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Energy Spectrum Resulting from Electron Slowing Down~
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The equation for the slowing down of electrons is cast in a form suitable for numerical calculations. Pilot
calculations have been performed for source energies of 4mc' and 80mc~ in Al and Pb. The spectrum of
slowed-down electrons, which would be the reciprocal of the stopping power under the assumption of con-
tinuous slowing down, departs substantially from this elementary solution at the upper and lower energy
ends of the spectrum. The departures are large throughout when bremsstrahlung is important. The accu-
mulation of secondary knock-on electrons is also included in the calculations.

i. INTRODUCTION
' " ' "lGH-ENERGY particles (or photons) traversing
- - - ~ a material generally dissipate their energy
through a succession of collisions. Therefore, even
though the radiation source be monochromatic with

energy Eo, particles of all energies E ~& ED will be found
in the material. The determination of the energy spec-
trum of all particles in the material, irrespective of their
position and direction, constitutes a erst task in a
systematic study of the degradation, penetration, and
diffusion of high-energy radiations. ' '

The spectrum resulting from the slowing down of
neutrons has been studied by Placzek, in part by anal-
ysis and in part by numerical procedures. ' The spectrum
resulting from repeated Compton scattering of x-ray
photons is derived by straightforward numerical pro-
cedures. 4 The problem of the slowing down of charged
particles appears trivial only under the assumption of
continuous slowing down; it has been discussed exten-
sively in F (Secs. 1, 2, and 3), but accurate results were

obtained in that paper only for heavy charged particles.
The slowing down of electrons will be treated in the
present paper. The solution of this problem may find

direct application, for example, to the study of the total
x-ray emission of electrons and to the analysis of the
chemical and biological actions of x, p, and P rays which

depend on the spectrum of electrons traversing a
material. However, the present work was undertaken

*Work supported by the U. S. 0%ce of Naval Research and
the U. S. Atomic Energy Commission.

' See, e.g., U. Fano, Phys. Rev. 92, 328 (1953), which will be
referred to as F.

~ The following experimental arrangement may serve as a means
of investigating the spectrum of slowed-down particles and of
their secondaries, if any, which flow through a material loaded
with a distributed source of particles. lf a cavity is dug inside the
material (the cavity being empty or 611ed with a gas of the same
composition as the material), the flux in the cavity will be exactly
the same as in the surrounding material, as shown in a general
manner, by one of us (U. Fano, Radhatiol Research (to be pub-
lished)). A small aperture through the cavity walls will let through
the same flux of radiation that would flow through an equal area
within the material, except for edge eGects which can be minimized.
The emerging lux can be measured and analyzed.

3 G. Placzek, Phys. Rev. 69, 423 (1946);see also R. E. Marshak,
Revs. Modern Phys. 19, 185 (1947).' P. R. Karr and J.E. Lamkin, Phys. Rev. 76, 1843 (1949); the
same procedure has been applied routinely in a large number of
later applications.

primarily as a stepping stone to the theory of penetra-
tion and diffusion.

In the overwhelming majority of collisions a fast
electron loses a minimal fraction of its energy. If larger
energy losses were disregarded, the slowing down of
electrons could be treated as a continuous process and
the resulting spectrum would be simply the reciprocal
of the stopping power (see, e.g. , F, Sec. 3a). This solu-
tion of the problem is often accepted as self-evident.
However, occasional large energy losses due to knock-on
collisions against atomic electrons produce an error
which has been discussed, but not calculated ade-
quately, in F. This error is corrected in the present
paper. It amounts to a few percent over most of the
spectrum but becomes much larger in the portions of
the spectrum near the source energy and at low energies.
At high energies, bremsstrahlung emission makes the
continuous slowing-down model unrealistic.

The probability of large energy losses by knock-on
or by radiative collisions is given by rather complicated
analytical formulas. Hence, the eGects of these col-
lisions should be treated, presumably, by numerical
methods of direct integration simi1ar to those employed
in the x-ray problem. 4 On the other hand, the over-
whelming number of small energy losses makes such
a direct procedure unworkable (see also F, Sec. 3b).
Therefore, our problem consists of developing a pro-
cedure suited to the contrasting requirements of large
and of small energy losses.

This objective appears to have been achieved, and a
few pilot calculations have been performed numerically.
Source energies of 4mc' and 80mc' were considered,
and aluminum and 1ead were chosen as representative
materials. The calculations were performed by first
disregarding and then taking into account the energy
jumps due to bremsstrahlung. Knock-on collisions were
first treated only as a source of large energy losses, but
then also as additional sources of fast secondary elec-
trons. For consistency, one should also include as
sources the Compton and pair electrons generated by
the bremsstrahlung and thereby solve the complete
problem for a cascade shower; however, the application
has not been carried that far. Some error has been
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incurred by disregarding the "Blunck-Leisegang cor-
rection. '" This is discussed in the Appendix.

The numerical procedures were eventually so de-
veloped as to reduce the labor for each calculation to
moderate proportions (see Sec. 8). Most of the remain-
ing labor goes into the tabulation of collision cross
sections; given these tabulations, some of the curves in
Figs. 1—4 were calculated by one man in a day.

2. THE DEGRADATION EQUATION

Assuming that electrons are generated within a uni-
form in6nite medium with initial energy Tp, we inquire
about the resulting spectrum y(T) of electrons. Call
k(T, r) the probability per unit path length that an
electron of energy T experiences an energy loss r. The
statistical balance of electrons of energy T is governed
by the equation

y(T) k(T, r)dr= y(T+r)k(T+r, r)dr
~r ~oo

~o "o
+»(T.-T), (1)

with the boundary condition y(ee) =0, where S repre-
sents the strength of the electron source and the Dirac
b represents the source spectrum.

