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Theory of Nuclear Level Density
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We have compared the level density of a nuclear model deduced from a statistical analysis with the
results of the exact counting of the levels of the same model. The tables of levels of Ne~ given by Critchfield
and oleksa have been used as a test of the statistical theory. A new derivation of the level density is presented.
It starts, as usual, from the independent-particle model. However, it differs from the previous treatments
in two respects: (a) the exact states of the nucleons in the central potential are kept throughout the calcula-
tions instead of being replaced by a continuous distribution; (b) the eGect of mutual interactions of the
nucleons of the Majorana, Bartlett, or Heisenberg type is taken into account in the long-range approxi-
mation. With these modifications, the statistical theory agrees very well with the exact counting of the
levels, both for the total density and for the density of the levels having a given angular momentum. It is
shown that the replacement of the nuc1eon states by a continuous distribution introduced in most previous
derivations, and the neglect of the Majorana forces can produce very large errors. An interpretation is
presented of the distribution of angular momentum among nuclear levels in terms of rotations of the whole
nucleus as a rigid body.

I. INTRODUCTION

HE theory of nuclear level density was initiated
by Bethe' many years ago, on the basis of the

Fermi gas model of the nucleus. It was soon realized,
however, that the pure free-particle model which he
used was only a very crude approximation. Moreover,
it was not clear to what extent the conventional statis-
tical analysis could be applied to systems containing
relatively small numbers of particles. Therefore, a more
detailed calculation of the potential energy was intro-
duced, and the statistical analysis was replaced by an
explicit counting of the levels of the nuclear model. ' 4

Unfortunately, this procedure is so lengthy that it.
cannot be repeated for many difkrent values of Z and
A. In addition, such a calculation is not feasible for
heavy nuclei. It will be shown, however, that after
proper modification, the statistical theory yields a
reliable and accurate counting procedure even for com-
paratively light nuclei. It wiH also be shown that nuclear
models, which include a dependence of the potential
energy on the symmetry of the wave function, can be
treated by statistical methods. The validity of the
nuclear model, itself, will not be discussed here.

As usual, the independent-particle model is taken
as a basis of the statistical theory. After the energy
levels of the individual nucleons in the central potential
have been determined, the calculation of the level

density of the nucleus can be treated as a purely com-
binatorial problem, the solution of which is expressed ex-
actly by the Darwin-Fowler integral (3).The main step
in the statistical theory is the evaluation of the latter
integral by the saddle point method. It will be shown

by comparison with the calculations of Critchfield and
Oleksa, ' based on an exact counting of the levels, that
this approximation does not introduce large errors even

' H. A. Bethe, Revs. Modern Phys. 9, 53 (1937).' J. Bardeen and E. Feenberg, Phys. Rev. 54, 809 (1938).
'L. Motz and E. Feenberg, Phys. Rev. 54, 1055 (1938).
4 C. Critchfield and S. Oleksa, Phys. Rev. 82, 243 (1951).

when the number of nucleons is not very large. The
standard treatment of statistical mechanics, however,
includes additional approximations which lose their
validity in systems containing small numbers of par-
ticles. Among these is the replacement of the individual
nucleon states in the central potential by a continuous
distribution. This leads to a very simple expression for
the level density, but a comparison with Critchfield's
results shows that its accuracy is not very satisfactory.
The fact that it does not take into account the shell
structure of the ground state of the nucleus is a great
weakness of the method of continuous distributions. '
Thus, for example, if the outer shell has a large angular
momentum, and is about half-filled, the outer nucleons
can be rearranged in a large number of difFerent ways
with very little excitation energy. The level density is,
then, larger than it would be in a closed shell nucleus
of comparable mass.

In nuclear reactions, the transition probabilities vary
so rapidly with angular momentum that only the
levels having the appropriate angular momenta are
excited with reasonably large probabilities. The&efore,
it is important to determine the density of the levels
with given angular momentum. More generally, one
can compute the density of the levels for which any
number of constants of the motion take given values.
The isotopic-spin formalism is, then, very convenient
for representing Z as a constant of the motion similar
to an angular momentum. Another application of these
calculations, is the treatment of more complex nuclear
models. The determination of the densities of levels
with given spin, isotopic spin, or symmetry type is, in
fact, the key to an estimation of the efFects on the level
density of Bartlett, Heisenberg, or Majorana forces.

II. THE CONTINUOUS APPROXIMATION

In the following three sections, we shall consider a
nuclear model in which the nucleons move indepen-

' H. Margenau, Phys. Rev. 59, 627 (1941).
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dently in an average central field V (r). For simplicity,
we shall assume that V does not depend on the spin
and the isotopic spin of the nucleons. The theory can
be applied to a j-j model with a few obvious modi-
fications. I et co, c~, .c~ be a set of commuting con-
stants of the motion of a single nucleon. Such constants
will be, for instance, the projection along the s axis of
the orbital angular momentum /„or the spin s„orthe
projection along the 1 axis of the isotopic spin rr We.
shall assume that the values CI, of the constants of the
motion for the whole system are the sums of the values
of the c~ for the individual nucleons. The states of the
nucleons in the potential V(r) can be classified according
to their values of the cA, . It will be convenient to call
a "component" the set of all nucleon states for which
the t,I, have the same value. Thus, a component n is
delned by the specification of the nzl, ,

co= tmo, „,ci——tni, , cx=mx, . (1)

For instance, if we introduce only one constant of the
motion s„wehave two components: the states with
s,=—'„and the states with s,= ——,'. If l', is taken as one
of the constants of the motion, the number of com-
ponents becomes infinite, corresponding to l,=0, &I,

~ ~ ~

In what follows, co will always stand for the number
of particles. Thus, @so, =1 for all components, and for
the whole system CO=A.

We shall denote by e; the states of a nucleon in the
central potential V (r), and by g;, the statistical
weight of e; in the component n. For simplicity, we
shall assume that each of the constants of the motion
c&, c&, cz is similar to the projection on an axis of
an angular momentum. Hence, the statistical weights
g„associated with two components which diGeronly
through the signs of the uzi, , are identical.

The central problem in the statistical theory is that
of finding the density p(E,M&) of the levels for which the
total CI, have given values:

Cp= Mo ——A, Ci ——Mi, ~, Cx= Mx. (2)

The exact solution to this problem is given by the
well-known Darwin-Fowler integral. v '

p(E,Mk) = (27I'L)
J

' ' ttgdÃ0' ' 'dgx

~exp(Et —P, x,M,+P.4.), (3)
' This assumption is introduced in order to decrease the number

of terms in the expansions and could be removed easily. It excludes
parity, which can be represented, for instance, by a constant of
the motion such that m =0 for the even nuclear states and m = 1
for the odd states. The density of the even nuclear levels would
then be the sum of the densities of the levels for which C=O, &2,
~4, etc. The density of the odd levels would be the sum of the
densities of the levels such that C= &1, &3, &5, etc. In general,
the level density will be a smooth function of C, and the densities
of levels of both parities will be equal in the 6rst approximation.

