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Experiments on the elastic scattering of fast electrons by several elements, reported by Hofstadter,
Fecliter, and McIntyre in the preceding paper, are interpreted with the help of the first Born approximation.
This interpretation of the experiments implies nuclear charge distributions that are peaked at the center
and taper off smoothly. The root-mean-square radii of the charge distributions, and the nuclear Coulomb
energies, are, however, in approximate agreement with those computed from the usual uniform charge dis-
tribution. The effects of radiation loss and nuclear excitation are discussed qualitatively, and the effect of
a nuclear electric quadrupole moment is considered more quantitatively. It is concluded that these effects
probably cannot account for the discrepancy between the observed scattering cross section which decreases
monotonically with increasing angle and the diffraction minima and maxima expected on the basis of the
Born approximation from a uniform charge distribution with a sharp or moderately rounded edge. Exact
calculations of the elastic scattering from various charge distributions are now under way.

1. INTRODUCTION

/ I ‘HE preceding paper by Hofstadter, Fechter, and

McIntyre! reports experimental results on the
elastic scattering of fast electrons by several elements.
The energy resolution of the incident and scattered
electrons is such that the measured differential cross
sections include both elastic events and inelastic events
in which the energy loss to radiation or nuclear excita-
tion is less than about 1 Mev, after allowance is made
for the recoil energy of the struck nucleus. The observed
monotonic decrease of the scattering cross section with
increasing angle is in striking contrast with the diffrac-
tion minima and maxima calculated by means of the
Born approximation? when the nuclear charge is as-
sumed to be roughly uniformly distributed over a
sphere of approximate radius 1.4X10784% cm. While
the first Born approximation is not reliable for heavy
elements such as tantalum, gold, and lead, it should
give a qualitative indication of the general character
of the scattering for various assumed forms of the
nuclear charge distribution. This view is confirmed by
exact scattering calculations now in progress,® which
show that the principal effect of the improvements on
the Born approximation in the case of a uniformly
charged nucleus is the filling in of the zeros in the cross
section to convert the minima and maxima into wiggles.
This effect was noted earlier by M. Goldhaber and
A. W. Sunyar [Phys. Rev. 83, 906 (1951)].

All of the calculations in this paper are based on the
first Born approximation. This enables us to make a
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rapid survey of the qualitative effect of the form of the
nuclear charge distribution on the elastic scattering,
and also to estimate the relative importance of inelas-
tic processes and of the nuclear distortion implied
by the existence of electric quadrupole moments. The
results obtained cannot be taken literally for the heavy
elements, but are expected to be more reliable for
lighter elements and quite good for beryllium and deu-
terium.

2. USE OF THE FIRST BORN APPROXIMATION

For an electron of energy E that is scattered by a
nucleus that is represented by wave functions ¥;, the
differential scattering cross section per unit solid angle
is?

a(0) ="[ (4¢*F? cos?28)/ (heq)*]

2
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where 7q is the momentum transfer from the electron
to the nucleus that makes a transition from state 4
to state f, and R; is the coordinate of a proton in the
nucleus; it is assumed that E is large in comparison
with the rest energy of the electron, and that the scat-
tering angle # is not close to . For elastic scattering,
¢= (2E/hc) sin3f, and Eq. (1) can be written in one of
the forms
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where p(R) is the nuclear charge distribution, nor-
malized to unit volume integral.

In the case of inelastic scattering with small energy
loss, Eq. (1) must be summed over all final states f
that have excitation energies less than about 1 Mev.2
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ELECTRON SCATTERING EXPERIMENTS

If we use the independent-particle model to estimate
the ratio of inelastic to elastic scattering cross sections,
only one term in the summation of Eq. (1) can enter
for a particular final state (this assumes unsymmetrized
nuclear wave functions, but the result is not greatly
different if they are symmetrized). Also, such a matrix
element will be somewhat smaller in the inelastic than
in the elastic case, due to the partial interference be-
tween initial and final proton wave functions. Finally,
not all of the protons in the nucleus can be excited if
the final state must lie within 1 Mev of the ground
state. If one considers all of these factors, one arrives
at an estimate of between 0.01 and 0.1 for the ratio of
inelastic to elastic scattering at a particular angle, in a
heavy nucleus. On the other hand, recent
experimental®® and theoretical®® work shows that
quadrupole transition probabilities are ten to a hundred
times larger than estimated above on the basis of the
independent-particle model, for low-lying excited (col-
lective rotational) states of heavy nuclei. This makes
the inelastic cross section for favorable excited states
comparable with the elastic cross section, and tends to
smooth out oscillations in the computed form factor
(see Sec. 3). Doubly magic Pb®3 which constitutes
more than half of normal lead, is exceptional in that
its first excited state lies more than 2.5 Mev above its
ground state. Such an energy loss can be resolved by
the experiments, so that it is unlikely that inelastic
processes can account for the observed smoothness of
the lead-scattering curve.

It is very difficult to estimate the effect of radiation
on the observed scattering. The existing theory* is only
useful for light elements and breaks down completely
for large angle scattering from an element as heavy as
gold. It does, however, indicate that the radiative cor-
rection does not depend strongly on energy loss and
scattering angle. Experiments to date! show that most
scattering events are only slightly inelastic, and it
seems likely that this represents radiation loss rather
than nuclear excitation.

The effect of the nuclear quadrupole is discussed
more quantitatively in Sec. 6.

