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Bound State Corrections in Two-Body Systems*
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Available expressions for two-body equations contain an interaction kernel which treats particles in in-
termediate states as free. In situations where the binding is important, such as the calculation of low-energy
electrodynamic corrections, a more accurate treatment is necessary, A satisfactory formalism is developed
for systems in which an instantaneous interaction is responsible for the binding. The procedure may then
be used to evaluate the effects of small retarded perturbations. It consists of summing those binding inter-
actions which occur during the retarded perturbations and which never should have been expanded as
"small" effects. The result is expressed in terms of the two-body Green's function of the instantaneously
interacting system. This function occurs to describe the propagation of the two particles in the intermediate
state. The relative time coordinate does not appear explicitly in the formulas. The method is applied to the
calculation of the hyperfine structure of positronium. The infrared divergences which occurred in a previous
investigation of this effect are eliminated by the new approach.

I. INTRODUCTION

EVERAL recent treatments'~ of the two-body
system have used the techniques developed by

Schwinger' to derive rigorous functional differential
equations for the Green's functions of various two-body
systems. These equations include an implicitly dehned
interaction operator. By various techniques of iteration,
an expansion of the operator in powers of the coupling
constant is developed to the order desired. The equa-
tions that have been obtained in this way are called
Bethe-Salpeter' ' equations. They are deficient in that
all intermediate states that occur during the interaction
are expanded about free-particle states by the Born
approximation. This fact certainly requires serious
examination when the method is applied to strongly
interacting bound nucleon systems. The weak electro-
dynamic coupling, on the other hand, should lead to no
difhculties were it not for the fact that photons of
arbitrarily long wavelength can occur in radiative cor-
rections. In bound atomic states, therefore, the shape
of the wave function will enter significantly into the
results of a correct calculation. Methods that neglect
this natural cutoG at the atomic radius lead to the
familiar infrared catastrophes.

*A paper that discusses these same ideas, by R. J. Eden,
Proc. Roy. Soc. (London) 219, 516 (1953), appeared as this
manuscript was being submitted for publication. It is hoped that
the computational details described here will extend the usefulness
of the formalism that is developed.

t Harvard National Scholar.
f On leave of absence from Harvard University for the fall

semester, 1953-1954.
' R. Karplus and A. Klein, Phys. Rev. 87, 848 (1952), hereafter

referred to as KK III. The notation of this paper and of reference
5 is used.

2 R. Arnowitt, Pnys. Rev. 92, 1002 (1953).' S. Deser and P. C. Martin, Phys. Rev. 90, 1075 (1953).
4 A. Klein, Phys. Rev. 90, 1101 (1953).' J. Schwinger, Proc. Nat. Acad. Sci. U.S. 3?, 452, 455 (1951).
e E. E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232 (1951);

M. Gell-Mann and F. Low, Phys. Rev. 84, 350 (1951).' E. E. Salpeter, Phys. Rev. 87, 328 (1952); G. E. Brown, Proc.
Roy. Soc. (London) A215, 371 (1952).

It is the purpose of this paper to correct the equation
that describes the bound state of two oppositely
charged fermions by taking into account the binding in
intermediate states. Because of the weakness of the
electric forces, the bound system is essentially non-
relativistic. For the calculation of energy displacements
of the order of magnitude n'm it is therefore sufhcient
to provide for the binding in those intermediate states
in which the relative momentum of the two particles
and the virtual energy are small. The procedure begins
with an examination of the terms in the interaction
operator that comprise the Born expansion of the
Coulomb interaction. It is observed that these con-
stitute a formal expansion of the two-particle Coulomb
Green's function. The free-particle Green's functions
that occur in certain low-order interactions are then
replaced by the correct Green's function with the pro-
viso that the terms including the Coulomb energy
explicitly are to be omitted from higher-order inter-
actions. The features of electrodynamic systems men-
tioned earlier simplify this task greatly. It is, for
instance, unnecessary to make the correction in states
that contain virtual pairs. Since the manifest covariance
is lost as soon as the instantaneous Coulomb interaction
is separated and given special treatment, there is no
particular disadvantage in making further noncova-
riant distinctions. s

In an application, it is of course impossible to cal-
culate with the complete Coulomb Green's function. A
separation into high- and low-energy phenomena as
measured by the frequency of the virtual quanta leads
to the further simplification that the Born approxima-
tion to the Green's function is valid for the high-energy
eGects whereas a nonrelativistic treatment is adequate
in the low-energy region. This separation is identical to
the one made in the early calculations of the level shift

Julian Schwinger and Paul C. Martin have privately described
to us a completely covariant treatment of binding in intermediate
states.
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in an external Coulomb field. ' The method of obtaining
high-energy corrections is illustrated by an examination
and elimination of the infrared catastrophes that were
encountered in the corrections to the fine structure of
positronium.

