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indeed it can be shown that, if the baryon core would
satisfy Fierz-Pauli's theory of spin-~3 particles, ' one
finds k= 3 for such particles. '

In conclusion we may say that, until there is some

"M. Fierz and W. Pauli, Proc. Roy. Soc. (London) A173, 211
(1939).

'e F. J. Belinfante, Phys. Rev. 92, 994 (1953).

further experimental evidence that spin--,' particles
really exist, there may be little reason for accepting
Sugawara's suggestion at all. If the need of considera-
tion of (baryon+pion)-states would arise, contribu-
tions from such states to the nucleon magnetic moment
should be calculated by the methods outlined above,
and more likely with the value 0= 3 than with 4=2.
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Fierz-Pauli's theory of spin--', particles has been reformulated in a manner somewhat resembling the
usual formulation of Dirac's equation for the electron. The discussion is simpli6ed by complete reduction
of the representation of the spatial rotation and reflection group by the 6eld. The dependent variables can
then be expressed in terms of the spin-$6eld. The magnetic moment and the gyromagnetic ratio of "bare"
spin-se particles of charge q and mass nt are found to be (qi't/2ntc) and (q/3ntc), respectively.

l. INTRODUCTION
' 'N a theory of the anomalous magnetic moments of
~ ~ nucleons, Sugawara' has recently tacitly assumed
that the intrinsic magnetic moment of a spin--„ isobaric-
spin-ss particle of slightly more than nucleon mass (a
so-called baryol") should be about six nuclear mag-
netons in its state of charge 2t.. Pauli and Banco''s
strong-coupling theory' of the excited states of the
nucleoid' (=nucleore-pion system') predicts a magnetic
moment proportional to (q —-', e)/(j+1), which would

make the total magnetic moment of a baryon of charge
2e (and with j=-', ) equal to 1.8&& the magnetic moment
of a proton (j=s). However, the Pauli-Dancoff theory
of the magnetic moments of nucleoids is not only not
trustworthy, as shown by its prediction that the neutron
magnetic moment would be opposite and equal to the
proton magnetic moment, but probably it is not even
applicable in a theory like Sugawara s, in which the
nucleon is assumed to be part of its time a nucleore, part
of its time a nucleore with a pion cloud, and part of its
time a baryon core and pion(s). Such an assumption
becomes rather improbable, if one does not at the same
time assume the baryon (core particle) to be an ele-

mentary particle itself, ' like the proton-nucleore,
neutron-nucleore, and pions figuring in Sugawara's
theory. That is, we would have to assume that there is
such a thing as a "bare elementary particle" of spin ~,

' M. Sugawara, Progr. Theoret. Phys. Japan 8, 549 (1952).For
a criticism of this theory see reference 3.

~ F. J. Belinfante, Phys. Rev. 92, 145 (1953).' F. J. Belinfante, this issue Phys. Rev. 92, 994 (1953).
4 W. Pauli and S. M. Danco8, Phys. Rev. 62, 85 (1942).' Nucleore=bare nucleon core; see R. G. Sachs, Phys. Rev. 87,

1100 (1952).

into which a nucleore could be transformed under
emission or absorption of a pion.

The "bare baryon" would then have an intrinsic
magnetic moment of its own —like the proton and
neutron as "nucleores" are supposed to have magnetic
moments of 1 and 0 nucleore magnetons respectively.
The question then arises whether the magnetic moment
to be expected for such bare baryon would have so
large a value as assumed by Sugawara. %e have
reasoned that this is unlikely, and that it seems more
plausible to guess that the gyromagnetic ratio of a
sPin-sz Particle of charge q and mass rrt will be q/3rttc,
and its intrinsic magnetic moment qh/2ntc. (See refer-
ence 3.) It is the purpose of this paper to show' that
this conjecture is correct, if for a "bare" particle of
spin ~ in interaction with an external electromagnetic
field one assumes Fierz-Pauli's theory of such particles
to be valid. '

2. FIELD COMPONENTS FOR ELEMENTARY
PARTICLES OF SPIN —,

'

For their Lorentz-covariant theory of particles of
spin ~ in interaction with a Maxwell field, Fierz and
Pauli~ formulated the 6eld equations in a manifestly
covariant form using spinor notation. The 6eld has 16
complex components (not counting their conjugates).
Between these 16 field components there are 8 rela-
tions ("subsidiary equations") not involving di8eren-
tiation with respect to time, so that at some fixed initial
time only eight field components can be chosen inde-
pendently.