7 R. H. Fowler, Statistical Mechanics (Macmillan Company,
New York, 1936).

G. E. Uhlenbeck and C. Van Lier, Physica-4, 531 (1937).

We shall first describe the continuous approximation
which is based upon the Eqs. (3) and (5).

In the terminology of thermodynamics, the variable
t in (3), (4), (5) would be the inverse of the temperature.
It is well known that for all excitation energies of
interest, a nucleus is a highly degenerate system. Thus,
the important values of t in the integral (3) are the
large ones. For t large the integrand in (5) falls off very
rapidly as e becomes larger than the "Fermi energy of
the component o,".

e.= (pi xi.mg, )/t. (6)

This permits an asymptotic estimation of the integrals
for ~ t)&1. According to Sommerfeld, ' "

4 = t (e N W)+ (m—'/6t) p (e ),
where

N (e )= dip. (e)

is the total number of nucleons which can be accom-
modated in the component n, when all states are 61led

up to the energy e, and

W (e)= deep. (e)

is the corresponding total energy.
The next step is the evaluation of the integral (3) by

the many-variables saddle point method. 7 This yields

p(E,Mi,) = (2m) &x+'& "D '~'e, . -
where the "entropy" S is the value at the saddle point of

S=Et Qg xsMg+Q 4—,

and D is the determinant formed with the values at the
saddle point of the second derivatives of 4=+ 4
with respect to t, xo, x~, -, x~. The coordinates of the
saddle point are given by

E= —84/Bt, Mg= 84'/BxI, .
A. Sommerfeld, Z. Physik 67, 1 (1928).' This expression is the beginning of an asymptotic expansion.

However, the following terms depend on the derivatives of the
p (e), and therefore have little meaning in nuclear problems,
where the replacement of the discrete energy levels of the nucleons
by continuous distributions is quite ambiguous (see Sec. 4).

4.(t,xp) =P, g;,.log[1+exp(Pp simp, . c;—r)] (.4)

In (3) the integrals are taken along contours going
from i~ —to +i~. It is customary in statistical
mechanics to replace the distribution of states e; by a
continuous distribution. Let then p (e) be the density
of nuclear states in the component n. We can replace
(4) by

4 (t,xi,) = dip (e) logL1+exp(Qi, xi,mi. .. at)]— (5.)
Jo
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Substitution of (7) into these equations yields The relations (11) yield

E=2 L~ + ( '/6"') ( +' )3

M0 ——p my, [N+(m''/6t0)p j,
(10) 0 ' —00~5 Q my, M0/(rn0')0„,

(16)

We shall now assume that the excitation energy
O'= E—E', measured above the energy E' of the lowest

level having the given values of the constants of the
motion, is sufficiently small so that 1/t0 and the varia-
tions e —e can be considered as infinitesimal quan-
tities. Then, from (10) we get in the first approximation

U'= (m'/6t')P p (0 ').

Moreover, if 3f~, 352, 3f~ are small, the e ' do not
dier very much from eo, and we have

2- p-(0-') =2- p-(")=1/~ (12)

Here 1/b is the total density of states ava. ilable to a
single nucleon at an energy equal to the Fermi energy
~' of the ground state. It can be easily shown that the
difference,

p (' 1) P p (,0) P (, i '0)p ('0)

which is neglected in (12) vanishes in the first order in

M&. A short calculation finally yields for the level

density in the first approximation

p(E,cV0) = [(20r)x '(+48) U'aio0. . oxj '—
Xexp[~(2Ui/3b) &), (13)

where the a.I, are defined by

oi,'= (1/0r)(nip )A, (6U'/h)~.

ln (14) we have written

(n0IP )Av
=p a rnk, a pa (0 )/p a pa (0 )

(14)

(15)

for the quadratic mean of mI, at the top of the Fermi
distribution. A remarkable property of this result is
that the level density depends on the 3I& only through U'.

We must now compute the energy diGerence E'—E'.

where all functions of e are taken at e= e as defined by
(6).

The lowest energy level satisfying the conditions (2)
is obtained from (10) by putting t= ~. The energy E'
and the Fermi energies of this state are given by

E'=Q W (0 '), M0 ——Q rnl, , E (0 '). (11)

The ground-state energy, on the other hand, is the
minimum of E' for ufo ——A and arbitrary SIj 3E~.
It is easily seen that in the ground state of the model

3E~, . N~ vanish and that the Fermi energies e are
all equal to a value e' defined by

CV (00)=A.

E'—E'= U—U'= b Q &00/2(n000)A„.
1

Here we have introduced the excitation energy U
measured from the ground state. By substitution of the
value of U' given by (16) into (13), we get the Gaussian
distribution law'.

p(U~0)=p(U)L(20r) "0'io'2' ' '&zg'

Xexp( —P M00/2o00), (17)

where

p(U) = (U+48) ' exp(ir(2U/38)&$ (18)

is the well-known expression for the total level density. ' '
ln deriving (18) we have introduced the difference
O' —U only into the exponential which is the rapidly
varying factor. Similarly, in the expression (14) de-
fining o0, U' may be replaced by U. lt is seen from (17)
that oi is the dispersion of 3II0 among the levels.

The results obtained for the continuous model can
be summarized as follows: The density of the levels with

given vatues of Ci, Crc is proportional to the total level

density (18) at an energy U—(E'—E'), where E' is the

energy of the towest of al/ the considered levels, and E'
the energy of the ground state. The constant of propor
tionality is indePendent of the values of C0, and can be

obtained by norntalisation of the total density at each
energy.

III. MORE ACCURATE TREATMENT

The calculation of the level density of a highly
degenerate gas starts from the assumption that only
levels near the top of the Fermi distribution are in-
volved. The replacement of the distribution of the
nucleon states by a continuous distribution, on the
other hand, requires that the number of nucleon states
in the relevant energy interval around the top of the
Fermi distribution is large. Moreover, the distribution
of these states should be fairly regular so that an
equivalent smooth density function could be defined.
These conditions are not well satisfied in nuclei, espe-
cially in the lighter ones. Actually, the number of
relevant energy values of the nucleon states is usually
rather small, and some of the states are highly degen-
erate due to spin, isotopic spin, and angular momentum.
The density functions are then not well defined. A more
accurate treatment should start from the exact defini-
tion of C given in (4).

Let us assume, for example, that in the ground state
of the nucleus, the states e~, e2, e„~are filled, that ~„
is partially filled, and that 6~] 6~2 ~ ~ are empty. We
have seen in the preceding section that as t—+~, the
value of ~ at the saddle point tends to e', the energy of
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the top of the Fermi distribution. In other words xo—+too, in (20)."Thus, we get an expansion of the type
and the xI, remain 6nite. Similarly, in the present case
we can expect that xo will have the limit to„for large t.

= ('"+ + ') ~' ~'+ +
Hence, let us write X K

xo= f6~+a+«o, (19)

The method we shall use here consists in treating
exactly the dependence of C on t and a, and in using
a power series expansion for the dependence on the 6x~.
Thus,

g', a
C.=Q [Q «ohio, ])'f(»[t(o o;)+, a]—, (20)

p! o~
where

where u is a constant which must be adjusted in such a
way that

5x0~0 as t—+ ~ .