The normalization of y(T) depends on the physical
situation and proves liable to misunderstandings. If the
source is uniform in space and constant in time, S is
expressed in particles cm ' sec '; y(T) is then expressed
in particles cm ' sec ' energy ' and represents the Qux
of electrons of energy T traversing a small spherical
probe per unit cross-sectional area of the probe, per
unit time per unit energy range of the spectrum. The
spectral density of electrons in space (particles cm '
energy ') is given by y(T)/v, where v is the velocity
corresponding to T. However, the time element is
irrelevant and 5 may be expressed as particles cm '
emitted at all times; y(T) has then the dimensions
particles cm ' energy ' and represents the Qux through
the probe integrated over the time of traversal. The
space element is irrelevant also, and 5 may represent
the total number of particles emitted over the whole
medium without regard to uniformity; y(T) has then
the dimensions cm energy ' and represents the track
length covered by electrons of the stated energy, per
unit energy range. This is actually the same quantity
that is called differential track length in shower theory.
This last normalization is adopted here, with S= 1 (see
also F, Sec. 2).

If the electron source is not monochromatic but
generates S(T)dT electrons of energies between T and
T+dT, the expected value y(T)dT of the track length
traveled by all electrons between T and T+dT is the
solution of

p
T 00

y(T) k(T, r)dr= y(T+r)k(T+r, r)dr+S(T).J, (2)
5 O. Blunck and S. Leisengang, Z. Physik 128, 500 (1950).' The letter T will serve to specify "kinetic energy. "

The degradation equation (1) or (2) determines y(T)
directly once y(T+r) is known for all r)0. This cir-
cumstance leads one naturally to stepwise methods of
solution, beginning with the highest source energy Tp,
such that y(Te+ r) vanishes, and progressing from high
to low energies along the course of energy degradation.
Direct numerical evaluation of the integrals in (1) is,
however, not workable for electrons owing to the very
steep increases of k(T, r) for small r Th.erefore, one
must, in this range, manage to exploit analytical proper-
ties of the equation.

3. GENERAL FEATURES OF THE PROBABILITY OF
SMALL AND MODERATE ENERGY LOSSES

We shall consider separately the contributions to
k(T, r) from bremsstrahlung ks(T, r) and from col-
lisions against atomic electrons k, (T,r). For small r,
the bremsstrahlung contribution is always compara-
tively unimportant and can anyhow be represented in a
simple analytical form, such as

ks(T, r)=a/r+A, for r«T, (3)

where a and A depend on T only. The collisions against
atomic electrons yield a simple Rutherford contribution
for values of 7 much larger than the binding energy I
of the electrons and much smaller than T or mc'„
namely,

k, (T,r) = (2rrE,e4/srses)/r'= Ir/r',

r»I, r«T, r«@ac'.

Here e and m are the charge and rest mass of an electron,
S, is the number of atomic electrons per unit volume
of the material, and e is the speed corresponding to T.

For r I, k.(T,r) does not have a simple analytical
form. However, small energy losses r can be treated,
in eGect, according to a continuous slowing-down model
so that the detailed dependence of k, on r is irrelevant
but only the total rate of energy dissipation in low-r
collisions, Js r k, (T,r')dr', matters. Analytical treat-
ments which take advantage of this circumstance are
presented in the following sections.

Owing to (4), we can write

1

r'k, (T,r')dr'=a In(r/Q),

r»I, r«T, «&mc',

where Q is a constant determined by the theory of
stopping power which, for e«c, equals Bethe's
Q;„=(IpZ)'/2sssv', with Is=10 ev. ' In so far as all
relevant data on k, for low r are represented by (5),
one may consider for analytical purposes that (4) holds
down to r= Q and that k. vanishes for r(Q

The preceding arguments do not hold as well for the

r H. A. Bethe, Handbuch der Physik (Springer, Berlin, 1933),
Vol. 24, Part 1, 491 ff; Ann. Physik 5, 325 (1930).
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heaviest materials, where the binding energy of the E
electrons is ~0.2mc' and there is hardly any range of
7 for which the conditions of (3) are fully satisfied.
(However, the E electrons in Pb are only 2 out of a
total of 82.) This difliculty has been pointed out by
Blunck and Leisegang' in connection with the Landau
theory'. of straggling of energy loss, which treats small

energy losses in the manner indicated above. These
authors gave a method for correcting the Landau
theory. In the Appendix the size of the Blunck-Leisegang
correction is estimated in connection with our results,

with e=2.718 and y=1.781 . The solution of (6)
is, therefore, "

C+ 'bM

I(Tp &)= (2x. i) ' dP exp(PA)/P ln(e/ypQ). (9)
C—'Cop

Deformation of the path of integration to loop along
the negative real axis yields

I(To 5)=—' (du/u) e p( —u)/I '+in'(eD/yuQ)]

4. LANDAU-TYPE THEORY'
du exp( —u)

0
In order to learn how to solve the problem with

regard to small energy losses without having yet to
face the complications arising from the behavior of
k(T, r) for large r, a solution of (1) was first sought in
the range Tp —T«Tp, Tp —T«mc', Tp —T&)I. Within
this range one may perform the same simplifications
as in the Landau theory, ' i.e., assume k(T, r) to be
given by (4) from r=Q to r= co, and extend the
integral on the left of (1) to r= co since the resulting
error is negligible. (See also F, Appendix V.) The equa-
tion becomes, then,