II. PERTURBATION THEORY

I'(x,*')= t—) (x x—') 8 (xs)f(r) ys'yo (2.7)

Next we rewrite Eq. (2.3):
[F»(x,x') —I (x,x') j(»(x') =I»'(x,x') p»(x'). (2.3')

sideration of I~'s local in relative time and in the
space time of each particle:

The unperturbed system is described by the total
energy momentum E„oand the wave function qo(x) in
relative coordinates. It satisfies the equation

[F»c(x,x') —Ie(x,x')

)pe�(x')

=0, (2.8)

whereas the corresponding bound-state Green's func-
tion satisfies

[F,(11')F,(22') —I'(121'2') $Ge(1'2'34)
=8(13)fl (24). (2.9)

[Ft(11')Fs (22') —I(121'2')iG (1'2'34) = 8 (13)8 (24), (2.1)

where

F s ——y"p s+m= sy"—(}t s+m=[Gs") '

By following the steps leading to Salpeter's Eq. (13),r
one may rearrange both Eqs. (2.1) and (2.8) in such a
way that the instantaneous nature of the binding
interaction can be explicitly used to simplify the problem
in a coordinate system in which the total momentum is
zero, E„=(O,E()), Ee= (O,Ese). In this manner one ob-
tains the equations involving the Dirac Hamiltonian
II(p):

I is the interaction operator. The two-particle wave
function is a solution of the corresponding homogeneous
equation. After renormalization of the mass and the
coupling constant, the equation for the wave function
becomes'

[Eo J=I'—(p) II'—( 1)—3v»(r, O)
(2.2)[Ft (11')Fs(22') —I(121'2')$$(1'2') =0,

A perturbation formalism for obtaining the egects of
a time-dependent interaction on the energy of a system
bound by an instantaneous interaction has been
developed by Salpeter. ' After some introductory defi-
nitions, his results are adapted to the present require-
ments.

The Green's function for two nonidentical fermions
of equal mass with no external field present satisfies the
equation'

or, in relative coordinates,

[F»(x,x') —IK(xx') j(e»(x') =0,
where

(2.3)

+~ A(rr') f(r') (e»(r', 0)dr'

+ ' d'x'(t'x"A»(rO, x')ys'yssI»'(x'x") p»(x") =0, (2.10)

F»(x,x') = )t d4X'e 'K(x x'
&F&(—11') —F

s( 22'), (2.4)

and I» a,rises similarly from I.The wave function is an
eigenfunction of total energy-momentum E„and is, for
renormalized charge and coupling, +J A(rr') f(r') yo(r', 0)dr'=0,

$(12)=e'»xp»(x) [X=s(xt+xs), x=xt —xs] (2 5) where

(2.11)

' +Go'(22') vs'8(11'))

=s(2~) ', dke(k ~ (r—r')fe —((&r—i»o)lr —r'I

I(1234)=Ie (1234)+I'(1234)

IK (x,x') = Io(x,x')+ IK' (x,x')
(2.6) X[ '(k)0(t —t')+A„'(—k)0(t' —t)j

—e-'( +1»l'-"[A '(k)e(t' —t)where I~ is one or a number of irreducible interactions
which represents the main part of the total interaction
(for example, the Coulomb potential in the case of the
electron-positron system) and IK' represents small
corrections to this. We restrict ourselves to the con-

+A '(—k)8(t—t') j), (2.12)

[0(t)=1, t&0; =-'„ t=O; =0, t&01,

and

The experimental charge and coupling constant appear A»(xx') = d4X'e 'K(x x'&[Get(11')ys&8(22')
in all terms of Eqs. (2.3), (2.4), and (2.5).

We next consider such I, or such energy values of
our system, for which we can write:

'H. A. Bethe, Phys. Rev. 72, 339 (1947); N. M. Kroll and
W. E. Lamb, Phys. Rev. 75, 388 (1949);J. B. French and V. F.
Weisskopf, Phys. Rev. 75, 1240 (1949); R. P. Feynman, Phys.
Rev. 74, 1430 (1948) and 76, 709 (1949);J.Schwinger, Phys. Rev.
76, 790 (1949).

