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The eiiect of inelastic collisions is often introduced in the Moliere theory by replacing Z' with Z(Z+1).
It is pointed out that this procedure relies on the implied incorrect assumption that elastic and inelastic
collisions have the same small-angle cut-oQ'. Taking into account separately the cut-off of inelastic collisions,
the Moliere theory is shown to require the following modifications: (a) For incident electrons, replace Z'
with Z(Z+1) and increase the Moliere ti by (Z+1) '{InLO.I60Z &(1+3.33Ze'/hv)g —n; l, where —n;, is
defined as an integral over the incoherent scattering function whose value is about 5. (b) For incident
heavy particles, leave Z' unaltered but increase b by Z '{In/113OZ 't'(es/ss —1) ')—n; —ssv /cs}.

1. INTRODUCTION

HE multiple scattering of charged particles tra-
versing a material is treated by the Moliere

theory. "The scattering arises primarily from elastic
collisions against the Coulomb 6eld of atomic nuclei.
Inelastic collisions with atomic electrons also contribute
to multiple scattering, especially in light elements, but
are disregarded, initially, in the Moliere theory. To
make allowance for inelastic collisions the squared
nuclear charge Z2 is often' 4 replaced with the sum of
the squares of the nuclear and electronic charges Z'+Z.
This procedure wouM be correct if the single scattering
cross sections were given adequately by the Rutherford
formula, i.e., were proportional to the squared charges
of the colliding particles.

However, the actual cross sections depart at small

angles from the Rutherford formula. The Rutherford
rise to ininity is actually "cut off," and the cutoG
divers for elastic and inelastic collisions' since it
depends, respectively, on the density distribution of
atomic electrons and on their binding. The binding
effect is characterized for the inelastic collisions of
particles, as well as of x-ray photons, by the "incoherent
scattering function" S.~

The cut-off has a substantial influence on multiple

scattering. Therefore, the replacement of Z' with

Z(Z+1) serves only to estimate the order of magnitude

of the effect of inelastic collisions. (The same situation

is encountered in bremsstrahlung and pair-production
processes. ) The present paper introduces inelastic

collisions into the Moliere theory ub initio.
Departures from the Rutherford formula are also

encountered at large angles. For incident electrons

these departures are comparatively minor, being due to
exchange, spin, and relativity eGects, and will be dis-
cussed briefly in Sec. 4. For inelastic collisions of
incident heavy particles, large angle deQections are
suppressed, by the requirements of momentum con-
servation; this efFect causes the inelastic multiple
scattering to be Gaussian rather than Moliere-like (see
Sec. 5).

f(t, 0) =Qt(l+-,')Pt (8)

p 7I

&(exp —1A o (x) sinxdxL1 —Pt (x)J, (1)

where o (x) represents the differential cross section for
single scattering by an angle x and the other symbols
have their usual meaning. Ke separate the elastic and
inelastic components of

o(x) =o.i(x)+o'-.i(x), (2)

and set ourselves the task of comparing the contribution
of o;,i to the exponent of (1) with the contribution of
0,1. For the purpose of this comparison r, i will be taken,
according to (44) and (10) of 353, in the form

%to,i(x) sinxdx =2Z'x, 'q(x) sinxdx/4(1 —cosx)s (3)

x,'= 4trEte's'/p'ti', (4)

2. SMALL-ANGLE EFFECTS FOR INCIDENT
ELECTRONS

%e deal with the Goudsmit-Saunderson form of the
theory of multiple scattering, according to which the
angular distribution of particles after a path length t is
given by (39) of 353„namelye

*Work supported by the U. S. Once of Naval Research and.

by the U. S. Atomic Energy Commission. where se, p, 'a,nd ti are the charge, momentum, aisd' G. Moliere, Z. Naturforsch. Ba, 78 (1948).' H. A. Bethe, phys. Rev. 89, 1256 (1953};this paper constitutes velocity of the incident particle, q(X) is an unspecified
the point of departure of the present tr'eatment and will be screening function, and X2 doers from the X2 of
referred to as 853.

'L. A. Kulchitsky and G. D. Latyshev, Phys. Rev. 61, 254 (10-353) by the deletion of Z(Z+1).
(1942).