' Without committing ourselves as to the value of Sugawara's
suggestion. See also reference 3.' M. Fierz and W. Pauli, Proc. Roy. Soc. (London) A173, 211
(1939).
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Once the relativistic covariance of a theory has been
established, it often has certain advantages' to drop
covariant notation. ' One reason for this is the special
part taken by the time in solving problems using an
ordinary Schrodinger equation with a Hamilton
operator. Also, in canonical quantization one likes to
distinguish "derived variables" from "canonical vari-
ables, ""and this requires selection of a time axis (or of
a time-like unit vector nI", in Schwinger's terminology" ).

A further most important advantage of dropping
manifest covariance is the following. The transforma-
tion of the spinor components of the field form a (two-
valued) representation of the complete Lorentz group
(including spatial reflections); therefore, also of its
subgroup of spatial rotations and rejections. While the
representation of the Lorentz group by the pair of sym-
metrical 3-index spinors used by Fierz and Pauli is
irreducible, " the representation of the subgroup of
spatial rotations and rejections is not. Therefore, it is
natural to group the sixteen components of the field
together in the following fashion: (1) An utidor, i3 (y~y
in Eq. (1)), that is, a pair of a Kramers spinor and spin-
conjugate spinor, '4 together transforming like a Dirac
electron wave function in Kramers representation, " "
in particular transforming into each other under spatial
reAection;" this undor corresponds to Fierz-Pauli's
spinors c and d; (2) another such pair of Kramers
spinor and spin-conjugate spinor, (the undor y~ri below);
and (3) an 8-component quantity, consisting of a pair
of what one might call a "four-spinor" and a "spin-
conjugate four-spinor" (forming the representation
Pt&& of the spatial rotation group;" compare Zi Z8 in

Eq. (1) below). Such complete reduction of the repre-
sentation of the spatial group by the field separates the
dynamical field components Z forming the spin- —,

' field,
from the dependent field components x and q trans-
forming as fields of spin-~ particles, and thus reduces
the equations of motion and the subsidiary equations
to a form in which they are most easily handled.

For the details of Fierz-Pauli's theory we refer to
their original publication. 7 If under spatial reAection

Besides possible disadvantages.
9 To some extent this has been done by Fierz and Pauli, reference

7, where they treat s as equivalent to s„ in the discussion of the
"subsidiary conditions. "

'o F. J. Belinfante, Physica 7, 765 (1940)."J.Schwinger, Phys. Rev. 74, 1439 (1948).
~For a discussion of the theory of representations, see for

instance E. Wigner, Gruppentheorie (F. Vieweg, Braunschweig,
1931}.Watch, however, the completely different notation used by
Wigner. About the representations of the Lorentz group, see B.L.
Van der Waerden, Die Gruppentheoretische Methodein der Quanten-
meohoer'k (J. Springer, Berlin, 1932), in particular Sec. 20, pp.
78-86.

' "F. J. Belinfante, Physica 6, 849 (1939).
'4 H. A. Kramers, Grundlagen der Quantentheorie, Quanten-

theorie des Elektrons und der Strahlung (Akademische Verlags-
gesellschaft, Leipzig, 1938), pp. 259—269; (compare also pp. 272-
280).

"But for a factor e such that e4 1. See W. Pauli, Annales
Institut H. Poincarb 6, 130 (1936);E. Majorana, Xuovo cimento
14, 171 (1937);G. Racah, Nuovo cimento 14, 322 (1937).See also
reference 13.

x, y, z, ct + —x—, —y, —z, +ct (thence ~—p, pe—&+p&
for the momentum in vector notation, or ps —+—p ~ in
spinor notation) we assume Fierz-Pauli s spinor d to
transform into ec (with e4=1, see reference 15), the
invariance of their Lagrangian requires transformation
of their c into ed, of their a &" into —eb p„, and of
their b p„ into —ea l'". After reduction of the six-com-
ponent representation of the spatial rotation group by
a &"(=—o."s), into a representation by quartet and
doublet states (by a "four-spinor" and an ordinary
(two-)spinor respectively), and similarly for b~s„, we
shall find it convenient to introduce linear combinations
of the two-spinor d~ with the two-spinor representing
the doublet part in a ~". [Compare» and r)& in Eq. (1).)
Then, for ensuring complete reduction with respect to
spatial reQections, we should similarly combine c& with
the corresponding two-spinor part in bo„. [—See —

r)3

and —
ri4 in Eq. (1).$ Following Van der Waerden's

interpretation of the dotted and undotted spinor
indices, "and using Kramers' representation'" of Dirac
wave functions or undors, "we can identify d&, d2 with
the first two components of such undor, and c', c' with
the third and fourth component of such undor. To be
consequent, we should then alter. Fierz and Pauli's
definition of o'=iI into o4= iI. (Thi—s also affects the
definition of the momentum spinor in terms of the
momentum four-vector. ) With our conventions, Fierz-
Pauli's "rest-mass" terms -6~c*'d +~( b*)ati„g—&"