Xarctant vr/1n (eA/yuQ) j. (10)

Since lnl is small throughout the important range of
the last integration, the arctangent can be expanded
into powers of 1nu. Recalling that

du exp( —u) ln"u=Fl'"&(1)

the eth derivative of the gamma function at x= i, and
setting B=ln(eh/yQ), we find

oo

I(Tp 6) ~ dr/r = j I(To 6+&)dr/r'+—&(&), (6) I(Ts—Q) = fx i arctan(s/B)+p(&& (1)/(~s+Bs)
+BF&" (1)/(~'+ B')'+ }. (11)

where 6 represents Ts T, and I(T) re—presents xy(T).
The Laplace transform of I(T) is then defined as

follows:"

s(P) = dA exp( —Ph)I(Tp —5). (7)

Provided Q is effectively independent of T," the trans-
form of (6) is"

1=v(P) drt:1 —exp( —Pr) j/r'=e(P)P»(e/7PQ), (8)
Q

TABLE I. Comparison between approximate solutions to
the Landau-type problem.

This expansion converges very rapidly. A short
tabulation of the bracketed quantity in (11) is given
in the second column of Table I. Notice that, for B&)z,
y(Ts —6)= 1/xB, which is the reciprocal of the stopping
power calculated by excluding all energy losses r) eD/y.
This consideration, as well as an inspection of (9), illus-
trates the relationship of the result of this calculation
to the prediction of the model of continuous slowing
down. Notice also the rise of y for very small 6 indi-
cating that the "eGective stopping power" becomes
quite small. This rise constitutes the "transient" dis-
cussed in F, Sec. 3c.

5. GENERAL ANALYTICAL TREATMENT

(» —T)/0

10
10'
103
104
10'
106

I(T), expression (11)

0.2069
0.1435
0.1086
0.08718
0.07272
0.06235

I (T), expression (24)

0.2258
0.1485
0.1107
0.08821
0.07332
0.06273

We now want to return to the general problem of
formulating an equation which is amenable to numerical
treatment. To do this we uti1ize an integral form which
is equivalent to (1), namely,

' L. Landau, J. Phys. (U.S.S.R.) 8, 201 (1944).' U. Fano and L. V. Spencer, Phys. Rev. 91, 240 (1953).
' The possibility of incorporating the variable factor ft into the

f(T) extends the range of accuracy of the present calculation
beyond that of the Landau theory. The limit of accuracy is now
set by the assumed validity of (4) and the assumed constancy of Q.

"The evaluation of the integral in this equation assumes that
pQ((1, which is very well fuldlled for values of p of interest to this
calculation.

where

E(T',T) = I k(T', r)dr
pl

expresses the probability per unit path that an electron's

"This equation results from Landau's Eqs. (5) and (10) by
integrating f(x,n) over all values of the path length x.
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kinetic energy drops from T' to a value below T. [It is
implied, of course, that k(T, r) vanishes for r)T.j
Equation (12) states that the energy of every electron
must drop below T somewhere along its path. The form
(12) minimizes an undesireable feature of Eq. (1): the
integral on the left side of (1) represents the total prob-
ability of collision, which is excessively large owing to
the contribution of small energy losses but whose value
is irrelevant since only the rate of energy dissipation
through small losses matters. The integral cross section
E(T',T) in (12) is large only for a very small range of
values of T' (very near to T) and thus does not con-
tribute excessively to the integral.

The integral form of Eq. (2) is
F(Tp, T) = d T'K (T',T),

The terms on the right side of (15) are small or of
incidental significance. The first of them, which yields
z in the limit of small 6, materially improves the con-
vergence of the numerical procedure; otherwise it could
have been removed by modifying details of the con-
dition (16).The essential point of the condition is that
the integral over E(T',T) must approximate the other
term on the left side of (17), namely the stopping power,
limited to small or moderate erIergy losses. In addition, it
will clearly be convenient that K(T',T) remain rather
close to E(T',T) even for T'&)T and that it be inte-
grable analytically.

Setting

dT'y(T')E(T', T)= S(T')dT'.
4T

(14)
we recast (15) in the form

In order to simplify the integration over T' in the
critical range T'=T, we strive to smooth out and
reduce in magnitude the integrand in this range by
adding and subtracting from (12) some suitable ex-
pression. We indicate with K(T', T) a function" to be
chosen according to criteria indicated below and write

pTO

y(T) dT'K(T', T)Jr
pTD

+ i dT'[y(T')E(T', T) y(T)K(T',—T)]=1. (15)
JT

Consider now the expression in brackets. As T' ap-
proaches T, y(T') approaches y(T) because it is a con-
tinuous function. The bracket will then tend to be
small and 6nite, as T' approaches T, provided E(T',T)
approximates E(T',T) in this range. More specifically,
we are interested in minimizing the integral over the
difference between these expressions, in the critical
range. Accordingly we set as a main consideration for
the choice of E(T',T) that'4

~ T+5

d T'[E(T',T) K(T', T)j=0, —
T

for b)&1, "o«T, 8«mes. (16)

In terms of the differential cross section k(T, r), this
condition reads

~b ~5.k(T+r, .)d.
~

E(T+S, T)dk
0

d T'[y (T')E(T',T) y(T)K(—T',T)], (19)

which is suited to numerical integration. In fact, one
may regard 1/F(Ts, T) as a first approximation estimate
of y(T). The first term on the right of (19),which is the
largest one, represents indeed a reciprocal stopping
power. The important point is then that the whole
integral in the braces of (19) be much smaller than 1.
Thus the structure of (19) lends itself also to an itera-
tion procedure. In fact (19) can be integrated directly
by numerical methods proceeding stepwise from high to
low energies, as in the x-ray problem, 4 iteration being
used to a minor extent in performing each integration
step. The important conditions on the choice of X, as
stated before, are (1) that the numerical integration
over T' be easy, and (2) that the whole integral over T'
remain much smaller than 1.