A. (rr') = sA»(rt, r't) = (2n—)
—' "dke'k ('—"&

&([A+'(k)A+'( —k) —A '(k)A '(—k)J. (2.13)
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Eo E—pc=~= —i ~ p '(x)IE'(x, x')gE(x')d'gd'g'
J

In Eq. (2.12) the numbered variables must be ex- can use the conjugate of Eq. (2.18) to show that
pressed in terms of the X and x according to Eq. (2.5).
The A+ are the usual projection operators

A~'(k) = (E(k)aH'{h) +28(k). (2.14)

In terms of the function yc (r) which is the solution of
the Salpeter's~ equation,

X I yc(x) y~(x0)dr. (2.19)

pc(x) = i ~—A~(x, r'0)gc(r')dx';

This expression merely serves as the beginning of an
&)~& {)+f{)& { )=0 {2.1 ) iteration procedure because it depends on the wave

function q ~. The small diHerence between q~ and q
~'

the functions P (x) and P (r,0) are exPressible as can be neglected in lowest order; for greater accuracy
follows: p& may be calculated from d,E by solving the equation

for y~(x) —yc'(x) that can be obtained from Eqs. (2.3)
and (2.18):

pa (x) q c'(x)+ ~ G~(x,x') $yo'yp'I~'(x'x") yc'{x")dg"

The normalization is taken to be

,

t gc"(r) pc(r, 0)dr= 1.

Reference to Eq. (2.12) shows that the relative time
behavior of the two-particle wave function is described
by free-particle Green's functions. lt implies that the
one particle propagates to the correct relative time in a
a positive energy state if its time is later or in a negative
energy state if its time is earlier. One is interested in
the wave function at unequal times because the two
particles may experience interactions at diGerent times.
The difRculty in the use of Eq. (2.16) occurs because
this relationship ignores the existence of a binding
interaction of the particle which propagates to the later
time with the other particle that has made a transition
out of the initial state by undergoing an interaction at
the earlier time. Of course, these eGects are not omitted
completely; they occur, expanded in a Born approxi-
mation series, in the interaction operator. The rear-
rangement to be made and illustrated later will over-
come this diKculty.

Salpeter' now de6nes a hybrid wave function

q c'(x) i, thyme(x, r'0)—xc(x')dx',

yc'(x 0) q,c(r 0) (2.1y)

Ga(x,x') = "d4X'e-'~&X—x'&G(121'2')yo'goo. (2.21)

This Green's function should be understood as a power
series in IE.' with the Coulomb Green's function as its
leading term.

Because the relative time dependence of all the wave
functions on the RHS of Eq. (2.20) is known, this ex-
pression may be inserted into Eq. (2.10) to yield an
equation which has no explicit relative time dependence

+ A(rx') f(r') y~{r',0)dr'

+i i' Xa(xr')xc(x')dr'=0 (2.22).

The kernel Xz is given by

X~(rr') =

t A~ {rO,g~) yo'yo'Iz'(x~x~)Aa (x~,r'0)d'x~d'x&

ihIixc—(r')8(xp')gd'x' (2.20.)

Here G~( ,xx) is the Green's function in relative coor-
dinates

and its adjoint whose time dependence is determined
by K, but whose space dependence is determined by E~.
This function has the property that

yo'y p'PP~ (xx') Ic (x,x')]q c'(x')—
=i(Eo Eoc)o(xo)xc(r). —(2.18)

When Eq. (2.3) is multiplied by pc'= (pc')*pp'pp', we

A~{r0 x )yp'y I~ (ox x~)Ga(x~x&)
J )

XI~'(x&x') A~ (x', r'0) d4x d4x&d4x&d4g'

+iaEJ"A~(r0,x )yp'yo'I~'{x xo)

XG~(x~,r'0)d4x~d'x& (2.23).
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One can look upon Eq. (2.22) as describing the behavior
of the compound particle in the nonlocal potential Af
with radiative corrections. The equation is still exact.

