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k=X ' is the electron wave number. At the energies at which the
experiments of Hofstadter, Fechter, and McIntyre' have been
done (~125 Mev), kR is about 5 for heavy nuclei. This is about
the lower limit of the energy region where the WKB method can be
considered valid.

We start from the Dirac equation and neglect the mass of the
electron. In that case the phase shift p depends only on the angu-
lar momentum j, and not on the parity. 4 We apply the WKB
method in the form given by Bessey and Uhlpnbeck, 5 with the
result

i1;= lim Q(r') dr' —kr —n In2kr+l-
~oo 2
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FIG. 2. Angular shift of the directional correlation function W(8) of the
Pb204 y —y cascade in an external magnetic field H. The solid line represents
the zero-field correlation; the dotted line is the theoretical curve for
g +0.07 and H =4300 oersteds. The arrow indicates the classical precession
angle of a magnetic dipole.
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where Q(r) = L(k —V(r)/kc)' fs/r')—1; V{r) is the potential energy;
ro is the turning point, i.e., Q(rp) =0; a =Ze'/kc; and l is de/ried as
J+2 ~

For instance, with a uniform charge distribution, of external
radius R, the phase shift is

s;=a(i —xs)1+ixn(1 —xi}1—n ln Li+ (1—xs)1$—u lnkR

+(n'/2kR}gx ' sin 'x —(1—x')1+xs(1—x')-'*x'{4—x') j
for l(kR; {2)

for l&AR;

where x= 1/kR, and q is the Coulomb phase shift. In going from
(1) to (2), we kept only the first two terms of the expansion in
powers of the small parameter n/kR.

The cross section is conveniently written in the following form:

da/dn=sec's8l f(8) ~'

f(8) =fc(8)+(2ik) i 2; i)exp(2ig;) exp(2—iq c)7

XLPi(cos8)+Pi i(cos8) g, (4)

where f'(8) is the Coulomb scattering amplitude which has been
calculated, at high energies, by Feshbach, ' and more recently by
Yennie et al.'

The number of terms in the summation in (4) is of order kR.
Doing this sum exactly, but using the WKB phase shifts, we
obtain the results shown in Figs. 1, 2, 3. It should be noted that the
cross section depends only on the combination kR, except for a
factor 1/k~. In Fig. 1, it is seen that the result compares favorably
with the numerical one of Yennie et a/. There is no agreement
between this calculation and the Born approximation. The maxima
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HE elastic scattering of high-energy electrons is a tool which
can be used to obtain information on the radius and charge

distribution of nuclei. There have been several numerical calcula-
tions of this process. '2 Although the numerical method will
undoubtedly remain the most accurate, it may be thought that an
analytical solution, even if approximate, would help in the under-
standing of the physical happenings and would show more clearly
the dependence on the various parameters involved. The Born
approximation is such an analytical method; however, it cannot be
trusted for such heavy nuclei as gold or lead, because Ze /Ac is too
large.

The purpose of this letter is to report on some results obtained
with the WKB method. This method is applicable if the potential
varies slowly over distances of the order of the electron wavelength.
This is the case if kR»j. , where R is the radius of the nucleus and
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FIG. 1. The differential scattering cross section for a uniform charge

distribution. Curve I is the result of the &KB method for 8 =80, with
kR =5, R 1.4A&)&10» cm. Curve II is the result obtained by Yennie et al.
for Z ~79, AR =5.4, R 2.22A& )&20» cm.
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the expense of analytical simplicity. The detaib of this work will be
published later.

This problem was suggested by Professor H. A. Bethe and the
author is greatly indebted to him for continued guidance through-
out this work.
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FIG. 2. The differential scattering cross section for a shell distribution with
Z =80, kR =5, and R = (3/5)& )(1.4A& X10» cm.

and minima of the Born approximation are greatly smoothed out,
especially the first one, and shifted to smaller angles.

However, for reasons given at the beginning of this letter, it
would be more interesting to do the summation by an analytical
method. We are at the moment working on such a method,
involving the replacement of the sum over j by an integral and
PI(cos8)+PI I(cos8) by 2JI(21 sin-,'8). It then becomes evident
that most of the f'(8) part cancels against the Z part, leaving a
result much smaller than the Coulomb amplitude. The method
also shows that the Born approximation is only one of several
terms which must be taken into account, and not always the
largest. By including a sufhcient number of corrections to our
integral, it is possible to reproduce exactly the curves of Figs. 1—3.
However, greater accuracy in this procedure is obtained only at
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'N the phase-shift analysis of the scattering of electrons from a
nuclear charge distribution, the total phase shift can be ex-

pressed as the sum of two terms:

ni =ni'+~i. (1)
ql' is the phase shift of the 3th partial wave for a pure Coulomb
field and BI is the additional phase shift due to the modification of
the Coulomb field inside the nucleus. It is the purpose of this note
to point out an error in the literature, ' in which it is asserted that
for large l, BI approaches zero through positive values. It will be
shown for all reasonable charge distributions inside the nucleus
that B«0.For simplicity we neglect the rest energy of the electron
compared to the total energy; with a slight modification the proof
can be carried through in the more general case. In dimensionless
form, the equations giving the radial wave' functions are

(d/dx)FI, ,+p(l+1)/x)FI, , (1—v)GI, „=0, —
(2)

(d/dx)GI, t (1+1)/x, g—GI,+ (1 v)FI,,,=0, —
with

For large x, GI, , has the asymptotic form

GI, , sin(x+p ln2x IslIr Ip'—+-8I „—) (3)

According to Elton 2 the difference in the phase shifts due to two
different potentials v and v' is given by

sin(8I, 8I„)= f —(v' ,
—v—)(FI,, FI, „+GI„GI,,)dx. (4)

Our proof is based on the fact that the potential can be varied
continuously from the pure Coulomb potential to the final value
in such a way that for each small change in v the corresponding
change in 8& is negative. For example, we may define a one-
parameter family of potentials:

v, (x)=e 'v(x/e), 0&~v&~1; (5)

(v, is the same function of x as v is for an energy &E). As e ap-
proaches zero, v, approaches the pure Coulomb potential; at the
other limit ve approaches the potential given by the charge
distribution. Explicitly:
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v, = —(y/x) px'dx —(p/e), pxdx, (6)

FIG. 3. The differential scattering cross section for a uniform distribution
with Z=80, kR=10, R=i.4A.&&(10» cm. v=Ze'/ite, J px'dx=1. (7)