Ke have also seen in the continuous treatment that
the xo (k= 1, E) at the saddle point are proportional
to iV&. Consequently, for a certain range of values of
M~, we can consider the xA, as small quantities. For
convenience, we shall write xI, =bxI, for k= j., K.
Thus,

X
P xg'))oo, ~= 3o„+a++8xo5lo, ~.

k kM

+-', Q Fo"8xo'+ ',F(o-)«oo+ ', Q-Fo(')«),'8xo
0 I

EC

+—Q Foo")«~'+ o 2 Fo(")~n'«P+, (22)
24 o k&l

where Ã ~ is the number of nucleon states of energy
less than e„,lV„~is the corresponding total energy,
and the coeKcients Ii are given by

F(n) —Q g. f, (n)

F~(n) —Q g. ~o &f.(n)

Fo((»=g g,mo'm&, 'f &, », etc.
s,a

These coefFicients are expressed by elementary functions
in terms of the parameter t, and are easily computed,
especially since at small excitation energy, only the
terms associated with the state ~„andits close neighbors
contribute appreciably. Ke shall further need the fol-
lowing coeKcients:

f(x) = log(1+e'),
f'(x) = 1/(1+~- ),
f"(x) =-,' sech'(x/2),

f&" (x) = —io tanh (x/2) sech'(x/2), etc. and

g(n) —Q (o. o„)g, f, (o)

i,a

Go(» =P (o; o„)g...mo, —'f '», etc.

H&»=Q(o, o„)'g; f;—&&), etc.In the sum (20), the main contributions at low excita-
tion energy come from the state e and the states which
are close to it. This follows from the rapid decrease of The latter coefficients are related to the coeKcients F
the functions f&"' with ~o„—o,

~

for large t. The terms by
involving f or f' do not decrease with

~

o„—o,
~

when
~;&e„.These terms, however, can be written

f/&(o. o;)+a]=t—(o„)+oa+f[—t(o„o;) —a])— —
f'[ ( „)—oo;)+a]=1—f'[—t(o„—c,)—a])

where the remaining functions f or f' now have the
proper behavior. It is convenient to introduce the
notation

Equations (9) defining the saddle point read, now,

A =X i+F'+F"bxo+ "—PFo'"8xo'+--, (23)

~o F),"&x),+&").(o)«——),«o+

f"")=f(")[&(-—~)+ ] for e;&~a„,
The equation in E can be written after some simple
transformations

f "'= (—)"f'"'[—t(o o,)—a] fo—r o,(o„, (21) U= G'+G"&)xo+-,' P Go(o)«o'+ (25)
The distinction ~;~~~„is, of course, relevant only for
p=0, 1, since

f'"'( x)=(—)"f'—"(x) «p&2
If we assume, as above, that CI . C~ are such that

the numbers g;, of states with given values of the
constants of the motion depend only on the absolute
magnitudes of these values and not on their signs, then
only terms containing even powers of 6x&, - .bxz appear

where U is the excitation energy measured above the
ground state

E=W i+e„(A—X i).
"When S„Tp,Fy are introduced at the same time, the three

corresponding nz values for a single nucleon are related by
mgmpmy= $. From this correlation, it follows that the expansion
(20) will contain additional terms such as, for example, a term in
bx88xzbxI, which will yield terms in S,TyFy in the 6nal level
density formula. This minor correction will be omitted.
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The limit of F' for large t is given by the contribution
of the level e„,which is the only term independent of t.
Thus, we see from (23) that for large t, exp is propor-
tional to A N„—, F'—(t= ~). Consequently, the con-
dition that exp should go to zero for large t reads

A iV„—i F'(——t= ~)=f„'Qg„
This condition defines a. As f '=1/(1+e ), we have

e.=
[ A —X,)/[P. g„,.—(A —X,)). (26)

and the dispersion coefhcients by

~~'= Fs"—Fi "'(F'/F"). (31)

The coeKcients 8~~ of the fourth-order terms are very
small in practical cases; their expression is given in the
appendix.

The determinant D is readily computed because the
oG-diagonal terms are much smaller than the diagonal
terms. One finds in the first approximation:

D= (1 G'"/—H"P') (II" H~'&F—'/F")g o&'. (32)The quantity 3—E„~is the number of nucleons of
energy p„in the ground state, and P g„ is the total
number of nucleon'states of energy e„.Thus, e is equal
to the number of nucleons occupying the level e„in the
ground-state configuration divided by the number of
holes in that same level.

We must now solve Eqs. (23), (24), and (25) giving
t, exp, 8xI, in terms of U, A, and 3E~, and compute the
entropy S=Et—P& x&3I& C, .-nd the —determinant D.
The calculation is quite straightforward, and the
result

The preceding derivation does not apply when the
outer shell is complete in the ground state, since in this
case (26) gives a=+~ or a= —po depending on
whether e„is the last filled level, or the first empty one.
Let e„bethe first empty level. It is natural, then, to
replace (19) by

xp ——tp'+a+tixp,

0=F'+F"Bxp+

ing value of the entropy can be written where eP is some energy between e & and e„,to be
determined by the condition that exp—&0 as t—&~. We

p/2 p p p p ~ p~ p (27)
have A =E' i, and the relation (23) giving exp becomes

l y

1 l 1

where
Si= Ut+F F"/2F", —

F=Z 2 g', -f', F'=E Z g*;-f''
a iQn

(29)

where the two erst terms depend only on U and give
the general level density, the third term gives the
Gaussian law already obtained in the continuous theory
and the fourth term gives the deviations from this
simple law.

The term Sp is a constant equal to the value of S in
the limit t—&~, M& ——0; it is given by

Sp=a(A i A)+f„Qg-
„

Upon introducing the values of f„andof a this becomes

Sp= (ns+e) log(nz+e) —m loge —rs logos, (28)

where ns and e stand for the number of particles and of
holes in the level e„in the ground-state configuration.
In what fo1lows, we shall give the first approximations
only of the various quantities occurring in the level
density formula. More complete expansions are given
in the appendix.

The term S& is given by

In the limit of large t we have

F'=P g„, exp[ —t(p„—pP) —a$
—g„,.exp[ —t ("—.,)+a),

P'= p. g., exp[ t (p„ep)—a]— —
+g=, .exp[—t("—p- )+a).

Consequently, if we choose eP and a according to

= (en+en —i)/2& e =Pa gna/Pa gn,—1, ai

Ii' goes to zero much faster than Ii", and exp goes to
zero. In conclusion, eP has to be taken halfway between
e„and t.„~,and e" is the ratio of the weight of e„to
the weight of e„~.With this modification, all the
formulas given above apply, provided that in the
definition (21) oi' the f,&» p„is replaced by p'. Of course,
in the present case, all the functions F go to zero as
V~O. In particular, Sp=0.

We shall finally mention the modifications which
have to be made, if one wishes to calculate the number
X(F,M&) of levels of energy less than, or equal to, F..