An explicit expression for hE may be obtained by sub-
stituting pz. , Eq. (2.20), into Eq. (2.19) and solving
for d,E. In electrodynamic problems the energy change
and normalization change are usually so small that
they can be neglected on the right-hand side. This also
implies that q~' p~. We therefore obtain

I
II 2

I
lee /'

'I) 4

T (2)

r
Ie. , r+, /
et'

r/
I(+ I(

r
+

'll

AE= i)—t g e(x) I'rcc(xx')+ d'x d'xeI'~c(xx )

(2)

FIG. 2. Coulomb corrections to the exchange of two transverse
quanta; pairs are present in some intermediate states.

DE= i,—' x e(r)X rc(err')y (er')drdr',

which is the basis for Eq. (3.6) in KK III.

III. PRESCRIPTION FOR BOUND STATE
CORRECTIONS

We turn next to the rearrangement that must be
carried out in the interaction I (1234) which we con-
sider given as a power series expansion in the coupling
constant. Let us consider a term T which arises from a
particular virtual process P. P is restricted in that it
must include no interaction I~ between the two par-
ticles (it may contain this interaction as a self-interac-
tion of one of the particles); P is irreducible' because it
occurs in I~'. We shall further distinguish with a sub-
script on P and T among the diGerent possible orderings
in time of the elementary interactions of which P is
composed. For an Nth order interaction P (tt) there
will then be e—1 time intervals or, in the language of
conventional perturbation theory, e—1 intermediate
states. In each of these the particles are described by
noninteracting Green's functions. Now consider in
addition the collection P ~ of all those processes that
diQ'er from P only in that interactions I~ take place
during time intervals in which no more than two par-

ticles are present. As described in the introduction,
the sum,

r =T+T e, (3 1)

r (1)=ie' g y F (11')Ge(1'234')P (4'4)y g+(23);
i~1 (3.3)

of the corresponding terms then represents the con-
tribution to the interaction operator of a P whose
two-particle intermediate states are states of the unper-
turbed system governed by Eq. (2.8). Of course Eq.
(3.1) must be understood in a formal sense only, because
the infinite sum on the RHS will usually not converge
under the circumstances we contemplate.

In a practical case, Eq. (3.1) is recognized to describe
the expansion of the Green's function G~ in a Born
approximation about the noninteracting Go'Go'. In
order to accomplish the summation, one must replace
the free Green's functions in T by the functions G~
that describe the propagation of the system in each
time interval. This will now be done for the P's illus-
trated in the Feynman diagrams Figs. 1 and 2. The T's
and K's are given in Eqs. (3.2) to (3.9):"

T (1)=ies P y,sf+(23)y;t5(13)5(24), ts&ts, (3.2)

Al 2
/

/
/

3e&

PARTICLE I

PARTICLE 2

T (I)

I Is,

ei4

pi/

Il

r
/

IV

+ I ~ ~

Te(1)=ie' P y g+(14)y,s8(13)8(24), t4&tr,

g e(1)= jes P p rPs(22')Gc(12'3'4)

T (2)= (ie')' Q yPy, '8(11')Gs'(1'3')Go'(24)

(3.4)

T& (i )

FIG. 1. Coulomb corrections to the exchange of a transverse
quantum. Solid lines refer to elecrrons, broken lines to quanta, and
wavy lines to the instantaneous Coulomb interaction.

t4«, '&t, '&t, ; (3.6)

"The Z; 12 represents the sum over transverse components
with respect to the Fourier transform momentum of the photon
Green's functions.
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S' (2)= (ie')' P y 'F1(11")Gc(1"21'2")

X+ .1F&(')~~2~)GC (112~3~4~)F&(4r4~~)

X 'Gc(3'4"3"4)F,(3"3)

X»'b+(1'4) g+(3'2);
2

T (2) = (' ')' E v"Go'(11')v8(1'3)~(24')

X~,'G '(4'4) v 8.(14)g (1'4'),

t4' &t4(tl &tl',

(3.7)

(3.8)

dling the difference between the two usually divergent
quantities in the right-hand side.

The effective interactions appearing in the second
and third terms of Eq. (2.23) present no new problems.
For convenience the Green's function appearing there
may be expanded in the Born approximation series. The
resulting expression is then very similar to I' itself;
all terms in it, however, are reducible. Now, the irre-
ducibility mentioned earlier played no role in the dis-
cussion. The prescription can therefore be applied
without further argument.