6. A SIMPLE APPLICATION TO THE LANDAU-TYPE
PROBLEM

As a first test of (19), this equation was solved under
the assumption that the probability of energy losses is
the same as in the Landau-type theory of Sec. 4, i.e.,
k(T, ~) =ir(T)/r for r )~Q. Equation (13) yields, then,

E(T',T) =14(T')/(T' T), for T' T—)Q, —'
(20)

E(T',T) =E(T+Q, T), for T'—T & Q.

= —

HAJJ

k(T+b, r)dr+
4 T

d T'(T' T)—We choose K(T',T), for this problem, as identical with
E(T',T) except for the replacement of ir(T') with ir(T),
namely,

XJ )8k (T', r)/r) T']dr. (17)
T'-T

"One may express K(T', T) in the form fz r"Tc(T,r)dr and
regard fc(T,r) as a "mock cross section. "

'4 The variation of rc between T and T+b, which is small owing
to b((T, will often be disregarded in the following formulas.

Equation (18) yields, then,

F(To,T) =ir(T) {1+In[(To—T)/Qf}. (22)

K(T', T) =ir(T)/(T' T), for T' T) Q, — —
(21)

K(T',T)=E(T+Q, T), for T' —T&Q
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If we enter (20), (21), and (22) into (19) and define,
as in Sec. 4, I(T)=«(T)y(T), (19) reduces to

I(T)= {1+»L(Tp—T)/K) '

I
pTQ T

X 1
J (dr/r)P(T+ r) I(T—)j

~

(23)
0

A erst approximation to I(T) is obtained by neglect-
ing the integral in comparison with unity

I(T)= {1+lnL(Tp—T)/Q]) '.

Table I compares I(T) obtained from this expression
with values for I(T) obtained from (11).The agreement
is excellent. " Further, expressions (24) and (11) can
be shown to be asymptotically the same as (Tp—T)
increases.

7. DISCUSSION OF CROSS SECTIONS

For the purpose of a realistic calculation, we have
utilized cross sections with the following improvements
with respect to the Landau-type theory. (1) The non-
relativistic Rutherford cross section for knock-on col-
lisions has been replaced by the relativistic Mfiller
formula. The energy loss is limited to r ~& T/2 for elec-
trons of energy T since an electron emerging from a
knock-on collision with energy lower than T/2 is clas-
sified as a secondary. (2) Energy losses by bremsstrah-
lung have been added. (3) The production of secondary
electrons has been entered as an additional source on
the right side of (14). Notice that the production of
secondaries of energy T depends upon the presence of
primaries of energy greater than 2T and therefore on
previous determination of y(T') for T') 2T.

For very small energy losses the Mfiller formula has
been arbitrarily assumed to remain valid down to r = Q
for the reasons discussed in Sec. 3, thus causing the
small error considered in the Appendix.

where Q is chosen so as to give the correct stopping
power, limited to moderate energy losses. The value of
Q was chosen, on the basis of stopping power theory, '
supplemented by experimental data, as

Q=-', (ZI /nzc')'LT(T+2) j-' e p(P'), (26)

in units of mc', with Io equal to 11.5 ev for Al and to
10.2 ev for Pb. This value of Q fails to take into account
the density eGect, a simpli6cation which seemed war-
ranted in a pilot calculation. "

According to (13), the contribution of collisions to
K(T', T) is, then,

K,(T', T) =0, for T' &~ 2T,

T112

K.(T', T) = )~ ksr(T', r)dr
T'—T

= (2s Ilt,rp'/P") {(T'—T)—'—T—'

-L(2+T'-')/(T'+1)']»LT/(T'-T)]

+ (T'+ 1)-s(T—T'/2) ) (27)

for T+Q &~T' &~2T,

K,(T',T)=K,(T+Q, T), for T'~& T+Q.

For the corresponding function K,(T',T) we took

K.(T', T) =0, for T'~&2T,

K (T' T)= (2~$,rp'/P') {(T'—T)-&—T
—L(2+T-')/(T+ 1)'j»l T/(T' —T)j

+ (T+1) '(T—T'/2)), for T+Q ~& T'~&2T, (28)

K,(T',T) =K(T+Q, T), for T' & T+Q.

The contribution to F(Tp, T) arising from K,(T',T) is

A. Probability of Knock-on Collisions

The probability of collisions with energy loss r,
according to the Mgller relativistic calculation, "may
be written

ksr(T/T) = (2%.Jt/erp'/P'){T '+(T T) '—
—L(2+T ')/(T+1)'3

Xhr t+(T—r)-'$+(T+1)-s) (25)

for r ~& T/2, where T and r are in mc' units, rp=es//mes

and P=s/c= fT(T+2)j&/(T+1). As in Secs. 3 and 6
we assume this law to hold for small r down to r= Q,

'~ A second approximation can easily be calculated by inserting
the approximate solution (24) into the integral in (23). This
second approximation, which agrees to at least four significant
figures with column 1 of Table I, in the following:

1(2')= (1+h (~/0) & '(1—(~'/6)L1+»(~/Q)r'),
where 6,= To-T.