+conj. (with minus signs due to our lowering and
raising of spinor indices in order to obtain a notation
fitting our conventions) show a minus sign in front of
the rest-mass term depending on the doublet wave
function, but a plus sign in front of the terms Ir( b)*a-
depending on the quartet wave function. As the quartet
terms are physically most important (containing the
independent canonical variables), we want the latter
to appear with a negative coeKcient in the Lagrangian,
as the mass term in the Dirac theory of electrons.
Therefore, we now have to change the sign of the en-
tire Lagrangian.

We shall now define the eight-component four-spinor
pair Z and the two four-component undors (two-spinor
pairs), by which we want to describe the field. The
latter two undors we shall denote by ps' and y5q,

'
where y5 is the Dirac matrix iy~y2y~yo, so that in the
notation of footnote 17 in general n=y5e, and in

'63. L. Van der Waerden, Nachr. Akad. Wiss. Gottingen
Math. -physik. Kl. IIa 1929, 100 (1929);or O. Laporte and G. E.
Uhlenbeck, Phys. Rev. 37, 1380 (1931).

'7 H. A. Kramers, reference 14, pp. 280—294; or F.J.Belinfante,
reference 13, pp. 850—851. In this representation of a Dirac wave
function, the electron energy mc'P —iPice. / is represented with
(v/c=)n= p30', and with (mo'/8=lP= pi.' The.quantities (y&g) and (y&g) are meant to be undors under
spatial rotations and reQections. Under Lorentz transformations,
only (y&x) transforms like an undor, but not (&52J). The reason why
we call these (spatial) undors here (y5X) and (y5g) instead of
using a single letter, lies in the fact that most formulas contain
p5 times these undors, and thus are simpli6ed by our notation.
The difference in transformation between (ysx) and the "pseudo-
undor" p itself is only a minus sign in the spatial reaction,
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Kramers representation'~ y5 ——p3. Thus the components
of ysx are {Xl,X2, —XS, —X4} as listed in Eq. (1). In
this Kramers representation, we define our field com-
ponents in terms of the components of the Fierz-Pauli
field by:

+xl= V'(g/3) dl
+x2=. V'(8/3) .d2,—X3=V'(g/3) c',
-x =v'(g/3). ";
+f1=v'(2/27) (~i"—a2")—(& 3)dl
+ri2= Q(2/27) (g 22 —g.12)—(g 2)d;
—~3=v'(2/27) (b'll —b'12) —(& 3)c', ':

—rf4
——g(2/27) (b' —b' )—(g -')c'

Z —g 11
1 1 )

Z —
(Q 1)(2g 12+43 11)

Z (Q 1) (43.22+ 213.12)

Z ~ g+22
4 2 )

Z5 ~ ll)
Z6 ( V 3) (2b'12+ b 11),
Z7 ——(—Q -', ) (b';2+ 2b'i2),
ZS ~ 22 ~

Explanation: We may consider 43", a'W2, a22 as a
"three-spinor" for triplet states (spin 1), and a;, a; as
a spinor for doublet states (spin —,'). The formulas for
Zl —Z4 are then easily" seen to take the form of the
linear combinations of wave functions of spin ~ obtained
by vector addition of spins 1 and 2,—We defined ql
and rf2 as a linear combination of the spinor {Xl,X2}
and. of the doublet states obtained by this same vector
addition. ' The reason for using this particular com-
bination lies in the simple-to-solve form (20), (27) thus
found for the subsidiary conditions. (Compare footnote
20.) The components —XS, —X4, —rf3, —

rf4, Z6, Zs, Zr,
Z8 are obtained from Xl, y2, ql, q2, Zl, Z2, Z3, Z4 by
spatial reflection and omission of the factors 6= (1)&

mentioned above. Normalization factors in y, g, and Z
have been chosen arbitrarily in such way as to give
the coefficients in the Lagrangian (2) relatively simple
values.