This quantity is immediately derived from (3):

are identical with Ii and F' except that the term coming
from p„is omitted. The ratio F'/F" is a small quantity
at low energy; it vanishes in the limit of U—+0. Thus,
terms proportional to the successive powers of P/F"
are correction terms of increasing order. The dependence
of the excitation energy on t is given by

U= G' G"(F'/F"), —

Xexp(Et —P xiMp+C).

This integral can be evaluated by the saddle point
method, and the calculation is identical with that of
the level density, except that C has to be replaced by
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C —logt. The result is

1V(U3fI,)= (2') &x+'&"D 't 'e (33)

~000

800-

600-

where S is identical with the expression (27). However,
the relation (30) between energy and temperature is
replaced by"

U= 1/t+G' G"—(F'/F"); (34)

and in the calculation of D, B"has to be replaced by
EP'+ 1/t2

As an example, let us compute the total number of
levels of excitation energy U=O in a system of A.

nucleol. s. The exact value is given by the binomial coef-
ficient ( +"), where m and it are the numbers of par-
ticles and of holes in the level e„in the ground-state
configuration. On the other hand, we apply (33) taking
K=0. In the limit U—+0 we have

S=SO+t(1/t+G'+ ' ')~So+1,
D= (1/t'+EP'+ )o 0'~(1/t') F"(t= ~).

From the de6nition of F"we have

F"(t= ~)=2- g-, -f-"
=-,' P.g„, sech'(a/2) =mn/(m+e),

400-

300-

200-
V)

Ld

UJ-j ~00-
LLo 80-
CL 6Q-
CQ

4Q

20—

10
0

l I

I 2 3 4
ANGULAR MOMENTUM

where the value (26) for a has been used. Finally we
get, after substitution of (28) for So,

~m+v)
E(0)= fe/(2m)&j&& Stirling approximation for

~Em)
(m+m )= 1.084X Stirling approximation for

~Em~
It is seen that even in this extreme case the error

introduced by the saddle point method is very small.
The integration with respect to xo has had the eGect of
replacing the binomial coeKcient by its Stirling ap-
proximation, whereas the integration with respect to t
has introduced an error of the order of 8 percent.

Iv. ANGULAR MOMENTA

In this section, we shall study the distribution of
angular momenta among the nuclear levels.

The present experimental knowledge of the spins of
the nuclear-excited states is very scarce except for a
few low-lying states to which the statistical theory
does not apply. Therefore, it is not possible to verify
directly the theoretical predictions. It is, however,
interesting to check the accuracy of the statistical
treatment by comparing its results with those obtained
by a direct counting of the levels performed on the
same model. Thus, the discussion of the validity of the
model itself will be left entirely aside. Critch6eld and
Oleksa' have given a complete account of the levels of
energy less than 25 Mev for the nuclei with 2=20,

'2 Note here that the relation between energy and temperature
depends on the integral which is computed.

Frc.'. i.. Number of levels with a given angular momentum and
an energy less than a given value. The dots represent the results
of Critchfield and Ojeksa corresponding to four diferent energies.
The curves represent the function {36)with parameters adjusted
for best 6t at each energy.

which permits an excellent test of the statistical method.
Their model actually includes Majorana forces, but it
will be shown in the next section that these forces do
not change appreciably the distribution of angular
momenta.

The number XJ of the levels with total angular
momentum J and energy less than E is given in terms
of the number X(M) of the levels with angular rno-
mentum M along the 2 axis by

Xg ——iV(J) —1V(J+1). (35)

The dependence on M of the number of the levels with
the angular momentum M along the s axis is given in
the first approximation by a Gaussian law E(M)

exp( —3P/2a') [see (17) or (27) and (33)j. Hence,
we have for the dependence on J of the number of
levels with angular momentum J and energy up to a
given value

N'~ (2J+1) expL —(J+-',)'/20']. (36)

First, we shall verify that CritchQeld's results obey this
law.

The numbers" of levels of given angular momentum
and of energy less than a given value have been plotted
on Fig. 1 as functions of the angular momentum for
four diGerent energies together with the curves dehned
by (36).The parameter 0 in (36) and the proportionality

13 These numbers have been taken froxn Table IU in Critchfield
and Oleksa (see reference 4).
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N(e) =g.Z (e), Q m. 'A' (e), (37)

where X (e) is the number of states of energy less than
or equal to e in the component n. The quantities 1/8
and (eP)A„/8 are then the derivatives of the expressions

(37) with respect to e at e= e'. The sums (37) can be
deduced from the data of Table I when e is equal to
the energy e, of one of the nucleon states. For other
values of e, an interpolation procedure should be used.
Moreover, there is some arbitrariness in the definition
of the sums (37) even at the energies e, . A procedure
which yields smooth plots consists in taking the sum

of the contributions of the states below c;, plus half of

the contribution of the state e;. Thus, we get Ave points

60 I20

IOO

factor have been adjusted each time for best 6t. It is
seen that the agreement is excellent as soon as the
number of levels is su@ciently large. The errors are, in
fact, of the order of magnitude of random Quctuations.
The most probable angular ~:momentum J = o-—~~

exhibits a slow increase with the energy. Actually, the
curves on Fig. 1 correspond to J =3.0 for 24.8 and
21.6 Mev, and to J =2.82 for 18.2 and 12 Mev. Below
12 Mev, J is not well de6ned.

For a discussion of the values of 0-, the detailed
features of the model have to be introduced. Critchfield
and Oleksa assume that the nucleons move in a 16.8-
Mev deep potential hole of radius 8=1.45A')&10 "
cm. The corresponding nucleon states are given in
Table I, together with the statistical weights P g;,
and the sums of nz'. The latter sums include the con-
tribution of the spin. The parameters 8 and (r/s')A„of
the continuous theory have to be derived from these
data. For this purpose, it is convenient to first introduce
the sums

for each function, through which we have to draw con-
tinuous curves (Fig. 2). The Fermi energy e' is the
value of e at which E(e) is equal to A = 20. The values
of 1/8 and (m')A„/8 are then given by the slopes of the
two curves at e'. Clearly, the definition of the latter
quantities is not very precise, and this shows one of
the weaknesses of the continuous approximation for
light nuclei. Measurement of the slopes on Fig. 2 yields"

1/(=1.40Mev ' (eP)A„/(=2.36 Mev ' (38)

With these values, the relation (14) gives for the most
probable angular momentum J

J =1.24U& ——.

The plot of this function on Fig. 3 (curve a) shows

that the values of J obtained by the present approxi-
mation are significantly smaller than the values deduced
from the curves of Fig. 1."The reason for this is easy
to understand. The nuclei with A=20 have aa. incom-
pIete d shell with four particles. This is a very favorable
situation for producing large angular momenta. An
almost empty, or almost filled shell, or an outer shell
of small angular momentum, would, on the contrary,
yield exceptionally small angular momenta. The cori-
tinuous theory, which ignores these peculiarities of the
nuclei, must deviate one way or the other, depending
on the ground state configuration. However, it predicts
correctly the order of magnitude of J ."