IV. APPLICATION TO THE HYPERFINE STRUCTURE
OF POSITRONIUM

v'e(2) = (ie')' Q y 'Gp'(11')y 'Fp(22')G (1'2'3'4')

XF)(3'3)yÃp'(4'4)y, 'gp(14)().4-(1'4') (3 9)

In these expressions it was unnecessary to refer ex-
plicitly to the times of all the successive events because
the Coulomb Green's function at nonvanishing relative
times is related to its values at zero relative time

by free-particle Green's functions. The free-particle
operators Ii; applied to it therefore lead to the delta
functions in relative time that reduce the above ex-
pressions to the result referring to the time intervals
one would expect from the discussion leading to Eq.
(3.1). This property of Gc is evident when its defining
equation is rewritten symmetrically:

Gc(1234)=G'(1234)+G'(121'2')LIc(1'2'3'4')
+Ic(1'2'56)Gc(5678)Ic(783 4 )]Go(3 4 34) (3 10

It arises from the instantaneous character of the binding
interaction I~.

In this manner the entire interaction operator I' is
rewritten as an operator 8' from which-a relative coor-
dinate transform 4(z' can be obtained by Eq. (2.4).
Feynman diagrams may still be used to list the inter-
action terms; one must take those diagrams that contain
no I~ and those that contain it only in intermediate
states in which pairs created by a lower-order contribu-
tion to 811-,

' are present. The Fermion lines are then
represented by interacting Green's functions as in Eqs.
(3.2)—(3.9) and the quantum lines by the quantum
Green's functions.

One encounters a difhculty with the above pre-
scription. This will now be resolved. It has to do
with those processes I' ~ that contain only interactions
I~ between the two particles. These represent the self-

energy of each particle in the presence of the other. The
corresponding T is not contained in I' but has been
included in F1F&, Eq. (2.1), to facilitate renormalization.
One may "borrow" the necessary term and carry out
the rearrangement —in other words, rewrite Eq. (3.1):

T c= (T +T c) T= v' T. — (3.1')—
One must observe the customary precautions for han-

As a test for the technique developed in Sec. III, Part
IV of KK III was re-examined critically. In this part,
infrared divergences which arise in the calculation of
the hfs of positronium from the consideration of terms of
the direct interaction are shown to cancel when the
photon momenta are cut oG at a small value. We have
recalculated these egects and confirmed the numerical
results of KK III by showing that the low-energy terms
that were omitted actually do vanish.

To illustrate the formalism, we shall carry out the
calculation as it relates to the contributions from a
single transverse quantum. The perturbation considered
is therefore the one stated in Eqs. (3.3) and (3.5) and il-
lustrated in Fig. 1. It should be pointed out that this
includes both I~l~ and the Coulomb-transverse terms,
of'I~2~&'&. ' The explicit second-order terms, which we
shall not discuss here, involve two transverse quanta.
The energy change to be investigated is that derived
from Eq. (3.3) by taking the center-of-mass transform,

v'~(x, x') = ie' I e 'x(x x')d4X'd—4x, 'd4xx'd4xx'd4x4'

&(Q y 'F1(11')() (22')Gc (1'2'3'4') 5 (3'3)

Xx(rr')= in(24r) —P dkdpdp'dKp'dxdx'

yQ—1(/+K r K )
—leip ~ (r—x)e—ip' ~ (r'—x')

2

ye—1i)r ~ (x+x') P n,2~1(p)
i~1

XGc—), a, (x0,x'0)A '(—p')n' (4 2)

which, of course, depends only on the Coulomb Green's
function between states at equal time. The integratiDs

XFx(4'4)P ()+(23)0(tx—t1)e(t4—t,)0(tx—t,)) (4.1)

and introducing the functions 8(tp —t1) and e(t4 —tp) to
exclude the contributions from processes of unwanted
time ordering. The positive energy part of the associated
function Xx(rr'), Eq. (2.23), whose matrix element
between equal-times wave functions gives the energy
change, Eq. (2.25), is
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over x and x' define a Fourier transform of this Green's
function. The momenta involved are y and p' of the
order of the Bohr momentum nm, and k, the photon
momentum. Clearly, the function G may be approxi-
mated nonrelativistically for values of k &o.m, whereas
a free-particle expansion is valid for k&am. This
separation according to k~~k =nm will then permit us
to take into account the effects of the binding where
necessary and to handle the high-energy contributions
correctly. We therefore define

Xx&(rr') = t dk; Xx(= ~ dk . (4.3)
~&Im

The appropriate expressions for the Green's functions
are the expansion about free-particle states:

A+'(p)
~

G~ —j,xe'(xO, x'0)A+'( —p')e "'*

Xe'~' x'e &'" &x+x')dxdx'

or

p' k' o.
2m+ + — y g, „(x)

2~ 4~

= X(p)+ p g, „(x)=E„'q g, „(x), (4.7)
4m

in a nonrelativistic expansion. X is the hydrogenic
Hamiltonian with reduced mass 2m and eigenvalues
2m rr'm—/4n' Th.e only other quantity that enters the
perturbation energy, Eq. (2.2S), is the ground-state
wave function xc(r), which also may be approximated
in terms of a Pauli wave function, ye(r):

(x'(r)=I 1+ II 1—
Iv (r)

2m) E 2m)

t' o"Pi ( n'P)= (2Ã) 3) dpe'&'I 1/ I I
1— Iyp(p). (4.8)2~) ( 2m)

The high-energy contribution,
, A+'(p) ~(p —p'+k) A+'( —p')

~(2m)'i
E(p)+E(p') —&o'

AE& —— ~) xc'(r)zx&(rr')xc(r')drdr', (4.9)

~'(—p —k)
+ 4~~A, '(p)

E(p)+E(p+ k) —Ep'
can be calculated by the methods of KK III. The spin
matrix element, denoted by ( ), from the erst term of
Eq. (4.4) givesA+'(p' —k)

x (p —p'+k) '. . .A+'( —p'),

Z i1+( )

and the sum over nonrelativistic Pauli wave functions,
(x) .11

G -~,xe'(x, O,x'0)

'(P--:k) ~ f '(p+-:k) i
=UZI 1+ II 1— I~-. .(x)

m E 2m ) E 2 tlat

~'. (p' —kk) i
Xq ..*(x')

I 1+
2m

( a'p'& t' n'p'i
xA+'( —p')

I
1+

2~ )
~[E(p)+~$[E(p')+~)(~'x (y—p')

' 'X(p — ))/16 'E(p)E(p)

~[E(p)+~l[E(p')+~3
X-',k'o'o'/16nPE(p)E(p'), (4.10)

where we have made use of momentum conservation

xI 1—
I

—, (4.5)
and spherical symmetry. The resulting expression can
be reduced to the 6rst terms of Eq. (4.8), KK III,

where ip and ip' stand for the gradients with respect to
x and x'. The presence of the photon momentum arises
from the fact that the system described by the Green's
function has a total momentum —k because of recoil.
The wave equation satisfied by these wave functions is

[E(p+2k)+E(p —kk) —~/I x
I 3~-~.-(x)

=E„'q g, „(x), (4.6)

"R.J. Eden, Proc. Roy. Soc. (London} A21S, 133 (1952},has
used similar .Green's functions of compound particles without,
however, explicitly referring to the structure of the system.

n (e'e')
dkdpdp'~o*(p)

6m' (2~)' ~e&a„

[E(p)+~&[E(p')+~j
X

4E(p)E(p')

kb(y —y'+k)
go(p')

k+E (p)+ E (p') Ee—
by carrying out the contour integral over Eo'. The factor
of one-half of this contribution compared with the
formula in KK III is accounted for by the existence of
an equal energy change due to the v'e in Eq. (3.5). By
the approximations described in KK III the result,
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accurate to n(hfs) under the assumption that k nm,
is obtained:

where the omitted terms are quadratic in the momenta
and therefore of order n2(hfs). Thus,

Q tT 0

6m' (22r)2 &k)k
happ(r)e 'k'opo(r)drdk hE(= (n/16m'2i')Q

~

dke ' '+" k 'drdr'
n

(212/3m)(g 'e)I&o(0)I (1+in(m/k )). (4.12)

For the second term in Eq. (4.4), it is sufhcient to set
X (k+E '—Eo) ' P go*(r) (e2Xk),

i 1

x&(r)=go(0). (4.13) (r) V-k, *(r ) ( 'Xk)'po(r') (4 21)

The resulting spin matrix elements are of the form

2

p(i2'11+2(—k)i1+'(—k)i2')—&-'k'(e'e')/4E'. (4.14)

The integration over Eo' may be carried out as before
and yields the expression

(ei. e2)
I o o(0)I' (4.15)

3m' 22r &k&k„k E' (E+k—m)'

which corresponds to a part of Eq. (4.13), KK III.
The integration of k gives:

(2n2/3m')(e' e')I qo(0) I'( —~or+in(m/k )), (4.16)

which is added to Eq. (4.12) for AE&,

hE) ——(i2/24m22r2)(e' e')

go*(r)e '"'qp(r)drdk

In order to eliminate the wave functions of the excited
states occurring in Eq. (4.22), we may replace E„' by
K+k2/4m, Eq. (4.7), acting on op k „(r).The sum over
rl, now yields a 6 function between r and r'.