The labels 1 and 3 on x and q correspond to "spin up"
(m=+2), and the labels 2 and 4 on x and rf to "spin
down" (m = ——',), as in the Dirac electron theory. For Z,
the labels T and 5 mean m=~, 2 and 6 mean m=~,
3 and 7 mean m= —» and 4 and 8 mean m= —~~. %e
do not use the values of m itself as indices because
fractions used as indices are hard on the eyes.

Here, manifest covariance has been lost, but complete
reduction with respect to the spatial rotation and re-
flection group has been gained. %e have given the
Lagrangian in units hc, and x=mc/h. Further, P=pl
and y6= p3 in our representation (1), in which pl and p,
transform the vertical (one-column) matrix

(Xlxs) X3X4 i 'Q]rf2) ri3rf4, Z1Z,ZSZ4, ZSZSZrZS)

into the vertical (one-column) matrices

(XSX4 X1X2 '93'g4 rilrf2 ZSZ6ZVZS Z1Z2ZSZ4)

and

(Xlxsi XS X4 i rilrf21 g3 'g4 j Z1Z2ZSZ41
—Z, —Zs —Zr —ZS),

respectively. The operators 2r1 (kine'tic momenta in
units k) are given by

2r6 =Ps —eA 6 = 28/CBf+ e4 = ——Sg;a/kC,
23= y —eA= —i~—eA=kinetic momentum/5,
e= g/Ac,

'(3)

where q is the charge of the particle. (For instance,
q=2e, e, 0, —e for a baryon. ) The Pauli matrices a
operate on each of the four two-spinors X1, 2 X3, 4

and g3, 4. The Dirac matrices

n=y643 and P (with ysP+Pys ——0, P'=1, etc.) (4)

operating on undors like y5y and pe or on 4-component
quantities like x or q are then represented as described
in footnote 17. The 4X2-matrices K and their 2X4
hermitian conjugates Kt are defined by

g 3

0
+42

0

0
q 1

0
+4 2.

iQ 3

0
EQ ~

3$ 2

0

0
iQ -,'

0 )

iQ 3

their (=minus our) Lagrangian by writing it out in
components, substituting (1), and collecting the re-
sulting terms. Thus we obtain

—I.=Zt{xp+2rp —-23yss 23}Z+ZtK 26X

+ZtK ~q+xtKt ~Z+xt{3n ~—(9/2)xP}~
+rftKt 23Z+rlt{3n 23 (9—/2)xp}x

~ 2)

+rit {(15/2) n 23—(9/2)rr 6 9x—P }rf

3. LAGRANGIAN FOR ELEMENTARY PARTICLES OF
SPIN —,

' IN AN ELECTROMAGNETIC FIELD

With the notation just explained, and with the dis-
cussed alteration of the sign of o.4 (and of derived
quantities such as the momentum spinor) as well as of
the sign of Fierz-Pauli's entire Lagrangian, we can find

'3 Compare for instance the table (1/2) X (1) in the Appendix to
reference 2,

thence

0
ig —', —

ig —', —
0

0 0
0~*=

0 VZ

,0 0

(Sa)

0
, etc. (Sb)

2
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0
—',V3
0
0

-',v3
0

0

0 0
1 0
0 -,'K3 '

—,'V3 0

0
—',iv3

0
. 0

',i—v3-

0
2

0

0
—Z

0
,'i&3

0
0

—-'iVS2

0

The hermitian 4&&4-matrices S are defined by

pp (Ko —2SK) pp=3e8 K,

pp (oKt—2KtS).op=3e8 Kt,

pp KtK pp=2pp'+e8 n,

pp (KKt+SS) pp= (9/4)pp' ——,'e8 S,

& eo"m=e —t'.~ 0'9 AX

(15)

(15*)

(16)

(17)

(18)

following from (3) in an electromagnetic field 5, 8,
we find

3 0 0 0
0 0

0 ——' 02

0 0

Obviously the matrices S, K, Kt, and o all commute
with P and with yp.

Kt ppZ+ {3n pp
—(9/2)aP}F1=0, (20)

5. FIELD EQUATIONS, SUBSIDIARY EQUATIONS, AND

obvious) are the om pn nts of th s jn 3 SOLUTI ON FOR THE INDEPENDENT VARIABLESt e spm-2
angular momentum in units k. The factor p in the IndePendentvariationofZt, Xt, andiltin8fdtJ'd'x I-
term ——,'ypS. pp in the Lagrangian (2) for the Fierz-Pauli =0 yields
theory is comparable to the factor 2 of the Dirac
electron theory in its term with —0, ~= —2ps, s ~, {.P+mp —-', ~,S ~}ZyK ~x+K.~&=0, (19)
where s= 2'o is the spin-2 angular momentum in units h.

