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A general discussion is given of the relation between transitions of various order, especially those which
are not concerned with solid lattices. It is shown that third-order transitions bear much the same relation to
anomalous erst-order transitions as second-order transitions bear to ordinary 6rst-order transitions. The
conditions under which higher-order transitions can occur are considered, and it is shown that they may be
associated with a dispersed phase. If the transition is second order, the dispersed phase must undergo a
transition in itself. The ideas concerning second-order transitions are applied to the X transition in liquid
helium. An argument is given, based on energetic grounds, which indicates that the superQuid in liquid
helium is in the form of clusters which are separated in ordinary space as well as in momentum space. If this
view is correct, the X transition corresponds to the appearance of much larger clusters, essentially marking
the beginning of long-range orders. It is shown that the Bose-Einstein statistics is quite essential for the
formation of the clusters; they cannot appear in He, and no X transition is to be expected in He . Finally,
a possible explanation is given for Taconis' hypothesis that He' is not soluble in the super6uid part of He4.

r. INTRODUCTION

HE ) -point transformation in liquid helium seems
to be connected in some way with the Bose-Ein-

stein condensation, as originally suggested by London,
and it has been frequently assumed that a qualitative
understanding of these phenomena may be obtained if
the liquid forces are ignored completely, except insofar
as they result in an eGective pressure which holds the
atoms together in the liquid phase. There are, however,
quite definite diGerences between the behavior of liquid
helium and that of the Bose-Einstein gas, which may
perhaps best be seen by considering the character of the
isotherms. The nature of the isotherms for a Bose-
Einstein gas is indicated by Fig. i. The transition is an
anomalous first-order transition, in the nomenclature
of Mayer and Streeter, ' the eGective volume of the
condensed phase being zero. ' On the other hand, the
transition in liquid helium is second order, and the
isotherms are schematically presented in Fig. 2, which

takes into account the negative value of the thermal
expansion coefGcient, (BU/r)T)„, and of the pressure
coefficient, (ctp/8T)rr, below the X point. In the latter
figure, the eGect of the liquid forces is clearly shown.
Certainly, considerable modification of the simple Bose-
Einstein transformation will be needed before it can be
used as a prototype for the transition in liquid helium.

However, since the intermolecular forces depend on
the volume, it might be supposed that if the volume is
held constant the intermolecular forces would be at
least approximately constant, and so perhaps would not
contribute to the specific heat at constant volume, C,.
Thus it is suggested that we compare the ideal Bose-
Einstein gas with liquid helium at constant volume.
This is what is usually done and this procedure has
very recently received some theoretical backing, since

FIG. 1. Isotherms for a Bose-Einstein gas. The broken
line is the transition line.

*Work supported by the U. S. Once of Naval Research.
' J. E. Mayer and S. F. Streeter, J. Chem. Phys. 7, 1019 (1939). Fro. 2. Isotherms (schematic) for liquid helium. T4) T» T&) T&.' B. Kahn and G. E. Uhlenbecic, Physica S, 399 (1938). The broken line is the X line.
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work of Feynman' has indicated that a X transition
should occur even though there are strong interatomic
forces. Feynman's general argument is that the motion
of the atoms is not suKciently altered by the interatomic
forces but that the general character of the transition
remains unaltered. He eGectively assumes that the
attractive forces do not have any specific efFect, only
the general eGect of holding the atoms together. Within
the liquid, the atoms would act much like hard spheres.
Feynman then hnds that the X transition should be
like the transition in the Bose-Einstein gas, in that
there should be no break in C„but only a change in
slope. Actually, of course, C, shows a break rather than
a mere change in slope, and it is quite possible that this
arises from the attractive forces. It was shown by Bijl,
de Boer, and Michels' that such a break in C„would
appear if the lowest energy level into which the mole-
cules "condense" were lower compared with the higher
energy levels than would be the case with the ideal gas,
this lowering of the lowest energy being produced by
the liquid forces.

Under the circumstances it may be pro6table to
consider the diGerence between the X phenomenon in
helium and the transition in an ideal Bose-Einstein gas
in the light of the available experimental data, still
bearing in mind, however, the great probability that
the phenomena are related. The erst step will be to con-
sider the general characteristics of second-order transi-
tions, especially those which are not concerned with
solid lattices, and in particular to note some of the
relationships between transitions of various types.

Before turning to this development, however, we wish
to set down the Keesom-Ehrenfest equation, for future
reference, in the following form:

hC =(dp/dT)TD(BV/BT) . (1)

Here C„ is the molal heat capacity at constant pressure,
the total derivative dp/dT refers to the change of
pressure with temperature along the second-order
transition line, V is the molal volume and 0 indicates
that the value of quantity on the low-temperature side
of the transition is to be subtracted from the value
just across the transition line on the high-temperature
sKfe.