'P C. Misller, Z. Physik 70, 686 (1931).

= (2s E,rps/P') {1+In(5/Q)—6/T

-L(2+T-')/(T+ 1)'3~51+»(T/~)]

+(T+') '~~/')( -~/')&f

where 6 equals To—T or T, whichever is smaller, and
terms of the order of Q have been disregarded in the
braces.

B. Production of Secondary Electrons

The Mfiller expression (25), k,~(T,r), also represents
the probability of production of secondary electrons of
energy T rwhen evaluated for r)—T/2. Therefore, the
additional "source" of secondary electrons, to be
entered as S(T') in (14) is given by Jsz."dT"y(T")

~~ Owing to the density eGect, Q should not decrease indefinitely
as T increases but should approach the minimum value
2xe(137)2$ rP with e=2.71828 . -.
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Fb(Tp, T)= d T'Kb(T', T)

Xksr(T", T"—T'). When this expression is entered in and, therefore,
(14) together with the "true" source S(T') =3(P—To)

rwe find, by changing the order of integrations,

F00
p

TQ

S(T')d T'= 1+) d T'y (T')K, (T',T),
T 2T

for T&Tp/2, (30)
where

T'—T

K, (T',T) =)t k (T', )d
T'/2

= (ZN, r o/s137) [28 1 . —(16/9) lnZ)

X[T/(T+1)) 6 ln[(h+T)/6 J

+T in[(a+ T)/Tj
= (2~Ã,r,s/P")(T-i —(T'—T)-

—L(2+T' ')/(T'+1)'3 h [(T'—T)/Tj
~T+6 pT'

dT drf(T',r), (35)

+ T'+1 'T'2 —T . 31
where 6 equals Tp —T or T, whichever is smaller, as in

Notice that k~(T,r) =k~(T, T—r), and K (P T) (29). In the integrations over f(T', r), the aPProximate
=J'r'I'k. (T', )d . analytical expressions by SchiG" were entered instead

of the numerical tables of Bethe and Heitler.
C. Bremsstrahlung Energy Losses

The cross section for energy losses by bremsstrahlung
has been calculated by Bethe and Heitler. "This treat-
ment relies upon the Born approximation and yields a
cross section of the form

kb(T, r) = (ZE,ros/137) [28.1—(16/9) lnZ)

X[T/(T+1)j[r-'—f(T,r) j, (32)

where T,r are in mc units and f(T,r) is a positive
function, containing no singularity, which is known
only numerically. "Since kb(T, r) vanishes for r) T the
integral (13) over this cross section yields

Kb(T', T) = (ZX,roo/137)[28. 1—(16/9) lnZ)

TI

X[T'/(T'+1)3»[T'/(T' —T)3— d f(T', )
J Tr

D. Final Form of the Equation

We combine the preceding formulas by setting

K(T', T)=K,(T',T)+Kb(T', T), for T' ~&2T,

E(T',T) =E,(T',T)+Kb(T', T), for T' ~&2T,

(36)

(37)

K*(T',T)=K, (T',T) K,(P,T), —
for 2T &~T' ~& Tp, (38)

&(To,T)=&.(To,T)+Fb(To,T), (39)

where E„X„E„E~,E~, P„and F~ are given, respec-
tively, by (27), (28), (31), (33), (34), (29), and (35).
We take (30) as the source term and treat the large
bremsstrahlung losses as a "negative source, " as ex-
plained above. Equation (19) takes now the form

pZQ

y(T) = [P(To,T)j 1+ dT'K*(T', T)y(T')
~ 2T.

dT'[y(T')K(T', T) y(T)E(T', T)]—, (40)

8. SOME DETAILS OF THE CALCULATION

The usual method for solving numerically a Uolterra
integral equation like that of expression (40) involves
writing finite sums for the integrals. This reduces the
integral equation to a triangular system of linear equa-
tions which can be easily solved in succession. A set of
points T, must be chosen, one per interval of integra-
tion, at which the integrand is evaluated. A suitable
integration formula/must likewise be selected (e.g. ,
trapezoidal, Simpson's Rule). The first step in the
integration (i.e., the first linear equation) often requires
special attention.

~ L. I. SchiG, Phys. Rev. 83, 252 (1951).

Kb(T', T)=0, for T')2T,

Kb(T', T) = (ZE ros/137) [28.1—(16/9) lnZj
-Tl

X[T/(T+1)j ln[T'/(T' —T)]— dr f(T', r) ~,
~T —T

for T'&2T, (34)
'o H. Bethe and W. Heitler, Proc. Roy. Soc. (London) A146, 83

(1934)."Notice that bremsstrahlung in the 6eld of an electron has not
been included in (32).