2S~,=E,o„
2E,tS =o-,E t, (7a*)

2S.K„K.o.„=—(2—S„K. Kpo.,) =3iE—„(7b)
2E~tS„o,E„"=—(2E„tS—~ a„E,t) =3iE,t,—(7b*)

E,tE,=2,

E (Ey ———Ey~E, = —io-„

E,E,t = (9/4) —5 ',

K~„t+K„K.t = (S.S„+S„S.),—

E,Ey~—EyK, t =2iS„

SQ„SpS,=—iS,

(8a)

(9a)

(9b)

(9c)

(9cl)

For vector operators A and B we find from the above
relations and the properties of the Pauli matrices e.'

A (Ko—2SK) B=3iA K&&B, (10)

4. COMMUTATION RELATIONS FOR THE "SPIN"
MATRICES

One easily verifies the following relations between
the matrices K, Kt, S, and o, and further relations ob-
tained from the ones listed explicitly by cyclic permuta-
tion of x, y, ands:

Kt ppZ+ {3n pp
—(9/2)~P}x
+{(15/2)n pp —(9/2)m, —9~P}ii =0. (21)

Equation (20) forms the first four subsidiary equa-
tions, corresponding to Fierz-Pauli's Eqs. (28)—(29). In
principle, (20) (with suitable boundary conditions of
vanishing of fields at infinity) enables us to express the
four-component il (x, y, s, t) in terms of the fiel
Z(x', y', s', t) and the electromagnetic field, all at the
same time t. Therefore, the components of g may be
called "dependent variables, " as contrasted to inde-
pendent canonical variables. Also the "derived vari-
ables" well known from other field theories of ele-
mentary particles'0 are dependent variables, although
of a more special kind, as those can be expressed as
polynomials in the canonical variables, and spatial
derivatives of 6nite order of them, all taken at the
same point. On the other hand, il(x, y, s, t) depends on
Z(x', y', s', t) in a spatial neighborhood of the point
{x,y, s}.

Solution of Eq. (20) for il by successive approxima-
tions in powers of the charge q becomes easy after
multiPlication of (20) by {pin PP

——,'KP}, which gives

{-,pop n ——',~P }Kt ppZ+ {pp oo pi+ (9/4) K'}il =0

A (oKt —2KtS) B=3iA Kty B, (10*)
{pp' —e8 o+ (9/4)~'} il =4mf iP&[z3 (22)

A KtK.B=2A B+iA.o&(B, (11)

A (KKt+SS).B= (9/4)A B——,PiA. SXB, (12)

A oo B=A B—iA o&(B.

Here we used diadic notation in the left-hand members.
Substituting A=B=pp, and using the first of the re-
lations

f&"[Z(x,y, s, t))= {-,pap —pp n}Kt ppZ(x, y, s, t)/12m. . (23)

Equation (22) with (3) can be rewritten as

{v' —(3~/2)'} il = 4mf—(24)

with
pp Xop =ie8, pin-p —m pop = ieS (14a-b) f= f&'&[Zj+ {e8o+p' —pp'}il/4m. (25)
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{1—) 8 ~}-i=—{1—) PSP}-i{1yX8~}. (28)

We thus have solved for all dependent variables x
and g in terms of the independent canonical variables
Z and the electromagnetic field. The equations of motion
for the field Z are then given by Eq. (19) with the
solutions for x and g substituted.

0. THE MAGNETIC MOMENT OF SPIN--,' PARTICLES

Multiplying Eqs. (19), (20), and (21) by {KP s.p—
pyppp S}, by {app.K}, and by f

—(2/9)pp K},respec-
tively, and adding the three products to xo'Z, we find

by Eqs. (4), (14b), (15), and (17):
s.p'Z= {K'+PP PP ', e8 S —a—ie@Sy—p}Z

+e(yp8+ig) Krt+ {K pp(2Kp —mp
—n pp)

+e(yp8+iS) K}x (29).
Similarly we derive, by adding (2/9)(mp+pp u —KP)

"Our x corresponds to Fierz-Pauli's spinor field d~, —c; see
Kq. (1). Their Eqs. (23)-(24), translated into our notation,
express x in terms of the components Z and (y+2q) of the u ~",
b"jp 6eld. We prefer to express x in terms of Z and g as in (27)
with (28), although this destroys the relativistic appearance of
the formula. The reason for our preference is, of course, the fact
that the other identities (20), by (23)-(26), express q and not
(g+2q) in terms of Z.