%e can also write

transition, so that along the transition line,

d~s= (~C„/T)dT+ ~(BP/BT) vd V =0,
we see that Eq. (2) follows immediately.

For helium, we may note that application of Eqs. (1)
and (2) makes it highly probable that C„and C„
actually have definite breaks rather than merely sharp
maxima at the X point. For both (BV/BT)~ and
(Bp/BT) v actually change sign at the X-point, and there
is no evidence to indicate that they do not change
suddenly. In fact, they appear to increase in magnitude
as the X point is approached from below, and not to
change rapidly as it is approached from above. ' Though
it is impossible to prove a point of this sort absolutely,
the evidence is thus exceedingly good that we are
dealing with a true second-order transition.

2. GENERAL DISCUSSION OF PHASE TRANSITIONS
OF VARIOUS ORDERS

Gorter~ has pointed out that if we cooled a vapor in a
closed, opaque container of constant volume, we would
find a discontinuity in the slope, (Bp/BT)v, of the
pressure-temperature curve when we reached the point
of condensation. If we were unaware of the separation
of phases, we might infer that a second-order transition
had occurred. If we tried the experiment with systems
of different density we could find dp/dT and dV/dT for
the transition, and it would, in fact, be entirely proper
to apply Eqs. (1) and (2). However, we would also
find; that, in what we know to be the two-phase region,
(Bp/BV)r=0. Since (BP/BT)v does not vanish, this
means tha, t (BT/BV)~=0 or (BV/BT)~ is infinite.
C„, which, in the transition region, includes the heat
eGects arising from evaporation or condensation, also
becomes infinite, so that dp/dT cannot be determined
from Eq. (1). However, we can consider this to be a
limiting case in the application of Eq. (1).If (Bp/BV) z

in the two-phase region were very small but not zero,
(BV/BT)„would be very large but not infinite, as
would C„. We could then, in comparison, neglect
(BV/BT)„and Cv for the one-phase region, and write
Eq. (1) as

C„=(dp/dT) T(BV/BT) „,
where C~ and (BV/BT)„are for the two-phase region
Since C„=T(BS/BT)„we see that this yields

ac.= —(dv/&T) Ta(BP/BT) v. (2) dp/dT= (BS/BV)„
This equation is implied but not actually written down

by Semenchenko, ' and can be derived by considering
the entropy S as a function of V and T, writing

dS= (BS/BT) vdT+ (BS/BV) rd V

= (C./T)dT+(BP/BT) vdV

Now noting that 5 does not change at a second-order

' R. P. Feynman, Phys. Rev. 91, 1291 (1953).
4 Bill, de Boer, and Michels, Physica 8, 655 (1941).' V. K. Semenchenko, Zhur. Fiz. Khim. 21, 1461 (1947).

In the limit, where (Bp/BV) r =0, this is

dP/dT= (BS/BV) r

Interpreting the right-hand side of this equation in
terms of the behavior of the two coexisting phases, we
see that (BS/B V) r =6$/AV, and we recover the
Clapeyron equation.

'W. H. Keesom, Peliiirrr (Elsevier Publishing Company, New
York, 1942), Sec. 4.'l.' See reference 6, p. 259.
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In the case of Eq. (2) there is no difliculty in applying
the equation when (Bp/BV) r ——0, for, as we have noted
(Bp/BT)i remains finite, and so, unless dV/dT is
infinite, C, will remain 6nite also.

This discussion will indicate the desirability of con-
sidering a little more closely the relation between first-
and second-order transitions. Let us suppose that we
have a transition which resembles a first-order transi-
tion, except that the slope of an isotherm in the transi-
tion region is not quite zero. Then the isotherms will

appear as shown in Fig. 3. This represents a set of
ordinary second-order transitions, or rather two sets of
such transitions, one set on the left-hand branch of the
transition curve and the other on the right-hand branch.
Is there any way that we can still interpret the transi-
tion at the right-hand branch (vapor) as the formation
of some of the left-hand phase (liquid) P Suppose that
the Gibbs free energy of the vapor at some given tem-
perature is G, and that it is at a pressure p, . The free
energy of liquid at pressure pi is

peal

Gu+
'

Vdp.

The free energy of liquid at p, is

Pl peal

Gi(p, ) = G,+ Vdp — ~ V,dp.

Gu(pi) =Gi+ Vdp — Vudp.

In this case the integrals are negative since pu(pi and
the average value of V, will be expected to be greater
than the average value of V, since the compressibility
of the gas is less than that of the mixture of gas and
liquid. Therefore, in this case,

G, (pi) )Gi.

Compare V. K. Semenchenko, Zhur. Fiz. Khim. 21, 1461
{j.947).