Since K, (T',T) vanishes for T')2T, according to
(27), and since Kb(T', T) is small in the same range of
T )2T, it is possible and, in fact, convenient, to modify
again the integral of Eq. (14). We limit the integral
on the left side to T ~& T' ~& 2T and transfer the remain- where d equals To—T or T, as before.
ing portion, fr"y(T')Kb(T', T)dT' to the right side, to
be treated in eGect as a "negative source. "

Following this idea, we take
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In our calculations the T; were distributed evenly on
a scale of logT, that is, according to the formula Tp,

gTp, PTp, etc. There were three reasons for this: (1) the
population of secondary electrons might increase so
rapidly at low energies that the solution would diverge,
perhaps as some inverse power of T, as T—&0. If this
happened, the integration could nevertheless proceed
owing to the smaller and smaller intervals of T. (2) The
choice of g according to t "=-,', where n is an integer,
would enable us to take into account very simply the
special behavior at T'=2T. (3) Owing to the logarith-
mic distribution, the same set of points is equally
suited to diGerent primary energies.

As a 6rst trial, t was chosen so that l'= z. (Too small

a value for f means coarse intervals which tend to yield
inaccurate results. On the other hand, a g near unity
means many steps and a long calculation. We decided
that for the Grst calculation it would be better to err
in the direction of small f )Fortu. nately, later experience
indicated that this was a fairly good choice, and most
of the calculations were accomplished using this interval.

For an integration formula we took Simpson's Rule
which means approximation by parabolas. Simpson's
Rule is especially suited to an even number of integra-
tion intervals as well as to equal-sized intervals. We
therefore modi6ed Simpson's Rule to apply to
equal-sized intervals in a logarithmic sense. Where the
number of integration intervals was odd, we fitted the
last two intervals with a parabola and integrated this
parabola over the last interval only.

For the 6rst calculations we tabulated E(T',T),
K(T',T), and E*(T',T), neglecting the bremsstrahlung

part, from Tp ——80 (in fisc' units) to T= 1.25. (Later this
was extended to T=0.0124.) In these tabulations the
points T'= T were left blank, since for T'—&T,

Ey (T')K (T', T) y(T)E(T', T)3—p-

(a/aT)(2 X.r, y(T)/P ).
(See the Appendix. )

While accomplishing the first solutions, we tabulated
the quantity fty(T')K(T', T) y(T)K(T', T)j for eac—h

step T= T„ in order to make sure that it is suKciently
well behaved to allow an accurate evaluation of the
integral over T' by our numerical integration scheme.
We also decided to use a step-by-step iteration scheme
as follows. Having determined y(T) at Tp, Ti, .T„ i
we estimated what y(T„) will be. Making use of this,
we then tabulate the quantity fy(T')E(T', T)—y(T)
&(K(T',T)$ for T=T„, and for T'=T„, T„„T„„
T 3 We then evaluate the integral and thereby
obtain from (40) a new estimate of y(T„). These esti-
mates converge extremely rapidly to a unique value.

The remaining questions concern the start of the
integration from T To. The approximate solutions

~' To calculate the derivative in (41) we merely fitted a parabola
to the points T„, T„1,and T 2 and differentiated. This proved
adequate because the solution is not very sensitive to the value
of the derivative.

(24) and (11) are accurate near Tp and can be used to
give nearly correct values for the y(T;) for T; near Tp.
Unfortunately, y(T) has a peak of logarithmic type at
T near To. However, this peak contributes a negligible
amount to the integral. In most calculations it was
found adequate to clip oG the peak at the level of
y(0.95Tp), the more so since the integral of fy(T')
XE(T',T) y(T)E—(T',T)) is very small compared with
unity near To. For greater accuracy at the beginning of
the calculation an extra point was inserted between To
and fTp.

9. FURTHER DETAILS—BREMSSTRAHLUNG

Calculations involving bremsstrahlung have two
unpleasant features: (1) the quantity Jr r~'f(T', r)dv.
must be tabulated, and (2) the approximate solution,
1/F(Tp, T), is less accurate than in calculations not
involving bremsstrahlung. "

To tabulate the quantity fp rr'f(T', r) dr, we
established a fairly coarse grid of values of f(T', r). We
then carried out the integration numerically by fitting
parabolas. Finally, we did a double interpolation, first
in the variable (1—T/T') and then in the variable T',
in order to establish the table needed for the solution
of the integral equation. " The tabulations were not
carried below T=I.25mc'. At this energy the sudden
omission of bremsstrahlung introduces a discontinuity
in y(T) which amounts to about 5 percent in Pb and
to less than 1 percent in Al. We made a rough extra-
polation of the bremsstrahlung correction for energies
somewhat lower than 1.25mc' in order to reduce the
discontinuity in Pb to a smaller value.

In problems involving bremsstrahlung, the integra-
tion was started at energies so near To that brems-
strahlung modified the y(T) given by expressions (24)
and (11) by no more than a percent or so. In the 80mc'
Pb problem, this meant setting Ti/To=0. 998. There-
after, to expand the interval of integration, the T s
were distributed uniformly in a scale of log(Tp —T). In
order to join this system of exponentially increasing
intervals with the set of decreasing intervals previously
established for lower energies, the last of the increasing
intervals was arranged to coincide with the interval

fTp ~&T &~/'Tp, i.e., with the second interval of the set
discussed in the preceding section. This procedure
proved workable because 1/F(Tp, T) is always a fairly
good estimate of y(T) for T)Tp/2.

An appropriate integration formula was established
for this rather unusual sequence of intervals, a weight
being assigned to each pair of values (T', T).

~'For example, in the 80mc' calculation with bremsstrahlung
in Pb, y(T) and 1/F(Tp, T) differ by as much as 12 percent,
whereas neglecting bremsstrahlung they diBer by no more than
a percent or so.