AE( ——(n/16m22r2) dkopo*(r) (e'xk) (e'xk)
~ I'(&m

Xe-&'k'k-1(k+X —Eo+k2/4m)-1

Xe &'k 'po(r)dr (4.22.)

This expression may be evaluated approximately if one
recognizes that the energy level diGerences in the de-
nominator are of order o.'m whereas the momentum k

is of order o.ns. It is therefore suKciently accurate to
retain only tl;e first two terms in the expansion

k '(k+3c—E'p+k'/4m) '=k ' —k 2(3c—Ep+k/4m)
+k '(X—E +k'/4m)'(k+K —Ep+k'/4m) ' (4 23)

) m
The spherical symmetry of the ground state implies—(2i2'/3m')(e'e')

I 2po(0) I'(1+~2r). (4.1&) that one may average over angles with the result

The low-energy contribution, (e'Xk e'X k)~22k2(e'e'). (4.24)

AE~ oy —*(r)X«(rr')ye(r')drdr', (4.18) With these two observations, the first term of Eq. (4.23)
inserted into Eq. (4.22) gives

is evaluated by using Eqs. (4.5) and (4.8) to simplify
the expression. The spin matrix elements that occur are (i2/24m22r2)(e'e') pop~(r)e 'k 'po(r)drdk, (4.25)

I 1+ II 1— IN'(»~'I 1+-
~ ~e'p) e'p ) ( n'p)

2m& &
whereas the second one gives

'(p+k) ~ ( 'xk); E(p)-
xI 1—

2m ] 2m 2m

(i2/24m2~2)(el. e2) + o(r)e—)ik.rk-lJ„,.
(E(p)-m) p'

Sm2E(p)
+i (epx—k);/2m, (4.19)

XLX(P)—Eo+k2/4mfe "k'yo(r)drdk. (4.26)

(Bc(P)—Ep+k'/4m)e &'k 'o2p(r)

= $X(p+ ', k) Ep -p—k/m"—e &'k 'prp(r—)
= —(p k/m)e-'k 'o, (r)+e-&'k 'Lge(p) —E,)o,(r)
= —(p k/m)e-&" 'q o(r). (4.27)

(
t' '(p —k)l 'p )

I
1+ I

1- I-, ~(-p')
2m ) 2m i

e'p)( e p&
1+ I I

1—
I

—+—z(e'Xk);/2m, (4.20)
2m ) E 2m ) $jpce, furthermore, the ground-state wave function is
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real, the integrand of Eq. (4.26) may be rewritten

which becomes a vanishing surface integral when inte-
grated over r. Consequently hE& is equal to the ex-
pression given in Eq. (4.25). When this simple result is
added to the high-energy contribution, Eq. (4.17), the
total energy change from the perturbation Eq. (4.1) is
equal to

hE= (n/24m'm')(0'0') ~~ «(r)e '~ '«(r)dry
~all k

—(2n'/3m')(0'0')
~
po(0) ~'(1+-,'vr) (4.29)

It is clear that this result is precisely the one that
would have been obtained for these terms by the use of

artificial cutouts at small momenta for the divergent
contributions. It is a consequence of the fact that the
low-energy correction Eq. (4.25) contained no correc-
tions of relative order n to the hyperfine structure. The
same procedure, with a similar result, can be applied
to the corrections coming from the exchange of two
transverse quanta in Eq. (4.11),KK III.The remaining
contributions present no difficulties at low energies and
need not be examined.

We may point out now that the ideas discussed here
are just the ones that were used to evaluate the Lamb
shift in hydrogen. The formalism therefore provides the
correct connection for joining a nonrelativistic per-
turbation result such as Eq. (4.21) to a relativistic
treatment of the radiation interaction that permits the
removal of divergences. The method is being applied to
situations where the low-energy contributions that
depend on the bound state will not vanish.

We have enjoyed conversations about this subject
with Julian Schwinger, Abraham Klein, Malvin Ruder-
man, and Paul Martin.