Since the average value of U involved in the first
integral is greater than the average value of V~ in the
second, we see that

«(pu) &Gu. (4)

Of course this is why an ordinary liquid phase does not
appear at the transition line. Unless some device can be
found to lower the free energy of the liquid, the inter-
pretation we have proposed cannot stand. However we
know that if the liquid is dispersed in the gas its entropy
will be increased and its enthalpy may be lowered.
Both sects can contribute to the lowering of the
chemical potential of the liquid so as to bring it down
to the chemical potential of the gas.

If we approach the left-hand transition curve from
the liquid side we find, in an entirely similar manner,

Fxo. 3. Isotherms, illustrating a possible type of second-order
transition. The broken line is the transition line.

Again we are led to the idea of a dispersed phase, this
time gas in liquid. Of course a dispersion of gas in

liquid could merge gradually, as the proportion of gas
increased, into a dispersion of liquid in gas.

If there were no discontinuity in the slope (Bp/BV) r
of the isotherms at the transition line of Fig. 3, but
only a discontinuity in (B'p/B V') r, then the transition
would be third order instead of second order. It is seen
that when (Bp/BV) r in the transition region within the
transition line approaches zero the third-order trans-
formation approaches an anomalous first-order transi-
tion. In this case (BV/BT)„and C„ increase without
limit and become in6nite at the transition line, but
(Bp/BT) ir and C„ fby Eq. (2)$ remain continuous and
finite. However, since {Bp/BT)i. is constant in the
transition region in the anomalous first-order transition,
the rates of change of (Bp/BT)r and, hence, of C„,
change abruptly. This is just the situation in the
Einstein-Bose transition. The Clapeyron equation in its
usual form will hold for the anomalous first-order
transition, as for the ordinary first-order transition.

The relation between the third-order transition and
the anomalous erst order is exactly similar to the re-

lation between the second-order transition and the
ordinary first order, and if the third-order transition is

to be described in terms of two phases, as we described
the second-order one, we must again think of one phase
dispersed in the other.

When a first-order transition takes place certain pre-
transition phenomena will in general occur. Thus, when

a vapor is compressed isothermally clusters of mole-

cules will appear. ' The larger clusters will resemble the
liquid but will have surface free energy. The surface
free energy will tend to favor coalescence of clusters,
but the entropy effect will tend to favor separation into

u J. Frenkel, J. Chem. Phys. 7, 200, 538 (1939};W. Band,
J. Chem. Phys. 7, 324, 927 (1939}.
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smaller clusters. "At high dilution the entropy eGect
will be more important, and there will be but few
clusters formed. At a certain stage in the compression
these two eGects will balance each other for large
clusters, and further compression will result in the
sudden onset of condensation.

If the surface tension is zero or negative this sudden
condensation will not occur. It might oG-hand be ex-
pected that in this case there would no longer be any
tendency to form clusters. However, it seems probable
that, at least in the case of compression just above the
critical point, there is cluster formation; although the
surface free energy is negative and the surface tends to
increase, so that a cluster becomes porous and open,
there is a limit to this process because of dependence of
the surface free energy on the curvature of the surface.
Coalescence of the clusters, however, is never favored,
and will not occur until the free volume of large clusters
is reduced to zero. The size of the clusters simply in-
creases gradually up to this point, and then there is
just one big, but spongy cluster. This can be further
compressed, but with a somewhat diGerent law of com-
pression. However, it appears from a discussion of this
case,"and especially because the individual clusters are
already subject to compression even before coalescence
so that the whole process takes place gradually,
that (Bp/BV)r will probably be continuous, though
(esp/BVs) r may very well not be. Except in the special
case when the surface tension is zero (Bp/BU) r should
not become zero, so this situation corresponds to the
third-order transition. It will be seen that the spongy
coalesced cluster is really a dispersion, but depends for
stabilization on its negative surface tension, as well as
upon its configurational entropy, which arises because
it does not have a Axed shape. Indeed, the two factors
are closely interrelated, and one can say that the fact
that the convoluted surfaces of the dispersed phase are
mobile adds to the surface entropy.

To have a second-order transition an intermediate
situation must exist."The tendency for dispersal must
exist, as though the system had a negative or at least
near-zero surface tension. On the other hand, there must
also be some special stability of a condensed phase,
which is in this case an extended dispersed phase with

configuration entropy. Thus clusters would be formed
on compression, but they would not be compact, but
rather disperse clusters. But on further compression,
as their entropy of translation as a whole decreased so
that the entropy of coagulation would not be so great,
there would begin to appear a very large cluster, a con-
densed but still dispersed phase, as though for this
process of coalescence the surface tension were positive.

n See O. K. Rice, J. Phys. and Colloid. Chem. 54, 1293 (1950).
"O. K. Rice, J. Chem. Phys. 15, 314 (1947); Ther&nodynarnics

and Physics of Matter (Vol. I of High Speed Aeronautics and Jet
Propulseon) (Princeton University Press, Princeton, to be pub-
lished), Sec. 7, Art. 6.