~ The tabulation off(T', r) for Pb utilized the spectrum of Schiif
with ep= 0. The f(T',r) so obtained was normalized to agree with
that of Bethe and Heitler at v=0. This procedure appeared
justified by expedience in a first pilot calculation. The tabulation
for Al used the SchiG spectrum integrated over all angles.
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As mentioned previously, much of the numerical
work involves tabulating and integrating numerically
the function fy(T')K(T', T)—y(T)K(T', T)$. Having
determined that this is a reasonably well-behaved
function, the integrals fr 0' dT'y(T')K(T', T) and
faro'rdT'K(T', T) were calculated separately, using
the same integration weights for both integrals and
assuming that the first integrand is

(8/BT)$27rN t'Q y(T)/p j
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at T'= T, whereas the second integrand is zero at that
point. This separation makes it possible to perform
first the integrations and then independently the deter-
mination of y(T„).
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Pro. 1. Electron slowing-down spectra for an 80mc2 source in Pb.

TABLE II. Comparison between y(T) and the reciprocal stopping
power neglecting both bremsstrahlung and secondary electrons.

T, mc~ units

79.86
63.50
50.40
40.00
20.00
10.00
5.00
2.50
1.25
0.625
0.3125
0.1563
0.07813
0.039{jl6
0.01953

Reciprocal
stopping

power, Pb

0.0293
0.0302
0.0310
0.0319
0.0350
0.0385
0.0421
0.0448
0.0443
0.0387
0.0295
0.0203

y(T), Pb

0.0366
0.0304
0.0307
0.0314
0.0344
0.0378
0.0414
0.0440
0.0433
0.0379
0.0290
0.0199

Reciprocal
stopping
power, Al

0.0892
0.0914
0.0936
0.0960
0.1039
0.1126
0.1211
0.1263
0.1218
0.1037
0.0769
0.0510
0.0318
0.0193
0.0116

y(T), Al

0.1065
0.0921
0.0927
0.0947
0.1024
0.1109
0.1192
0.1242
0.1195
0.1020
0.0757
0.0502
0.0310
0.0186
0.0110

T, mcm units

79.86
63,50
50.40
40.00

Reciprocal
stopping

power, Pb

0.00584
0.00703
0.00853
0.0104

y(T)), Pb

0.0336
0.00704
0.00668
0.00779

Reciprocal
stopping
power, Al

0.0555
0.0617
0.0679
0.0740

y(T), Al

0.1065
0.0658
0.0633
0.0664

1O. DISCUSSION OF RESULTS

Tables II and III and Figs. 1 through 4 summarize
the results of our calculations. In all tables and figures
the differential track length in units of cm/mc is pre-
sented as a function of the electron kinetic energy in
@ac' units.

Each of the Figs. 1 through 4 presents the electron
slowing down spectra calculated with different re6ne-
ments, namely, neglecting both secondary electrons
and bremsstrahlung (curve I), neglecting only the
bremsstrahlung (curve II), and including both brems-
strahlung and secondary electrons (curve III). In Fig. 4
the bremsstrahlung influence is so small that curves II
and III coincide. In all figures curves I and II coincide

TABLB III. Comparison between y(T) and the reciprocal stop-
ping power when bremsstrahlung is included but secondary elec-
trons are not.
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I"Ig, g, Electron slowing-down: spectra for a 4mc' source in Pb.

at energies higher than one-half the initial energy since
all secondaries have energies less than one half the
initial energy.

A comparison of curves I and II shows the buildup
of secondary electrons. All four figures indicate that
neglecting bremsstrahlung the secondary electrons
become as numerous as the primary electrons at about
4 percent of the initial energy. There are 10 percent as
many secondaries as primaries at about 16 percent of
the initial energy. Notice also that at the lowest energies
there are up to 300 times as many secondary electrons
as there are primary electrons.

A comparison of curves II and III demonstrates the
inftuence of bremsstrahlung. This is overwhelming at
high energies in Pb and negligible at low energies in Al.
Bremsstrahlung has been treated only as a mechanism
for energy loss and electrons resulting from cascade
processes have rot been included.

Notice that curves II and III tend to separate at
energies at which the secondaries begin to dominate

( 1mc' for the 80mc' source problems). This is because
the generation of secondaries of energy T depends upon
the spectrum at energies greater than 2T. In the brems-
strahlung calculations there are always fewer electrons
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Fxo. 3. Electron slowing-down spectra for an 80mc2 source in Al,

at high energies than in the bremsstrahlung-neglected
calculations, hence fewer secondaries are generated and
the spectrum at low energies rises somewhat more
slowly. On the other hand, at very low energies curves
II and III tend to become parallel, indicating an ap-
proach to an equilibrium spectrum.

Table II compares spectra (which do not involve
secondary electrons or bremsstrahlung) with the re-
ciprocal stopping power, which is the spectrum obtained
on the assumption that the electrons lose their energy
continuously. The model of continuous slowing down
disregards the possibility that an electron loses much
energy in a single process and thereby overlooks the
interlinkage between the values of y(T) for diIIerent
values of T. It stands to reason that this oversimpli-
fication will not have drastic sects in regions of the
spectrum where y (T) remains fairly constant. The data
in Table II verify this surmise.