4Hanson Lanzl, Lyman, and Scott, Phys. Rev. 84, 634 (1951). 6The "detour factor" mentioned in g53 after Eq. (39) js
'P. M. Morse, Physik. Z. 33, 443 (1932};see also, e.g., M. comparatively unimportant. Arguments from which this factor

Pirenne, DQfraetion of X Rays and &tectrons by 3lotecntes can be estimated are presented by L. V. Spencer
(Cambridge University Press, London, 1946), p. 54, p. 25 tf. Blanchard, this issue /phys. Rev. 93, 114 (1953)j, footnote 14.
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For inelastic collisions we can similarly write'~

/to;, ~ (7t) sin7cdx =2ZX,'S(v) sinxdx/4(1 —cos 7t)',

where

v=0.333Z l(pa/h)t 2(1—cosx)fl
0.333Z-i(pa/h)7c (6)

is a convenient dimensionless function of x, a is the
Bohr radius, and S(v) is the incoherent scattering
function'8 which describes the small angle cutoG in

(5) as q(7r) describes it in (3).
In the Moliere theory, the small-angle cutoff is

adequately characterized by a single parameter, the
angle 7f, defined by (16-853),

5= f+ (Z+1)-'»(x./x'-)' (13)

3. NUMERICAL ESTIMATE OF THE CORRECTION

According to (8) we write

»(x./x'-)'

=lim 2 S(v)dx/x+1 —2 ink+2 lnx, . (14)
Q=oo

In the Moliere theory, the cut-off angle g is eventu-
ally incorporated in the parameter (19-353),defined by

b = In(x,/xg)'+1 —2C. (12)

The corrective term in (11) may be similarly incorpo-
rated by replacing b with

—lnx, = lim
s=m J 0

q(x) dx/x+ s
—»k

Similarly we define an inelastic cut-off angle p; by

(7) For convenience of computation and in order to
eliminate irrelevant physical quantities, we change the
variable x into

k

—ln7c;„= lim ' S(v)dx/x+ s
—ink .

k=oo
0

(8)

The values of x;„and of x, will be compared in Sec. 3.
If the contribution of elastic collisions to the exponent

of (1) is calculated according to the Moliere theory,
this contribution depends on x, through a term

—,'Z'„-,'l (t+1) 1 (X.-'), (9)

as can be seen, e.g. , from (53) and (19) of 853. The
corresponding term of the inelastic contribution is

—,'Zx, 't(l+1) ln(x;„—')
=-'Zx't(t+1)D (x. ')+l (x./x*. )'] (1o)

The combined dependence of the exponent of (1) on

X, and 7c; is given by the sum of (9) and (10), namely

—,'Z(Z+1) .'l(l+1)
X(1 (x.-')+(Z+1)-'»(x./x'. )'}. (»)

The first term in the braces, multiplied by the factor in
front, coincides with the value derived by the Moliere
theory, as in 353, including the factor Z(Z+1), which
makes the estimated allowance for inelastic scattering.
The second term in the braces represents the correction
to the earlier estimate and may be looked upon as a
change in the effective value of x .

~Large angle corrections to (5) may be entered, if required,
by treating the atomic electron as a free particle, in which case
S= l (see Secs. 4 and 5). Small-angle corrections would be required
for values of x no larger than the ratio I/T of the binding energy
of atomic electrons to the kinetic energy of the incident particle.
However such small deflections can be disregarded for our purpose,
since the range 0~&x~&I/T does not contribute appreciably to
the integral in (g) because the integrand S(v)/x levels off at
values of x))I/T.

8W. Heisenberg and L. Bewilogua, Physik. Z. 32, 737, 74{)
(1931).The factor Z & in the definition of n serves to minimize
the variation of S(e) from one material to another. The symbol
e is frequently utilized as the variable of the scattering function
and should not be easily confused with the velocity.

V

—rt;„= lim, " S(exp-', e) du+1 —U' .
P=co —00

(16)

The cut-off angle X„whose value is given by (2()) and
(8) of 353, is replaced with

rt, = 2 1nLZ&(k/pa)/0. 8851
+in(1.13+3.76sZe/kv)+2 ln(0. 333Z fpg/js)

= inL0. 160Z l (1+3.33sZes/Av) ), (17)

so that we write

1n(7t./y;„)'= I —I;„.
Equation (16) has been utilized for the computation

of —u;„by graphical integration. Starting from the
tabulated data on the function S(v) from the Thomas-
Fermi model one finds

(—st; )T.p. =5.8 (19)

for all Z. The value of (—u; ) should not vary greatly
from one material to another. For the H atom, —u;„
can be calculated exactly and is 3.6. White" has
analyzed available data on the function 5 and on the
resulting value of —u; . For Li and 0 the values of—u; from Hartree calculations are 4.6 and 5.0, respec-
tively. The Thomas-Fermi value may be somewhat too
large because of the excessive tail of S, which relates to

' See also J. A. Wheeler and W. F-. Lamb, Jr. , Phys. Rev. 55,
858 (1939), and M. Pirenne (see reference 5).

MG. R. White, National Bureau of Standards Report No.
2763, 1953 (unpublished).