'~ There are of course other ways that second-order transitions
can occur, especially in solid lattice.

This large cluster is the "condensed phase. " The
question which now arises is why this condensed phase
does not continue to form on compression without
change of free energy, until it fills the volume and
encompasses all the dispersed clusters. If this happened
the transition would have a, perhaps small but none-
theless real, erst-order region with a finite latent heat.
The answer is that the large cluster described still has
an entropy of mixing, for it is not confined to any one
part of the system, in essential contrast to the con-
densed phase in an ordinary condensation. Thus the
coalescence of the clusters really occurs simply when the
point arises at which much larger, but not "infinite"
or macroscopic clusters reach as low a free energy as
the already large, but not that large (intermediate
sized) clusters which were previously present. The
sudden appearance of clusters of a much larger size
signals the second-order transition, after which further
compression results in the further building up of the
much larger clusters, both by having them grow at the
expense of the intermediate clusters, and ultimately
(and to some extent simultaneously) at the expense of
the vapor molecules, i.e., molecules which are not com-
bined into clusters, or which are present in very small
clusters. Since the intrinsic free energy involved in
going from intermediate clusters to very large clusters
is certain to be very small, it is not to be expected that
such a transition would occur until the concentration
of the intermediate clusters was sufficiently large so
that their free volume would be greatly restricted.

3. THE 2 TRANSITION IN LIQUID HELIUM

YVe shall base our discussion of liquid helium upon
the fundamental assumption that the X phenomenon
depends upon some of the atoms going into a low-
energy state, and that the superQuid properties result
from these atoms. These atoms, then, essentially form
the superQuid, and in using the language of the two-
Quid hypothesis of Tisza we shall assume that it has
some actual physical significance. With this fairly
definite picture in mind we desire to inquire how it
can be 6tted into the general picture of a second-order
transition, as presented in the preceding section.

If, below the normal X temperature, we start with
helium I at a high pressure which is gradually lowered,
we will eventually reach the transition curve where the
change to helium II occurs. The situation is not very
diGerent from that which we 6nd at the left-hand side
of Fig. 3. The transition is, as we have seen, presumably
a second-order one; therefore the pressure will continue
to decrease after it occurs. In terms of the two-Quid

theory we will say that superQuid appears at the
transition, or at least that it there erst takes a form in
which the superQuid properties become evident, and
the amount of superQuid continues to increase as the
pressure is lowered, until at some pressure (which may
be negative but practically is around zero pressure
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below 1'K) the system consists almost entirely of
superQuid.

Though the isobars given by Keesom' indicate
—(r)p/c) U) z decreases discontinuously at the transition
line, the situation at the other end of the transition
(i.e., corresponding to the right-hand branch of Fig. 3)
is not so clear since there is no definite sign of another
transition. However, the slope of the isobars (c)p/c)T)~
(where p is the density) becomes practically zero around
1'K where presumably the liquid has become pure
superQuid. We therefore conclude that the properties
of the superQuid do not depend appreciably on the
temperature, but only upon the pressure or density.
Furthermore, we find that at any pressure (c)p/c)U) r is
greater for superQuid (i.e., near O'K) than it is where
there is a mixture of superQuid and normal Quid near
the X-transition pressure. Also V is larger for superQuid
than for normal Quid. Thus the conditions by which
the inequality (6) is derived from Eq. (5) (with the
superQuid taking the place of the gas and the normal
Quid taking the place of the liquid) are fulQlled. Thus,
where the transition occurs, the superQuid must have
a lower chemical potential than pure superQuid would
have. In other words, in terms of partial molal quanti-
ties (with subscript s referring to superQuid and sub-
script X referring to the condition at the transition line)
we must have either

S,, K)S.,

H, ),&H„
or both, where the quantities on the right-hand side
refer to the pure superQuid. From consideration of the
conditions of equilibrium in the two-Quid theory, I have
already come to these conclusions, arid I have developed
the thermodynamics of liquid helium" on the basis of
the assumption 8,, ~&S, and II,, ~=B„which implies an
entropy of mixing, while Gorter" has developed the
thermodynamics on assumptions which are equivalent
to taking 8,, &=S. and H, z&H„ implying an enthalpy
of mlxlng.