We shall now discuss the values of J given by the
theory of Sec. 3. This theory introduces directly the
nucleon states described in Table I. Thus, the functions
Ii, G, - become sums of 6ve terms which are easily
computed numerically. The energy c„is that of the 1d
state. The outer shell has 4 particles and 16 holes.
Hence, e'= 4. In the limit V= 0, Il" vanishes. Therefore,
the limit of 0. is simply given by the contribution of the
1d state to Jig". Thus,

&2 (0) P ~ 2g (ee/2+ e—a/2) —2

gp

~~ 30

&0
II

20

80

60

~a
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40

For the present nuclei, o'(0) =7.2 and J (0)=2.3. The
values at higher excitation energies are easily computed

by means of the expansions given in the appendix. The
correction terms in 0-' have three difFerent origins and
it is necessary to take the erst few terms in the ex-

pansions of each kind of correction. These expansions
are rapidly convergent. The anal results are represented

by the curve c on Fig. 3.They are in excellent agreement
with the values corresponding to the four energies con-

IO 20

oats 20 Id 2s50
NUCLEON ENERGY (MEV)

0
Jf 40

FIG. 2. Determination of the parameters of the continuous
theory from the nucleon states. The dots indicate the values of
the functions N(ei and Z m&PN~(s) at the energies of the iive
nucleon states given in Table I. The curves are interpolated
between these points.

'4 Modifications of the procedure used in plotting the curves of
Fig. 1, do not usually alter these values by more than j.0 percent.

"Everywhere in the present discussion we have neglected the
fact that the most probable angular momentum among the levels
of energy less than or equal to E, is not exactly the same as the
corresponding quantity for the levels of energy equal to E.
However, the difference between the two quantities is very small
because of the rapid increase of the level density with energy, and
the slow variation of J ."It has often been stated incorrectly in the literature that the
statistical theory predicts much too many levels with very large
angular momentum.
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FIG. 3. The most probable angular momentum and spin or
isotopic spin among the levels having an energy less than a given
value. The dots indicate the values corresponding to Fig. 1.
Curves (a) and (b) give the most probable angular momentum
derived from the continuous theory, with the values of the param-
eters determined directly from the nucleon states and by means
of the B.W.K. approximation, respectively. Curve (c) gives the
values obtained from the method of Sec. 3. The curves (a') and
(c') give the corresponding values of the most probable spin or
isotopic spin. The curve (b') would be very close to (c'), and,
therefore, has been omitted.

A„= ~l A ~ A„~lA„4~ (39)

In the heavy nuclei, the contribution of the spin is
small compared with the orbital term, since large
orbital momenta occur near the top of the Fermi dis-
tribution. On the other hand, the orbital term is very
simply related to the moment of inertia I of the
nucleus" by

sidered above. It should be noted that J (0) is an
important fraction of J in the interesting range of
energy. The value of J (0) depends entirely on the
outer shell. It vanishes for a closed shell, and reaches a
maximum when the outer shell is half-filled (a=0).
For the id shell, the maximum value which occurs at
3=26 is equal to J =2.85.

The coefficient 8 in (27), which gives the deviation
of the distribution of the angular momenta from the
Gaussian law, is easily computed by means of the ex-
pression given in the appendix. One finds that 8 has a
very slow variation with energy, and is of the order of
10 ~ at 25 Mev. Therefore, the predicted deviations
from the Gaussian law are less than 2 percent for J&~6.

Finally, we shall return to the continuous theory for
a more general discussion of the distribution of angular
momenta among the nuclear levels. The discussion will

be restricted here to nuclear models involving a spin-
independent central potential V(r). Then, the pro-
3ections along the s axis nz l and nz, of the orbital
momentum and of the spin of the nucleons are inde-
pendent, and we have for the projection of the total
angular momentum nz the relation

.7 (e') =4 (4s /3) is,', dr(2M (e' V))&. —
Jo

It is interesting to compare the values of the param-
eters of the continuous theory deduced from the
B.W.K. approximation for A = 20 with the values (38).
One 6nds with the B.W.K. approximation J = 1.5U&—

~

for the infinite square well, and J =1.24U& ——,
' for the

harmonic oscillator potential" (contribution of the spin
included). The values corresponding to a finite well
should lie between the later values. This shows that the
B.W.K. approximation overestimates J, and, there-
fore, in the present case, it corrects to some extent the
errors introduced by the continuous approximation. It
follows that the values of J corresponding to an infinite
well (curve b on Fig. 3) are more accurate than the
values obtained with the parameters determined directly

TABLE I. Independent particles states for A =20.

State
Energy e; (Mev)

g;
Z m*g;,'2

1$
0
4
1

1P
10.3
12
11

1l
23.1
20
45

2$ 1f
28.5 37.6
4 28
1 ii9

In this relation, I is the moment of inertia around an
axis of the nucleus considered as a rigid body with a
mass density at each point given by the usual expression
for a Fermi gas in an external potential:

p(r) = 4(4s/3))2M(e' V—)$&Mh '.

The proof of the relation (40) starts from the B.W.K.formula, '8

E~(s ) = (4/s) f dr/(2M/h~) (d —V) P/rsvp&, —

giving the number of states of a nucleon with the angular mo-
mentum l and an energy less than e'. The density of states with
a projection of the angular momentum on the z axis equal to m&

is given by

p (e,m)) dl(d/de')N')(d')
(mgt

An elementary integration yields, then, the identity

8
dm~mPp(e', m~) = (2/Bhs) drr'p(r);

where d~ is the volume element and R the nuclear radius de6ned
as the distance at which V becomes equal to ~0. This relation is
equivalent to (40).

The moment of inertia of a nucleus of given mass and
radius depends somewhat on the shape of the potential
V. Potentials which attract the nucleons more strongly
toward the center yield smaller moments of inertia. For
example, the harmonic oscillator potential and the
infinite square-well yield for I the values ~MR'A and

5MR 2
y respectively.

I.," The same procedure gives for the parameter 1/8 the
value 1/b= (d/ds')N(e ), where

(~P)A /b= P rNPp(es, m() = I/)ss. (40)

'~ This relation is implicitly given by Bethe (see reference 1)
for the special case of an infinite square-well potential.

' L. I. Schi6, Quantum Mechanics (Mcoraw-Hill Book Com-
parly, Inc. , New York, 1949), Sec. 28."The parameter of the potential is determined by the condition
V(R) = e', where g is the nuclear radius.
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from the nucleon states. This conclusion, however, does
not hold for all values of A.

For the heavy nuclei, the contribution of the spin in
(39) can be neglected in the first approximation. A
simple physical interpretation of the relation (40) can
then be obtained by introducing the quantity U' defined
in Sec. 2. This quantity here is the excitation energy
measured above the lowest nuclear level having an
angular momentum M along the s axis. From (16) and
(40) we obtain for the difference between U and U'.

U' —U = 3Ph'/—2I. (41)

Thus U' is the remaining excitation energy when the
kinetic energy due to the rotation of the nucleus as a
rigid body around the s axis is subtracted from the
total available excitat;ion energy U." It follows that
although we have considered a pure independent™
particle model, the distribution of angular momentum
among the energy levels is the same as it would be for
a rigid body. More specifically, this distribution could
be obtained in the following manner: (a) we determine
all the levels with J=O (states of internal motion);
(b) we deduce the levels with angular momentum J by
adding the kinetic energy J(J+1)h'/2I to each energy
level with J=O.