The model of continuous slowing down was improved
in F, Sec. 5, by a procedure of successive approxima-
tions. This procedure takes partial account of the
interlinkage between diGerent portions of the spectrum
by considering successive derivatives of the stopping
power and of higher moments of the energy loss dis-
tribution, at each energy. The spectrum y (T) is thereby
given by an expansion, Eq. (30), of F whose first term
is the reciprocal stopping power. For electron slowing

down, the convergence of this expansion cannot be
depended upon because extreme Quctuations of energy
loss in individual collisions are too important. Neverthe-
less, it is interesting to compare the erst corrective
term of the expansion with the discrepancy between
the reciprocal stopping power and the "exact" value
of y(T) calculated in this paper. The first correction
reduces the reciprocal stopping power by a factor of
approximately L1—1/48$, where J3 is the stopping
number $8~2 in(T/IpZ) is of the order of 10 or 20$.
Comparison with Table II shows that this correction
has the proper sign and order of magnitude for most

values of T and displays the increasing trend of the dis-
crepancy at lower values of T. The large discrepancy
between the reciprocal stopping power and y(T) in the
upper portion of the spectrum derives from the "tran-
sient" eB'ect for which no allowance was made in Kq.
(30) of F.

Table III gives a comparison similar to that of Table
II between the reciprocal stopping power and y(T)
when bremsstrahlung is included in the calculation. As
in Table II, the continuous slowing down model gives a
low value in the transient range, near To, and a high
value in the broad range of lower energies. However, in
this range, the discrepancy is quite large, when brems-
strahlung is important, as expected in view of the
extreme type of energy fluctuations that is characteristic
of the bremsstrahlung process.

We wish to thank Miss Ida K. Hornstein and Mr.
John Hubbell for much help in the numerical work.

APPENDIX

The Blunck-Leisegang correction concerns the evalu-
ation of the integral of fy(T')K(T', T) y(T)K(T', T—)j
for P T in (19). We rewrite this expression in the
form

L3 (T') 3(I') jK(T', T—)+3 (T)LK(T', T) K(T', T)3. —
(42)

The second bracket in this expression can be taken as
zero at T'=T owing to the condition (16)." Since
K(T', T) peaks near T'=T, the first bracket in (42)
must be replaced with fdy(T)/dT j(T'—T) for T'~T.
(Higher-order terms in the expansion of y(T') —y(T)
are not signiticant in this approximation. ) Since the
important quantity is not (42) itself but its integral
over a range of T' near T we calculate, as in (17),

F+5

dT'(T—T')K (T',T)
&dT)

1(dz) 'k(T+, )d
2 &dT) &0

T+5 T+5

+8' ~ k(T+8, 7)d7 )f dT'(T' T—)'—
T

Lak(T', ~)/aT'jdr . (43)
F'—F

For the purpose of evaluating the integral in (19) we

are interested only in those terms of (43) that are small

of order 8 as 8 grows smaller. The last term in the braces
of (43) is, accordingly, negligible. The second term in

the braces yields ~(T)8, if one assumes k to be given by
(4) for the relevant values of the variables. " With
regard to the 6rst term, we have been assuming since

Sec. 3 that k(T, r) is represented adequately by (4) also
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for low values of r when it is multiplied by 7", with
n&1, and integrated. Under this assumption, the erst
term in the braces yields s(T)8, like the second term,
and the total value of (43), to within b' corrections, is
(dy/dT)II(T)8, which justifies (41)."

The Blunck-Leisegang correction consists in evalu-
ating Jssr'k(T+r, r)dr to a better accuracy than is
done by taking k according to (4). The following evalua-
ation is believed to represent an improvement with
respect to the rough estimation given by the original
authors.

The collision probability is given, for low or moderate
7, by the Bethe formula~

QISR

E

E

X
co

w Q l-
I

O.I I.O
KINETlC ENERGY, IncS units

IF, (e) I de/e
Qmin

(44) FIG. 4. Electron slowing-down spectra for a 4mc' source in Al.

Here, ~F,(e) I' represents the generalized form factor,
i.e., the probability that an atom absorbs the energy 7

when one of its electrons has absorbed the momentum
corresponding to a free recoil energy Q. Since, for large

Q, (F,(Q) ~' 8(e—r), and since Q;, which depends
on r, may be replaced with an e6'ective value Q, we
have with adequate accuracy

where Q has been disregarded as compared to 8. Thus,
recalling (42) and (43), we find that the integral in (19)
has been underestimated, in the range P T, by an
amount approximately equal to

,' (dy/d T)—a(4/3)(T).4 ln (8/Q). (47)

This quantity may be expressed, according to (5), in
terms of the stopping power of nonradiative collisions

rsk(T+r, r)dr~x dQQ s ' ~F, (Q) isrsdr (45).J,— J, (2/3)(dy/dT)(T). k.(T, ) d .
Jo

The last integral over 7 can be evaluated by a closure
theorem (sum rule) and yields Q'+ (4/3)Q(T), &, where

(T),4 is the mean kinetic energy of the atomic electrons
When this expression is entered in (45), the first term
Q' yields the same result that was obtained by taking
k(T, r) according to (4) instead of (44). The second
term, (4/3)e(T), &, yields the desired correction. We
have then

r'k(T+r, r)dr s[h+ (4/3)(T)„ in(5/Q) j, (46)

The residual dependence of (47) and (48) on 8 indicates
that the departures from the free-electron collision for-
mula (4) due to the', .bound motion of atomic electrons
cause our earlier evaluation of (19) to be somewhat in
error even for T' substantially larger than T. The total
error is given approximately by (48) with the integral
replaced with the full stopping power of nonradiative
collisions. Therefore, it is clearly of the order of mag-
nitude of the relative variation of y(T) over a spectral
interval (T),4. According to the Thomas-Fermi model

(T),& is of the order of 10Z4" ev.