This is a difference between the transition in liquid
helium and the transition in the Bose-Einstein gas
which is of some importance, and should be taken into
account in any theory of liquid helium. It arises because
of the fact that the transition in helium is not 6rst-
order, at least over an observable range of thermo-
dynamic conditions, whereas that in the Bose-Einstein
gas is. If there is to be an entropy of mixing, it would
seem that some separation in ordinary space of super-
Quid and normal Quid, such as I have already suggested"
would be necessary. This would be in general accord
with the idea of dispersion, mentioned in Sec. 2 above.
The possibility that helium II involves a dispersion has

"O. K. Rice, Phys. Rev. ?6, 1701 (1949); 79, 1024 (1950).
'4 C. J. Gorter, Physica 15, 523 (1949).

also been suggested by Semenchenko. ' "On the other
hand, it might be possible to avoid the separation in
ordinary space if the other alternative, S„i,=S, and
H, , i,&H, is the correct one. The Bose-Einstein transi-
tion is a unique one, in that the condensed state, i.e.,
the lowest energy level, though it apparently has an
effective volume equal to zero, actually is spread out
over the entire containing volume. It is, perhaps, con-
ceivable that the lowest energy level would be afkcted
by the molecular interactions in such a way that it
was lower when most of the atoms were in excited states
than when most of them were in the lowest energy level.
Certain calculations" have been made which are based
on symmetrization of free particles or Bloch-type wave
functions. These indicate that if two particles are in
the same energy level they are less likely to be close
together than if they are in different energy levels.
Depending upon whether one supposes that the re-
pulsive or attractive forces are more important one will
conclude that the mutual energy of the two particles
will be relatively lowered or raised by the interatomic
forces. when they are in the same energy level. These
conclusions are based, however, upon the general ideas
of small perturbation theory.

Since the strong repulsive forces can scarcely be
handled by small perturbation theory, and since they
will profoundly acct the wave function, it seems to
me better to approach the problem by the standard
method of handling a two-particle problem, separating
oG the coordinates of the center of gravity, and con-
sidering then the relative radial or vibrational motion
and the relative rotational motion. In the case of helium
the attractive forces are relatively weak and it seems
quite likely that one or two degrees above the X point
the atoms are only rarely held in any 6xed position, the
motion being mostly translational. This translational
motion is superimposed upon a large zero-point energy;
there is a potential energy well near every helium atom,
but its neighbors have sufhcient energy to escape
from it. The unbalanced forces at the edge of the liquid,
however, are sufhcient to keep the average atom from
escaping, so that there is a nonzero energy of evapora-
tion. For any helium atom to go into its lowest energy
level actually involves a cooperative phenomenon which

'~ V. K. Semenchenko, Doklady Akad. Nauk S.S.S.R. 74, 335
(1950). Other writers have developed theories which involve
clusters of one sort or another, e.g. , H. ¹ V. Temperley, Proc.
Phys. Soc. (London) A65, 619 (1952); M. Toda, Progr. Theoret.
Phys. (Japan) 6, 458 (1951).The latter assumes that the excita-
tions in helium above 1'K consist of groups of about eight atoms
in a solid-like cluster, which would involve separation in ordinary
space. This is a possible type of excitation around 1'K; however,
Toda assumes that the 'A point occurs when the liquid consists
entirely of such "molecules, " and in such dense packing they
would not have the statistical properties ascribed to them, so
this can scarcely be a theory of the X point. The idea that the
excitation in liquid helium is connected with "molecules" is also
suggested by the interesting analysis of T. Matsubara, Progr.
Theoret. Phys. (Japan) 6, 714 (1951).However, since he neglects
interactions between the molecules, it would seem that the same
difhculties would appear at the X point.

is N. P. Mott, Phil. Mag. 40, 61 (1949).
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requires the interaction of more than one atom. Thus it
takes at least two atoms to abandon their mutual
translational energy for mutual vibration. Indeed, in
the case of helium, it must require more than this,
because the potential-energy minimum of the van der
Waals attraction is hardly deep enough for there to be
discrete energy levels. However, we do know that it is
possible for a group of helium atoms to condense to-
gether in a lowest energy level (liquid helium at O'K).
There must be a smallest number of atoms which will

do this. So in the liquid it is quite possible that a group
of atoms can be 6rmly, though temporarily, bound
together in their lowest energy level. "The surrounding
liquid would of course be expected to alter the situation
quantitatively, and the cluster would be continually
exchanging atoms with neighboring portions of the
liquid, either through excitation and de-excitation, or
through an atom in one part of the cluster leaving while
simultaneously another atom joins the group at another
location. Nevertheless, the idea of low-energy clusters
seems to be a reasonable speculation.

It is probably not a very good approximation to
consider normal modes of vibration of such a group of
atoms, as in a crystal lattice; however, such an approxi-
mation may serve to give some idea of the placing of
the energy levels. In a crystal lattice if all the atoms are
6xed except one, that atom would vibrate with a
frequency of say, vo. The average value of the squares
of the actual frequencies obeys the relation (v')A„——vs'.