This property, of course, does not imply that the
Hamiltonian can be split into two nearly independent
parts, one involving only the internal coordinates of
the system, and one involving only the coordinates
determining the position of the system in space. Such
a separation is possible only in the case of an actual
rigid body, and the detailed level scheme is then very
different from that of an independent-particle model.
This can easily be shown by considering a system con-
sisting, for example, of four particles (tr-particle model
of 0").For suitable kinds of interactions, the particles
will form a tetrahedron which can rotate and vibrate.
The behavior of the system depends, then, essentially
on two parameters, its radius R, and the amplitude c
of the zero-point vibrations. The spacing of the vibra-
tional levels is of the order of h'/Ma', and that of the
rotational levels of the order of h'/HER'. In the case
u(&R, the system has a well-defined shape; it is a rigid
body to a good approximation. The spacing of the
vibrational levels is then very much larger than that
of the rotational levels. Consequently, we shall observe
well-separated groups of levels corresponding to the
same vibrational state and diGerent angular momenta.
In the other extreme case where a=A, the particles are
nearly independent. The spacing of the vibrational
levels and of the rotational levels are then of the same
order. Therefore, the groups of levels which existed in
the case of the rigid body now overlap in such a way
that it becomes actually impossible to distinguish
between rotation and vibration. However, the statis-

~ J. H. Jensen (private communication) has proposed to take
this simple property as a starting point for the calculation of the
distribution of angular momenta in statistical theory.

tical distribution of angular momentum among the
levels is the same in both cases. It depends only on the
moment of inertia and not on the ratio a/R.

From the discussion of the binding energies, "one finds
for the value of the parameter u~~..

a,tr ——20/A (iQev).

It is reasonable to assume that the same expression
gives approximately the potential energy of the excited
states.

Spin and isotopic spin-dependent forces can also be
considered. Their contribution to the potential energy
of the nucleus depends on the total spin or isotopic spin
of the levels according to"

Vs=ttsS(S+1), Vr=arT(T+1). (43)

The first eBect to be considered, is the displacement
of the ground state. Since the excitation energy is
measured from the ground state, one must in all for-
mulas replace U by

U'= U+ V', (44)

@&here V' is the part of the potential energy of the
ground state which is not included in the central
potential. With the uniform model, for example,

Vo ttseftPo (Po+4)+Po(P o+2)+ (P o)o

A consequence of this eGect is the fact that among
isobar nuclei, the level density increases with Tt. for
small T~.'4 In Secs. 2 and 3, we have found that the
level density was decreasing with T~ according to a
Gaussian law. However, U' increases with T~, and this
results in an increase of the level density which for
small Tt- overbalances the Gaussian factor.

"F., Feenberg and E. P. Wigner, Phys. Rev. 51, 95 (1937).
~ E. P. Wigner, Phys. Rev. 51, 106 (1937).
r' E. P. Wigner, Urtirersity of Peartsytoaaia Bieetsteteaial Cors

ference (University of Pennsylvania Press, Philadelphia, 1941).
'4 See, for example, Table VI in Critcb6eld and Oleksa (reference

4).

V. THE EFFECT OF SYMMETRY

We shall now assume that, in addition to the central
potential introduced previously, the nuclear potential
energy contains symmetry-dependent terms. A simple
approximate description of the dependence of the
potential energy on the symmetry of the wave function
is provided by signer's uniform model. "

Under the assumption that the nuclear forces do not
depend on the spin and isotopic spin of the nucleons
(pure Majorana and Wigner forces), the symmetry of
the wave function of every nuclear level is characterized
by three "partition quantum numbers "~P &~P' &~~ P"

~,
and the symmetry-dependent part of the potential
energy is given by

V~= rtrrtfP(P+4)+P (P +2)+P 'j. (42)
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The second, more complex eGect is the displacement
of the excited states by variable amounts depending on
their symmetry. In order to illustrate the method fol-
1owed here, we shall 6rst consider a potential energy
of the type Vg, for example. The more realistic ex-
pression V~ is mathematically more complex to handle,
and it will be discussed later.

Let p(U') be the total level density when the spin-
dependent potential energy is neglected. The density
of states with given S, can be expressed by a formula
of the type

p(v')S, ) = (2~)-&o.-'p(U') exp( —S '/2o') (45)

where o- is an appropriate dispersion coe%cient to be
determined by the methods of Secs. 2 or 3. The density
of states of spin S is then

»(V') =P(V',S) P(V',S—+ 1), (46)

=(2 ) '* '(S+-')p(v') expL —(S+l)'/ 'j (47)

Under the influence of the spin-dependent forces, the
energy of the states of spin S is increased by Vz. Con-
sequently, the density of states of spin S at the excita-
tion energy U becomes

where the new dispersion coeKcient 0-' is given by

(r'= 0(1+. 288r'd logp(U')/d U') &,

and where C is the correction factor

C= exp/(a8/4) d logp(v')/d U'j.

(53)

(54)

p'(U') =C (1+2aaa'd logp/d U') 'I'p(U'),
(55)

p'(V' S ) = (2~) '"~' 'p'(V') exp( —S '/2~")

It should be noted that cr is a function of U', and that
strictly speaking V' should be replaced by O' —V& also
in 0-. However, 0. is a very slowly varying function of
the energy and this would only introduce a very small
correction. The above expressions simplify if we use
the results of the continuous theory. We have then,
roughly:

This factor which originates in the replacement of
S(S+1) by (S+-',)' is usually very near unity. Since
the expression (52) for ps' has the same dependence on
S as p8, we can immediately go back to the total level
density and to the density of states of given S,. One
Gnds immediately from (45) and (47) that

If we want now the density of states of given S„we
have to compute the sum

Hence,

0'= (1/4~) (6U'/5) &,

d logp(v')/dv' —4r(6U'8) &.

'(', *)= 2 ('— ),
8 j $81

(49) 1+2a s'odlogp/d U'= 1+as/25, (56)

and for the new total level density we get

p'(v') =Z(2s+1)p (v' —v ).
S=O

(5o)

as'a'
~
(d/d U')' logp (U')

~
&&1.

Substitution of (51) into (48) yields

ps'(U') = (2x') ~& '(S+2)p (V')
Xexp' —(S+-')'/2 '

+sS(S+1)d logp(v )/dv j
=(2~) '~ '(S+k)p(v')CexpL —(S+-')'/2~"lp (52)

'~ The validity of this approximation is clearly shown by the
fact that the curves on Fig. 4 are almost straight lines over large
intervals of energy.

These summations can be carried out very simply in
the first approximation. We shall assume that logp(v')
is a sufficiently smooth function over the interval V& so
that we can write"

logp(U' —V,) =logp(U') —V,d logp(U')/dv'. (51)

Actually, Vz becomes arbitrarily large with increasing
S.However, if a8 is suKciently small, the approximation
(51) fails only for values of S so large that the density
of the corresponding levels is practically zero. Thus, the
condition for the validity of (51) is that the third term
in the Taylor expansion should be very small for
S+~

~=o. This reads

which is independent of the energy. Thus, it is seen
from (53) and (55) that in the present approximation
the dispersion coeKcient and the total level density are
simply multiplied by constant factors, except for the
small additional correction of the latter quantity due
to C.