1=2 lnv=2 ln7(+2 ln(0. 333Z—
&pg/$). (15)

LThe exact form of this equation has ln(2(1 —cos7t)) in
the place of 2 Inx, but the small-angle approximation is
already implied in (7) and (8).$

The cut-off angle 7c;„defined by (8) is then replaced
with
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the incorrect feature of the T.F. model of having
electrons with binding energies ranging all the way down
to zero. The incoherent scattering function may also be
calculated from the Wentzel atom model, " which
relates it to the experimental value of the volume dia-
magnetic susceptibility p&;,. This method yields

(—I;„)s=I nLZ*(A/p)1. 87&&10'(—x&;,)j (19')

where A and p are the atomic weight and the density of
the material. This formula yields —m;„=6.3 for Pb.
Presumably $(t) should approach the Wentzel value
at low v and the Thomas-Fermi value at high e""

4. LARGE ANGLE EFFECTS FOR INCIDENT
ELECTRONS

Additional departures from the Moliere theory results
are caused by departures of the inelastic cross section
from the Rutherford formula at large angles. The
correct cross section for inelastic collisions of incident
electrons with substantial deflection and energy loss is
given by the Manlier formula for collisions between free
electrons. This formula departs from the Rutherford
formula when the deflection g attains either the order
of 1 radian or the order of (mes/E) &, E being the energy
of the incident electron.

DefI.ections of this magnitude usually belong in the
tail of the multiple-scattering distribution, that is, they
happen once only, if at all, along the path length of
interest. Under these conditions the correct angular
distribution f„„(t,8) may be estimated according to
the formula

f„„(t,8)= fM,);s„(t,8){o,„sct(8)/aR„,h (8)), (20)

as suggested by Bethe (note on p. 1259 of B53).
Very high energies and rather long path lengths yield

an increasing chance of repeated deQections large
enough to involve appreciable departures from the
Rutherford formula. This effect can be estimated by
expanding the ratio o M~s„/a R„,~, into powers of 1—cosy
and incorporating one or two terms of the expansion in
the calculation of (1). The resulting corrections are of
the same order as the corrective term (54) of 853 and
therefore should be considered only if one takes into
account at the same time other corrections to the
standard. Moliere theory. ' '

If the departures from the Rutherford formula are
too large, the exponent of (1) cannot be represented
adequately by the analytical expression suited for the
Moliere method of summation over l. A general method
of numerical summation over / has been applied by
Spencer and Blanchard" to multiple scattering in a
gold foil. The results of this calculation lend support to
the estimation of relativity corrections by means of (20).

"F. Lenz, Naturwiss. 39, 265 (1952).
"See reference 6. See also L. V. Spencer, Phys. Rev. 90, 146

(1953).

with
&~ '- (Q)~Q=Zx'S( )(P'/2 )dQ/Q', (21)

v=0 333Z. '(a/A)(2mQ)'* (22)

(m=eiectron mass), and with Q varying between the
limits Q;„and Q,„of the stopping power theory. "
The lower limit Q;„ is effectively zero for our purpose
(see note 7); the upper limit is given for heavy particles
by (50.11) of B33, namely,

Q „=2mv'/(1 —tI'/c') '4 (23)

Equation (21) is formally equivalent to (5) provided
one sets 2(1—cosy) = 2mQ/p'. Actually the relationship
between x and Q in a collision with energy loss e is,
to a good approximation)

2 (1—cosx) = (2m/P') C Q —(e'/2mv') (1—v'/cs) ). (24)

The mean value of ~', averaged over all inelastic
collisions with a fixed Q, can be derived by a sum rule
and is IQ'+4Q(2')/3j/S(n), where (T) indicates the
mean kinetic energy of the atomic electrons. Therefore
we write

(2(1—cosy))
= (2~Q/P') L1—(Q+4P'&/3)/Q--S(n) j (25)

The term with (T)/Q„„yields a negligible contribution
and will be disregarded in the following.

Equation (23) must further be modified by the
insertion of a relativistic factor' on the right side,

"See, e.g. , H. A. Bethe, Hartdbuch der I'hysik (Springer, Berlin,
1933), Vol. 24, Part 1, p. 491 6., which will be referred to as 833;
Eq. (21) is easily derived from (49.6) of B33.

'4This formula holds only as long as the incident particle
energy 8 divided by its rest energy jIc' remains much smaller
than M/2m.