The greater the number of atoms cooperating in the
lattice the greater the spread of frequencies. Now the
maximum of the sum of all the frequencies occurs when
all the frequencies are equal if the frequencies are con-
strained in such a way that the sum of their squares
has a fixed value. Thus the interaction will lower the
zero-point energy, and presumably the greater the
number of cooperating atoms the lower will be the zero-
point energy; furthermore, this discussion would lead
to the inference that the low energy atoms will occur
in spatially connected groups. In any event, it seems to
be unlikely that the lowest energy level for a single atom
could extend spatially throughout the vessel in the case
of liquid helium, because the atoms would be scattered
on account of the repulsive forces. I remarked on this
some years ago," and it has recently been discussed
with some ampli6cation by Ziman. "

It is doubtful that any calculation based on the idea
of lattice vibrations could have any quantitative appli-
cation to liquid helium. Nevertheless it will be of interest
to attempt to calculate the difFerence in zero-point
energy between a Debye lattice and a lattice in which
all the frequencies are the same and equal to vs ——((v')A, )&

(i.e., the corresponding Einstein lattice). Going from an

"Phonon excitations in the clusters would, of course, not be
excluded, and this could occur without breaking up the cluster,
but it is known that this type of excitation is not of great im-
portance near the X point."J.M. Ziman, Phil. Mag. 44, 548 (1953).

Einstein lattice to a Debye lattice involves a spread in
the frequency spectrum, something like that which
occurs when additional atoms are added to a cluster.
The Debye characteristic temperature 0 is given by
the relation"

kO= (5/3) &h((v')A„) &= (5/3) &hvp,.

the zero-point energy, ED, is given by

(10)

The zero point of the corresponding Einstein lattice is

Z~= —,'hvs ———,
' (-,')&08= 1.03').

Since the zero-point energy of liquid helium is 30 to
40 cal per mole, " the energy of the Debye lattice is
around 1 cal per mole less than that of the Einstein
lattice. It is of interest that the difference is of the order
of magnitude of the energy content of helium at its
X point, which is about 3 cal per mole. It appears that
the energy lowering arising from cooperative vibration
of the atoms can easily be great enough to furnish con-
siderable incentive for the "condensation" of atoms in
their lowest energy level into considerable groups. It is
to be noted that since this energy efFect increases with
increasing number of superQuid atoms (which would of
course result in larger conglomerates) the change of H,
with temperature would be in the opposite direction to
that required by the inequality (8) and noted in the
next paragraph following (8).

The attractive forces between the helium atoms
clearly play quite a decisive role in the picture we have
just presented. If we elected to neglect speci6c efFects
of attractive forces between individual pairs of neigh-
boring atoms, there would be no incentive to consider
modes of vibration, and the idea of clusters would not
present itself. It is in this way that the present dis-
cussion difFers from most previous treatments. In par-
ticular, we may mention that it seems to difFer in this
way from the recent work of Feynman. '

The above discussion would seem to lend some weight
to the idea that the high speci6c heat just above the
X point arises from the presence of superQuid globules,
which have not yet coalesced into suf6ciently large
clusters to bring the superQuid properties into evidence.
I showed that the trend of the speci6c heat required
that there be 60 to 80 atoms in such globules. " My

"See O. K. Rice, J. Am. Chem. Soc. 63, 3 (1941).
~ F. London, J. Phys. Chem. 43, 49 (1939).
"There is perhaps other evidence for globules of superAuid

above the ) point, namely, the absorption and dispersion of sound
just above the X point. A. B. Pippard, Phil. Mag. 42, 1209 (1951),
has explained this in terms of fluctuations involving large regions
composed of helium II; it seems probable that this is equivalent
to small regions of pure superfluid and, indeed, H. Sato, Busseiron
KenkyQ. 35, 15 {1951),has attempted to explain the same phe-
nomenon on the basis of my original theory. However, Sato found
that to obtain agreement it was necessary to assume only five
atoms in the globules, which is entirely too low to explain the
specific heat data, and there appeared to be other quantitative
discrepancies.
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theory, however, could not tell much about the transi-
tion itself. It now appears likely that the transition may
be described in much the same terms as we described a
second-order transition at the end of Sec. 2. The
globules need not be spherical clusters but could be
rod-like or 61ament-like, or of irregular shape. Since
the energy decreases with increasing cluster size, a point
could be reached as the temperature is lowered (or,
isothermally, as the pressure is lowered) where, rather
suddenly, a much larger size of globule, or perhaps a
network which extends for a long distance in at least
one direction, becomes stable. If such a network is
practically macroscopic in one direction, the superQuid
properties wouM be expected to come into evidence
when it appears. As the temperature (or pressure) is
lowered, these extended networks would rapidly fill the
liquid volume, and so grow at the expense of smaller
clusters, which now have less free volume, and at the
same time also grow at the expense of the normal Quid.