The solution of Eq. (24) satisfies

i1(x, y, s, t) = fd'x' exP( —PpKr) f(x', y', s', t)/r, (26)

with r= fx—x'f.
By (25)—(26) we solve (24) for g in successive approxi-

mations. By e~O in Eq. (25), we first find f&P& as zero-
order approximation to f Ins.erting f&P& into (26) then
yields the first approximation i) "& to rt. Similarly, (26)
expresses rt&"+'' in terms of f&"&, which in turn is given
by (25) in terms of f&" and it&"'. By (26), rt(x, y, s, t)—or at least the first few terms in its expansion —is thus
found to depend mainly on the fields in a small region
with a radius of the order of magnitude (1/K) around
the point (x, y, z) in three-dimensional space. From Eq.
(20) it is seen that rt vanishes for a particle of zero
kinetic momentum (ppZ=O), and therefore rt will be
much smaller than Z for slow particles. (Compare Eqs.
(26) and (23).)

In order to find the other four subsidiary equations,
we multiply Eqs. (19), (20), and (21) by f

—pp Kt},
f 2Kp —pp n+7rp}, and ppp n —Kp}, respectively, and we
add the results. Using Eqs. (4), (14b), (15*), (16), (18)
we thus find

—e8 KtypZ —ieS KtZ —3e8 e7e

+ (9/2)K'X —3e8 ei) —3ipg nrt =0,

or, with X= 2e/3K'= 2qk/3m'c',

{1—X8 e}x=)(P,8+it%) (ni)+ ', KtZ) -(27).
We solve this equation for x by multiplying it from

the left by"

prpPz= {K'+pp' ', e—(8-+iypS) S}z,
mpPi) = {K'+y'}rt.

(31)

(32)

In the following we shall further neglect the imaginary
term with yp@ in Eq. (31).

Since h= —hc~p was the kinetic energy, m=KA/c is

apparently the rest mass of our spin-~ particles. We
solve for the nonrelativistic energy W by squaring
the expression

—a-p ——K+ ( W —qC)/kc, (33)

which defines 'N, and by equating the result to
7rpp=K'+ pp' —-', e8 S from Eq. (31). Neglecting the
square of the nonrelativistic energy VP, and putting
p= happ for the kinetic momentum in cgs-units, we thus
find

f
'N —qc }z=(hc/2K) {pp'——;e8S}z

= f P'/2m —(qk/3mc)8 S]Z, (34)

so that our spin--', particles apparently have a magnetic
moment

p= (qk/3mc) S. (35)

Remembering that Its was the spin angular momentum
of the spin-2 part of the field, with s'-component ~k,
—,'tt, —i2k, or —ppk according to (6), we find the gyro-
magnetic ratio for our particles to be (q/3mc) and we
find (qh/2mc) for the maximum value of p, .

The g components of the field, which become im-
portant for fast particles only, behave like a spin-~
field with spin angular momentum ~he and magnetic
moment qho/2mc as seen by treating (30) similar to
(29) by Eq. (33) going one approximation beyond Eq.
(32). The gyromagnetic ratio of this part of the field
is q/mc; but the maximum possible value for the cor-
responding p, value is again qk/2mc.

Our results, together with those found for Dirac
electrons and for vector mesons, " suggest a spin
magnetic moment qh/2mc for all elementary particles
of charge q, rest mass m, and low kinetic energy, for any
spin difFerent from zero. Thus a larger spin would
always be compensated by a correspondingly smaller
gyromagnetic ratio.

"Yukawa, Sakata, and Taketani, Proc. Phys. -Math. Soc.
Japan 20, 319 (1938);F. J. Belinfante, Phypica 6, 870 (1939).

times the difference {Eq. (21)—Eq. (20)} to m. pPrt, and

by using Eqs. (4), (14b), and (18):
prp'i)= {K'+pp pp e8—e}g+{K'—Kpmp

+pnppp .e+ ,'Kpe-pp+ ,'pp -pp ,'e—8—e}7t (.30)

According to Eq. (20), for slow particles i) is smaller
than Z by a factor v/c, while by Eq. (27) 7t vanishes
in absence of electromagnetic fields. If we neglect
terms quadratic in the electromagnetic Geld as well as
terms bilinear in the electromagnetic field and in (p/c),
Eqs. (29)—(30) reduce to