'5 This formula constitutes the zero-order term of an expansion
in powers of e/pe, a parameter which is always very small for
incident heavy particles. Notice how the right side of (24) vanishes
for Q=Q; and also, for heavy particles only, when Q=e=Q

"The relativistic treatment of inelastic collisions given in B33
(esp. p. 506) and in the original literature, is not as exhaustive
as one might wish. The main question concerns the evaluation of
the relativistic form factor (50.2) of B33. It is stated that the
relativistic and non-relativistic form factors differ appreciably
only for values of Q much lower or much larger than the binding
energy of the atomic electrons. The reason is that the relativistic
effect depends on the speed of atomic electrons which is itself

S. CALCULATION FOR INCIDENT HEAVY PARTICLES

The recoil imparted to atomic electrons by incident
heavy particles cannot exceed a certain, comparatively
low, ceiling. As the recoil momentum increases, the
deQection x experienced by the incident particle in-

creases at first but then decreases back to zero as the
ceiling is approached. The Rutherford cross section
remains approximately correct if expressed as a function
not of the deflection y but of the recoil momentum or
of the equivalent "recoil energy" Q, i.e., of the kinetic
energy which would be absorbed by a free electron
recoiling from rest.

The inelastic cross section (5) is anyhow expressed
somewhat more accurately in the form
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where
sZx'l(i+ 1)D, (28)

~ Qmax

~QQ-'LS(s) —Q/Q--l
+ Qmin

X[1—(Q/Q ..)("/. )~

S(expsu)du—
p Qmax

dQS(e)Q „„-'(e'/c')

(1 Qmin/Qmax)+ s (1 Qmin /Qmnx ) (& /c )

usr = lnL (0 333)'Z 'fs2mQm. x&'/5' j
=lnL8340Z '"(c'/ti' —1) 'j (30)

u„= int (0.333)'Z 'ls2mQ; a'/A'). (31)
usually (but not for internal electrons and high Z) non-relativistic,
except when Q itself approaches mc'. For Q near Q; the cor-
rection becomes appreciable because the nonrelativistic form
factor tends to vanish. This eRect is unimportant for us, because
low Q values contribute negligibly to multiple scattering. The
high Q correction is represented for heavy particles by the factor
(25), for incident electrons by the replacement of the Rutherford
with the Mufller formula.

'" ff (27) holds for all important values of f, the inelastic
component to the exponent of (1) is proportional to l(l+1), as
calculated below, and its Legendre transform is Gaussian.

according to (55.7) of B33, namely,

1—(Q/2~c') (1—~'/c') =1—(Q/Q--) (s'/c') (26)

We wish now to calculate, for incident heavy parti-
cles, the full contribution of inelastic collisions to the
exponent of (1). The integral over x has to be trans-
formed into an integral over Q. The factor 1—Pi(x) in
(1) can be represented as a polynomial in 1—cosx, of
which only the first degree term is significant, since
1—cosy never exceeds 4 (m/cV)', where M is the mass
of the incident particle,

1—8, (x)= —',l (l+1) (1—cosx), for l((M/m ".(27)

The value of 1—
cosset in terms of Q is given by (25).

Combining (21), (22), (25), (26), and (27) we find
that the inelastic component to the exponent of (1) is:

The first integral in the braces may be taken as
usr —u;„—1, according to (16), since u is effectively
—no. In the second integral we can set S(v) =1, since
the range of low Q contributes little. Finally Q; /Q,
can be disregarded when compared with 1. Therefore
the value of (28) is

D= inL1130Z—4is (cs/ns —1) i$—u;n —t ti% (32)

The contribution of elastic collisions to the exponent
of (1) may be written, according to (53) of B53, as
-„'Z'7t,sl (l+ 1)Lb —In~tysf. Therefore the contribution (28)
may be incorporated into the Moliere theory according
to the following prescription:

(a) take x,' as Z'x.s rather than Z(Z+1) 7f,s,

(b) add to b the quantity Z 'D, where D is given by
(32).

6. LIMITATIONS OF THE THEORY

The main limitation of the present theory probably
lies in the acceptance of the Bethe theory of inelastic
collisions, which assumes the incident particle to be
much faster than the atomic electrons. This assumption
is often not satisfied, e.g. , for heavy particles of moder-
ate energy or for high-Z atoms. Improvements over
this initial assumption are often introduced in the
theory of stopping power but have not been attempted
in the present theory. However, inelastic collisions have
substantial eGect only in low-Z materials, where the
assumption is best fulfilled. The simplifications made in

the analytical development are believed accurate to
within the limits of the Bethe theory of collisions.

Finally, both the present theory and the Moliere
theory assume that the characteristics of atomic struc-
ture affect o.(z) only at such low values of x that they
do not influence the value of Jp o (x)(1—cosx)" sinxdx
for m~& 2."This assumption may be not quite adequate
for high-Z atoms.

'8A calculation of the effect of atomic structure upon the
integral for n=2 would correspond to the correction to the
Landau theory of energy straggling introduced by O. Slunck and
S. Leisegang, Z. Physik 128, 500 (1950).