The formation of extended networks corresponds to
the appearance of long-range order in the ordinary type
of order-disorder transition. There is, of course, a con-
siderable resemblance between our description of the
helium transition, and the usual type of order-disorder
process. The eGective attraction of two neighboring
atoms of superQuid is an essential element. A lattice
approximation, however, would scarcely be applicable,
and the situation also diGers from that of the Ising
lattice, for example, in that the interactions are not
additive, the interactions depending on how many are
already in the low-energy group. "The latter difference
is quite important, for according to the picture given
here, the apparent attraction between the superQuid
atoms will actually eGectively exist only between a
certain minimum number of them, and will become
stronger rather rapidly for a while as more are added
to the group; then after a certain number are present
the attraction will approach an asymptotic value. It is
this fact which is responsible for the appearance of
definite clusters. In spite of these diGerences, it is
interesting that the speci6c heat of an Ising lattice
with a simple cubic arrangement, according to calcu-
lations of Wake6eld23 closely parallels that of liquid
helium, except very close to the transition point, where
the specific heat of the Ising lattice probably becomes
infinite.

In my earlier paper I estimated that only 4 or 5
percent of the helium was in the form of superQuid at
the X point. This seems rather a small fraction of
locally ordered material to bring about the onset of
long-distance order. For example, the quasi-chemical
approximation for the simple cubic lattice gives 14

I. Prigogine and J. Philippot, Physica 19, 508 (1953) have
considered the X transition to be an order-disorder phenomenon
in a treatment which is based on a discussion of fluctuations, and
which apparently takes no direct account of the two-fluid
hypothesis. See also H. Frohlich, Physica 4, 639 (1937).

A. J. Wake6eld, Proc. Cambridge Phil. Soc. 47, 419, 799
(&95ij.

percent local order at the transition point, while
Wakefield's calculations, judging from the specific heat
curves, indicate even more. This point, therefore, rtiay
merit some elaboration.

Let us derive an expression for the molal heat
capacity at constant pressure C~ on the basis of the
two-Quid hypothesis. We will use the subscript e to
denote normal Quid, the subscript s to denote super-
Quid. Mole fractions will be designated by x.

The molal enthalpy is given by

H=x„H +x,H, . (12)

To obtain C„we diGerentiate this expression, re-
membering that dx, = —Cx„, and that x„(BH„/Bx„)r
+x, (BH,/Bx„) m=0:

C,= (H, H„)dx—,/dT+x„(BH„/BT)*,
+x,(BH,/BT)z, . (13)

Since x, is small above the X point, since (8H,/BT)~„
i.e., the specific heat of superQuid at constant mole frac-
tion, should presumably be zero and even (BH„/BT)~„
roughly the "nonanomalous" part of the specific heat,
is relatively small, we may write, approximately

C„,.= (H, H.)Cx,/dT. —

Hence x, at the X point, Tz, will be given by

—x,„),——it [C, ./(II, H„)]dT. —(16)

On the basis of the assumption that the normal part of
the specific heat was 2.2 cal deg-' mole ', I estimated
that C~,=3.0 exp/(T&, —T)/0. 05$. Substituting this in
Eq. (16) and assuming that H„H, is approxim—ately
equal to the enthalpy of the liquid at the X point, which
is about 3.0 cal mole ', one 6nds x,, q= 0.05.

The difficulty may well lie with the estimate of the
normal value of C~, hence of C„, If we examine the
specific heat curves for the order-disorder case" we
notice that they drop rapidly near the transition point,
then tail oG very slowly at higher temperatures. This
corresponds to a decrease in the average size of the
clusters as the temperature increases. The temperature
coefficient for the number of clusters of any given size
depends on the diGerence between the energy of the
entire cluster and the energy of the same number of
atoms without local order. This energy difference is

We have taken x, and T as the variables, and p is, of
course, always assumed constant. This is the situation,

'

practically, when helium is heated under its own vapor
pressure. If there were no superQuid, we should have
C„=BH„/BT. Therefore, subtracting this from Eq. (13),
and noting that 1—x„=x„we find for the "anomalous"
part of the specific heat,

C„,.= (H, H„)rex,/dT+x—,E(~H./~T). ,
—(BH„/BT)*,]. (14)



ii68 O. K. R I CE

approximately propor'tional to the size of the cluster.
Thus the number of small clusters will fall oG much
less rapidly with increasing temperature than the num-
ber of large clusters, and as the small clusters remain
after the large ones disappear the specific heat de-
creases less rapidly. Thus, we should not really expect
a simple exponential falling off of C„,, with T, and this
suggests that our normal specific heat should have been
taken somewhat lower than 2.2 cal deg ' mole '. If (:„,,
were an average of 0.2 to 0.3 greater over a range of
1 to 1.5 degrees, this would make a considerable diGer-
ence in the percentage of superfluid at the X point.

