equal to 2m~ and with
small energy transfer is then taking place, with a large
differential cross section increasing proportionally to
(k' —kpp) ' Iic—2m~I ' when the Bragg condition is
approached. This is seen from Eq. (21) by using
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Regarding multiphonon coherent scattering, the gen-
eral situation is again the same as in the case of long
incident wavelength: in each outgoing direction the
scattered neutrons have a continuous energy spectrum,
with singularities resulting from two-phonon processes
and occurring at energies which vary with direction.

It has been the main purpose of this paper to put in
evidence the direct relationship between the energy
changes of neutrons scattered by a crystal and the dis-
persion law of the crystal vibrations as expressed by
the to;(q) and g(co) functions. We hope to have shown

that energy measurements on scattered neutrons pro-
vide a new approach to the problem of determining
these functions from scattering data. While the few

experimental data so far available""" do not as yet
permit an analysis along these lines, the foregoing dis-

cussion indicates that further experimental work in

this field would be of considerable interest.

"B.N. Brockhouse and D. G. Hurst, Phys. Rev. 88, 542
(1952).I R. D. Lowde, Proc. Phys. Soc. (London) A65, 857 (1952)
and reference (34a).

PHYSICAL REVIEW VOLUME 93, NUMBER 6 MARCH &5, &954

Calculation of the Energy Band Structures of the Diamond and Germanium Crystals
by the Method of Orthogonalized Plane Waves*

FRANK HERMAN

ECA I.aboratories Division, Radio CorPoration of America, Princeton, Zero Jersey
(Received October 22, 1953)

The mathematical procedure employed in recent exploratory calculations of the energy band structures
of the diamond and germanium crystals is described. Some of the symmetry properties of the eigensolutions
of diamond-type lattices and the construction of an approximate potential for the diamond crystal are
reviewed.

The relative order of the crystal eigenva]ues E~(k) for a particular k was found to depend more upon the
symmetry of the crystal potential than upon the detailed nature of this potential. On the other hand, the
curvatures of the energy surfaces calculated by perturbation theory were found to depend in a rather
critical manner upon the exact form of the crystal potential.

It would appear that more reliable estimates of the energy band structures of actual crystals can be
obtained with the aid of Herring s method of orthogonalized plane waves than by means of other approxi-
mational methods requiring comparable e6ort provided (1) reliable crystal potentials are employed, (2)
calculations are carried to the point where the eigensolutions are satisfactorily "convergent, " and (3)
eigensolutions for more than just the points of high symmetry in the reduced zone are investigated.

A more elaborate calculation of the energy band structure of the germanium crystal has been undertaken;
the work is now in progress.

I. INTRODUCTION

ECENT developments in the field of semiconductor
physics' ' have stimulated widespread interest in

the diamond-type valence crystals. Although the gen-
eral behavior of these crystals can be readily under-
stood in terms of simple phenomenological models, a
detailed knowledge of their energy band structures
should prove useful in many problems.

This paper describes the mathematical procedure
employed in recent exploratory calculations of the
electronic structures of the diamond'4 and germanium'

*This paper is based on a dissertation submitted in partial
fu1611ment of the requirements for the degree of Doctor of Phi-
losophy, in the Faculty of Pure Science, Columbia University,
January, 1953.

' W. Shockley, Electrons and Holes in Semiconductors (D. Van
Nostrand Company, Inc. , ¹wYork, 1950).

Semi Conducting Materi-aLs, edited by H. K. Henish (Butter-
worths Scientific Publications, London, 1951).' F. Herman, Phys. Rev. 88, 1210 (1952).

4 F. Herman, Ph.D. thesis, Columbia University, January,
1953 (unpublished); available on micro6lm through University
Microfilms, University of Michigan, Ann Arbor, Michigan.

5 F. Herman and J. Callaway, Phys. Rev. 89, 518 {'1953).

crystals. The method of orthogonalized plane waves
(OPW), 6rst proposed by Herrings and already success-
fully applied to metallic lithium and beryllium, ' is
used here for the first time to study valence crystals.

The exploratory studies of diamond and germanium
have revealed some hitherto unexpected features in the
energy band structures of these crystals.

In particular, the lowest conduction band states at
the central point of the reduced zone in each case were
found to be triply degenerate, rather than nondegen-
erate, as earlier work on diamond"" and silicon""
had suggested. Moreover, by means of perturbation-
type calculations, it was found that the states normally

' C. Herring, Phys. Rev. 57, 1169 (1940).
r C. Herring, Phys. Rev. 55, 598 (1939).
8 R. H. Parmenter, Phys. Rev. 86, 552 (1952).
9 C. Herring and A. G. Hill, Phys. Rev. 58, 132 (1940).
"G.E. Kimball, $. Chem. Phys. 3, 560 (1935).
"A. Morita, Science Repts. Tohoku Univ. 33, 92 (1949).

A numerical error has recently been detected in this work by
J. C. Slater and G. F. Koster (see reference 18).

u J. F. Mullaney, Phys. Rev. 66, 326 (1944)."D. K. Holmes, Ph, D. thesis, Carnegie Institute of Technology,
1949 LPhys. Rev. 87, 782 (1952)j.