In the case of the Majorana forces we have to con-
sider the constants of motion S„T~,F~. The density
of levels with given values of these quantities can be
written

P(v' S., 7'r, Vr)= (2~) '~ 'P(v')
Xexp) —(S,'+ 2'r2+ F rm)/24r') (57).

The problem of deducing from (57) the density of
levels with given symmetry character has been treated
by Bardeen and Feenberg. " The result is more con-
veniently expressed in terms of the partition numbers
A~, A2, A3, A.4. These numbers are related to the partition
quantum numbers by

2P=A i+62 A3 A4, — —
2P' =A i A2+A3 A4, —. —
2P"=Ai —A2 —A3+A4,

A =Ai+A2+A3+A4.

Similarly, we replace S„T~,I'~ by X&, X2 X3 A4 such

~ J. Sardeen and E. Feenberg, Phys. Rev. 54, 809 (1938).
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2S.=Xi+X2—X2—X4)

2 Tr ——Xi—X2+4—'A4)

2 Yr ——Xi—X2—X2+X4,

A =Xi+X2+li2+X4.

With the new notation, the relation (57) reads

where 8;~ stands for (8/N„) I. f we use for p(U', lii, X2~

lb, 2,X4) the expression (59), we get"

p&4& (U') = (22r) '*o "Ei'*E2'E2 E4—'*(Ai—A,)
X (Ai A8) (Ai A4) (A2 A2} (A2 A4) (A,—A,)

Xp(U') exp[(-'A' —P A ')/2o']

P (U', Xi,)%,2,X2,X4)

e» I'" (U') = (2 ) ~ "[(&+4)'—(&'+1)']
X[V'+2)'—&'"X(&'+1)'—&'"j (U')

Xexp( —[(P+2)2+ (P'+1)2yP«2]/'2o2)

Let E; (i =1,2,3, 4) be a set of operators which increase
the variables ), by one unit according to

By transforming this expression back into the notation

(2 )
—4 —3 (U/) e [(ig 2 Q y 2)/2 2j (59) of the partition quantum numbers, we finally obtain

1

Ei f(lii, li2 X3 X4) = f(Xi+n, X2,X3 i% 4) etc.

Pi+i(U ) —E 2

E 3

E —1 E —2 E —3

1 E3 ' E4 '
E2 ~ E4—1

E2' E3

The density of levels with the symmetry de6ned by the
partition numbers (A) = (A&,A2, A2, A4) is then given by"

P'Pi s" (U') =PII i" (U' V24). — (63)

This expression is the required generalization of (46).
It gives the distribution of symmetry types among the
levels.

The Majorana forces increase the energy of levels
with the partition quantum numbers P, P', P" by
the amount U22 given by (42). Hence, the density of
these levels becomes

Xp(U', A„A„A„A4).(60)
The density of the levels with given S„T~,Y~ is now

This relation is the generalization of (46). It involves
a sum of 24 terms, and hence it is not very easy to
handle in general. To a good approximation, however,
if the function in the right-hand side of (60) is suf-
6ciently smooth, we can replace the operators E; by
diGerential operators according to

E$"= 1/n (8/Bli;) y (n'/2!) (l9/aX;) 2+ . . (61)

For greater accuracy, it is desirable to transform the
determinant (60) in such a way as to make the argu-
ments e in the Taylor series as small as possible. There-
fore, we rewrite the determinant as follows:

jV14E24jV3
—IE4—'

1

E1~

jV,—$

E;k
E2k
E2~

E3—4

E,—k

E,k

E8'

jV4
—4

E4—4

E4&

E4&

We now replace in the new determinant the E; by the
expansions (61). After a few algebraic manipulations,
we obtain as the first nonvanishing term in the density
of states of given symmetry character:

~11 ~21 $31 41

P(4) (U ) —Ei E2*E3 'E4 ' ~1 ~2 4l2 84
81 82 83 84

XP (O',A„A2,A„A4),
2

. This relation is to be compared with Eq. (13) of Bardeen and
Feenberg (reference 26) where the expansion of the determinant
given here is written explicitly.

I'(U'S'. ,Tr, Yr)= 2 &»i-(S.,Tr, Yr)

Xpii p" (U' —V~), (64)

where rVii I "(S„Tr,Yr) is the number of states with
given values of S„T~,7~ in the supermultiplet P, P',
P". The total level density is similarly

p'(U') = Q ~&r p ~"o~~ I"(U' &,w), (65)—

where S~~ ~" is the total number of states in the super-
multiplet P, P', P". For a very accurate calculation,
the sums (64) or (65) should be carried out numerically.
However, if p(U') and a24 are such that an expression
similar to (51) can be used, the dependence of p'I p I"
on P,P'P" is the same as that of pI J I".Hence, we can
immediately deduce p'(U', S„Tr,Yr) and p'(U'). The
new coeKcient of dispersion is given by

o.'=o[1+2a24o2d 1Ogp(U')/dU') &, (66)

and the total level density becomes

p'(U') =C[1+2a2ro'd logp(U')/dU'j "~'p(U') (67)

where C is now

C= exp[(5a~/2) d logp (U')/d U'$. (68)

"Each term of the determinant is the product of a first-order
derivative, a second-order derivative, and a third-order derivative
with respect to the );. These derivatives introduce the factors
cr 2, 0 4, 0. 6, respectively. A factor o. 3 is present in the expression
(59) for p(U', X&,'A2, X3,X4). Thus, altogether one gets the factor 0
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o'= o (1+a~/2b) —',
p'(U') =~(1+a~/2b) ""p(U'),

C=expt (Sabra~/2)(6U'b) &j,

and the relation (69) remains unchanged.

(70)

It should be mentioned that the three kinds of forces considered
above can be introduced simultaneously. The procedure consists
then in taking into account first the Majorana forces, and in intro-
ducing the effect of the spin and isotopic spin-dependent forces
into the formulas (67) or (70). As a result, the level density is
multiplied by three factors corresponding to the three kinds of
forces. The dispersion occuring in the factors (55) caused by the
spin and isotopic spin-dependent forces has to be replaced by the
expression (66).