4. PROPERTIES OF He' AND OF He' —He'
SOLUTIONS

Although there has been little mention thus far in
the discussion of the Bose-Einstein statistics, it is
easily shown that this type of statistics actually plays
a most important role in determining the possibility of
the occurrence of clusters. We will discuss this in terms
of the rotational states of pairs. Since such pairs are in
close contact with other a,toms and interact with them
in such a way that angular momentum will not be
conserved, it is clear that this procedure involves an
approximation. There seems little doubt, however, that
we touch in this way on the essence of the matter. If a
cluster of atoms is to be in its lowest state, it would
appear that, in terms of the above approximation, any
pair should be in its lowest possible rotational state."
In the case of an atom with no nuclear spin no com-
plication can result, since the state of zero relative
angular momentum is allowed. He', however, has a
nuclear spin of —, a,nd obeys the Fermi statistics, that is,
the wave function of a pair of atoms is antisymmetrical.
The situation is similar to that which occurs with H2,
which results in the distinction between ortho and para-
hydrogen. With any pair of atoms there is only one
chance in four that their nuclear spins will have the
proper relation, so as to allow them to have no mutual
angular momentum. In any group of atoms, a large
fraction of the adjacent pairs must have an angular
momentum with respect to each other, and, in view of
the small mass, this will be associated with a consider-
able energy. Because of the small depth of the potential-
energy well in which any He' atom is vibrating, this
energy would be expected to be sufhcient to cause
"dissociation" by rotation. Thus we do not expect a
group of He' atoms to be bound together in a low-

energy cluster.
It is interesting to speculate on the eGect of a He'

atom if introduced into a cluster of He' superQuid.

~ See E. G. D. Cohen, quoted by I. Prigogine and J. Philippot,
Physics 18, 747 (1952).

Since there are no symmetry requirements, in a pair
consisting of a He' and a He' atom, there would be no
bar to the He' atom going into a state of zero angular
momentum. On account of its smaller mass, however,
it would be expected to have a higher zero-point energy
than the He' atoms. Indeed, its zero-point energy would
be greater than it would be in pure He', since He' has a
considerably lower density than He4. It is probable that
an He' atom could not be accommodated in the poten-
tial energy wells available in He4. Indeed, London and
I2' thought that He' could not liquify at all, on account
of its higher zero-point energy. This was not a good
prediction, as it proved possible to circumvent this high
zero-point energy by forming a liquid of lower density.
However, it is not to be expected that a single He'
could ordinarily cause a sufhcient lowering of density
in its neighborhood to enable it to fit into a superQuid
cluster. Certainly if it did so, and probably in any
event, it would tend to disrupt the cooperative action
of the atoms in the cluster, and so electively raise the
energy more than if it were dissolved in normal Quid.
Thus we may have found some basis for Taconis'
hypothesis, " that He' is not soluble in superfluid, but
only in normal Quid, although it has recently been sug-
gested" that the abnormally high vapor pressure of He'
from solutions of He' is only what is to be expected from
a mixture of ideal gases, one obeying Einstein-Bose and
the other Fermi-Dirac statistics. In other words, it is
supposed that in the explanation of this phenomenon,
the liquid forces could be neglected entirely. On the
other hand, Morrow' has shown that Taconis' assump-
tion, combined with rather usual ideas about nonideal
solutions, can account for many of the experimental
results.

V~ote added in proof.—Since this paper went to press,
L. Guttman and J. R. Arnold, Phys. Rev. 92, 547
(1953), have presented evidence that He' participates
only slightly in the superfluidity of He4. This may be
because of the effect of a particle of higher mass on the
zero-point energy of a cluster of superfluid. A particle
of infinite mass, introduced into a linear array of atoms,
would eGectively cut the array into two pieces, thus
increasing the zero-point energy. Introduction of an
He' atom into a superfluid cluster of He' would have
a considerably smaller, but nevertheless similar, eGect,
and might increase the zero-point energy su%ciently
so that He' would tend to be expelled from the super-
Quld.

s' F. London and O. K. Rice, Phys. Rev. 75, 1188 (1948).
~6 Taconis, Beenakher, Nier, and Aldrich, Phys. Rev. 75, 1966

(1949)."C. V. Heer and J. G. Daunt, Phys. Rev. 81, 447 (1951);
Daunt, Tseng, and Heer, Phys. Rev. 86, 911 (1952);A. Harasima,
J. Phys. Soc. Japan 6, 271 (1951)."J.C. Morrow, Phys. Rev. 84, 502 (1951).