As a 6rst application, we can estimate the eGect of
Majorana forces, for example, on the distribution of
angular momentum. It is clear that, instead of com-
puting directly as in Sec. 4 the density of the levels
having a total angular momentum M along the s axis,
one can proceed in two steps. First, one determines the
density of the levels having an orbital momentum Ml,
and a spin Mz along the s axis. This yields a two-vari-
ables Gaussian distribution with two dispersions al.
and a8. The second step consists in deducing from the
two-variables distribution law the density of the levels
for which Mr, +Me has a given value M. The result is
a Gaussian law with a dispersion o-z given by

&J rrI +rrs ~

This procedure gives, of course, the same result as the
method of Sec. 4. If Majorana forces are introduced, the
Gaussian distribution law of Jtll, and 3fg remains valid,
with the only change that az is replaced by az' ac-
cording to (66) or (70). However, the spin contribution
a8 to the dispersion of the total angular momentum is
usually much smaller than the orbital term al.. There-
fore, the substitution of o q' into (71) introduces only a
small correction of aJ. For the nuclei of mass 3=20,
the continuous theory yields

~1,'/o e'= (ml, ')A, /(rle')A, ——6.7,

when the values (38) of the parameters are used. With
a~= 1, we get from (70):

ae'/&e" = 1 7.
One finds then:

(o.~ o~')/o g 0.03. — ——(72)

The level density computed by means of the method of
Sec. 3, increases more slowly with energy than that
obtained from the continuous theory (see, for example,
Fig. 4). It follows from (66) that the correction to cr~

Finally, the density of levels with given S„Tt., I'~ is

p'(U', S„Tr,I'r) = (2~)—&o'—'p'(U')

&&exp| —(SP2+Tr2+ FP)/2o"). (69)

If the continuous approximation is used, the above
expressions become
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Fxo. 4. The number of levels having an energy less than a given
value and the most probable angular momentum. Curves (a),
(b), and (c) correspond to the continuous theory neglecting the
Majorana forces (Bethe), to the continuous theory with Majorana
forces included, and to the theory of Sec. 3 with Majorana forces
included. The results of Critch6eld and Oleksa are represented
by (d).

due to the Majorana forces, is somewhat smaller in the
more exact treatment than expressed by (72). Actually,
it is of the order of 2 percent at 25 Mev.

Finally, we have to discuss the absolute values of the
level density. Therefore, the numbers of levels of energy
less than a given value and haoimg the nzost probable
angular monseetum corresponding to each energy have
been plotted on Fig. 4. These numbers refer to levels
of Ne" only, i.e., with T~=0. The corresponding theo-
retical expression is

(2') 'og 'ar 'X(U)e '*, — — —
(73)

where X(U) is the total level density computed ac-
cording to the procedure indicated at the end of Sec. 3,
ag and a~ are the dispersion coeKcients of angular
momentum and isotopic spin, respectively. For the
present case U'=U. The results obtained from the
continuous theory, without taking into account@the
Majorana forces (curve a), are in good agreement with
the results of the explicit counting as was already men-
tioned by Critch6eld and Oleksa. 4 The Majorana forces,
however, according to (70) and (73) reduce the number
of levels by a factor of the order of (1.7)r=40, and the
resulting level density is then completely wrong (curve
b) The method of. Sec. 3, however, gives very much
larger level densities than the continuous theory. This
is essentially due to the term So in the entropy. This



CLAU D E B LOCH

term, which does not exist in the continuous theory, is
of the order of IO in the present case. Therefore, the
level density is much larger at low excitation energy in
this method than in the continuous approximation. The
explanation of this larger density is that the nucleons
in the incomplete Td shell can be rearranged in many
diBerent ways with no excitation energy. On the other
hand, of course, the level density obtained from the
method of Sec. 3 increases more slowly with energy,
since the two theories should agree at very high energy.
However, the energy at which the agreement occurs is
very much outside the range of energy considered here.
When the Majorana forces are introduced into the
theory of Sec. 3, the results agree very well with those
of Critchfield and Oleksa (curve c).

Thus, it is seen that the agreement with the exact
counting of the continuous theory without Majorana
is the result of compensation of two very large errors.
This does not occur for other nuclei, or even for a dif-
ferent strength of the Majorana forces. Moreover, even
in Ne", the simplified theory does not yield exact
results above 25 Mev.

The author is indebted to Dr. R. G. Thomas for
pointing out the importance of this problem, to Pro-
fessor R. F. Christy and Professor R. P. Feynman for
their interest in this work and for many stimulating
discussions, and to Dr. A. Rich for his help in preparing
the manuscript.

APPENDIX

For accurate calculations, additional terms in the
expansions of Sec. 3 are necessary. These are easily
obtained from (22) by the derivation outlined in the
latter section. Thus one gets for S~, U, and D:

In an accurate calculation one finds that the deter-
minant D depends also on the 351,. We can then write
the determinant as

K
D(1—Q nkMk'+ ),

where the ng, are small. The Anal formula for the level
density is multiplied by the power —-,'of the deter-
minant. This introduces the factor

X K

(1—Q akMk') —'*—exp(Q cxkMk'/2),

which can be considered as producing an additional
correction 8")O-I, of 0.&. This correction is given by

or
(&rk+B&rk+B( )

&/k) = (&rk+B&rk)

B"'~k= (~k/2) (~k+B~k)'

The n~ are given by

F //&o, —F (&)~(»/2(~//F// F/If'(k))—
K

yg(Fk(&)F&(3)/F// Fk[(4))/2(F&// F/F)(3)/F/')—

However, the entropy should be computed as a function
of U and not of t. Since t is a function of U and HEI„it
is seen that the entropy depends also implicitly on 3f&
through t. This yields the following correction which
should be added to (31'):

(FIG///F//2Q//) (F//G (3) G//F (k))+

S)= Ut+ F (F"/2F")——(F"/6F'")
(F 4F (/»2/8F 5)+//(F/4F (4)/24F//4)+. . . (29/)

U' —g (F~g' /F//) y (F/&/2F//3) (1+F/F (»/F/ 2)

X (F"G&»—F&»G")—(F'k/6F"4)

X (F"g'4' —F'4'g")+ . , (3O')

D= (1—(G" F'G")/F'")'/(F—" F'F&')/F")—
X (~// F/~(3)/F//)]I /// (Fr//F//)

X (1+F'F "'/2F'") B ' + (F'/F")'(H"'/2)]

XII ~k'. (32')

The expansion of o-I,' includes terms of diGerent kinds.
The terms of the first kind are the coeScients of the
terms in MI,' appearing in the entropy when this
quantity is computed as a function of t and MI, . The
corresponding expression for 0~ is

ak =Fk" (F/Fk &3)/F") (1+F'—F&3)/2F"2)

+F"Fk&')/2F'"+ . (31')

yLFk(3)(1/F Fk&»/F Fk ) —F~Fk(4)/F ]2/

X (F " F'F &3)/F") (F—" F'F(3)/F")

+[Gk(3) (1+F'Fk(3)/F"Fk") F'Gk(4)/F"]2/

X (Fk" F"Fk&')/F") (H—" F'H &"/F")—
—2(G"—F'G"'/F") L(Fk'"G"'lF")—(Gk"'/2)]l

X (F' —F F&»/F") Pr' —F'~& )/F").

Here, the two first lines are the contributions from the
diagonal terms in the determinant, the other lines are
the contributions of the terms B'4/BxoBxk, B'4/BtBxk,
B'C//BxoBt, respectively. It should be mentioned, finally,
that a very small correction is produced by the de-
pendence of D on MI, implicitly through t.

The coeKcients 8k& in (27) are given in the first
approximation by

Fk&")/8 if k/l,
Fk'"F!"'&k&=—(1/8F")Fk'"Fl"'+

Fkk&4)/24 if k= l.