3. ELASTIC SCATTERING FROM HEAVY ELEMENTS
USING BORN APPROXIMATION

We define the nuclear charge form factor as the in-
tegral which appears in the right side of Eq. (2):

F(g)= f p(R)ei s Rdrp. A3)

If p(R) is real and spherically symmetric, F(q) is also
real and spherically symmetric. In this case, Eq. (3)
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Mat.-fys. Medd. 28, 1 (1953) ; C. L. McClelland and C. Goodman,
Phys. Rev. 91, 760 (1953).

3¢ A. Bohr and B. Mottelson, Kgl. Danske Videnskab. Selsk.,
Mat.-fys. Medd. 27, 16 (1953).

47, Schwinger, Phys. Rev. 75, 898 (1949).
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can be written
Flg)= (4n/q) f (B sinGRRIR, (&)

and conversely
p(R)= (2n°R) fo P sin@Rds. )

According to Eq. (2), F(g) can be determined from the
experimental observations:

F(@) =4 sin'}05(6)/2%¢* cos'$0 ],
q= (2E/kc) sindf; (6)

here only the sign is indeterminate, and it can be in-
ferred from the sign of p(R) and the behavior of F(q)
near its zeros, if any. Thus, if accurate experiments
were available over the entire range of ¢ (0 to =), p(R)
could be determined uniquely from Egs. (5) and (6),
within of course the limits of the first Born approxi-
mation.

In practice, somewhat inaccurate experiments are
available over a finite range of ¢. Also, no absolute
values of ¢(0) have been measured as yet. The procedure
followed in this paper consists in assuming a variety of
forms for the charge density p(R) and the corresponding
form factor F(g), and plotting the experimental values
of G(g)= (sin’*36/cos38)o*(f) against ¢ in such a way
that an easily recognizable curve will result if F(g) has
the assumed form. This procedure makes consistent
use of the first Born approximation. An alternative
method, used by Hofstadter, Fechter, and McIntyre,!
consists in defining the experimental form factor G(q)
as the square root of the ratio of the observed scattering
to the exactly computed point-charge scattering rather
than to the first Born approximation point-charge
scattering. The optimum procedure probably lies some-
where between these two, since the first Born approxi-
mation is somewhat better for a finite nucleus than for
a point nucleus, where the electrostatic potential is
stronger. It is gratifying that the numerical results ob-
tained here and in reference 1 are in such good
agreement.

Suppose, for example, that it is desired to see how
well the observations can be fitted with the assumption
that the charge density is uniform over a sphere of
radius R,. In this case,

p(R)=po, R<Ry; p(R)=0, R>Ry;
F(q) = 4mpoRy*[ (singRo— gRy cosgRy)/ (¢Ro)*].  (7)

If then F(g) is plotted against ¢ on one sheet of log-log
graph paper, and G(g) is plotted against ¢ on another
sheet of log-log paper, superposition of the two will at
once show the measure of agreement between Eq.
(7) and the experimental observations. Vertical trans-
lation of the two sheets with respect to each other
changes the absolute magnitude of the scattering, and
horizontal translation changes the nuclear radius Ry,
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A trial shows that the observations on gold do not
fit unless it is assumed that the first minimum in the
cross section expected theoretically is filled in by ex-
perimental inaccuracy, inelastic processes (Sec. 2),
quadrupole moment effect (Sec. 6), or by higher order
corrections to the Born approximation (Sec. 1). Even
assuming that such a fill-in occurs, the rest of the experi-
mental curve can only be fitted with a radius of about
4.7X 107" cm, which is substantially smaller than that
given by the usual expression 1.4X107¥4%* cm. Similar
poor fits are obtained with the other elements.

The same technique was used to attempt a fit of the
experiments with charge distributions that are uniform
over most of the radius of the nucleus and rounded at
the edge. If the usual radius is assumed, these predict
diffraction minima and maxima that are not observed,
as in the case of the sharp-edged uniform distribution.
On the other hand, if the radius is assumed small
enough to push the first diffraction minimum out to
larger angles than are covered by the observations, the
theoretically predicted small angle portion of the curve
is too flat to agree with experiment. With sufficient
rounding, the latter difficulty disappears; for example,
the observations on gold can be fitted well with a charge
distribution proportional to [1+4 (R/a)*]7, where a
=3.3X10 cm, but not with a charge distribution
proportional to [14 (R/a) ]

With charge distributions for which F(g) has a
simpler analytic form, a comparison with experiment
can sometimes be achieved by plotting suitable func-
tions of G and ¢ against each other so that a straight
line results when the experiments agree with the as-
sumed form for F(g). Four such forms are as follows:

p(R)=po exp[— (R/a)*];
F(g)=m%poa® exp[ — (ga/2)*]. (8)
p(R)=poe=Fle;  F(q)=8mpea’/ (14 ¢%a?)*. )

p(R)=po[ 1+ (R/a)]e FI*;
F(g)=32mpoa®/ (1+¢*a?)?.
F(q)=m%oa%e e

(10)
p(R)=poa’/ (@®+R*)?; (11)

To fit Eq. (8), we plot G against ¢% on semilog graph
paper; to fit Eq. (9), we plot G~ against ¢? on ordinary
paper; to fit Eq. (10), we plot G—* against ¢? on ordi-
nary paper; and to fit Eq. (11), we plot G against ¢
on semilog paper. In each case, a straight line results
if the fit is perfect, and the corresponding value of @ is
easily obtained.

A preliminary plot of G against ¢ or ¢*> on semilog
paper shows that the experimental data for tantalum
at 150 Mev and for gold and lead at 125 Mev can be
superposed within the experimental errors for the sepa-
rate elements by vertical translation (adjustment of the
absolute magnitude of the scattering at some angle,
which has not been measured). This is not surprising,
since the values of A? for these three elements spread
over a range of less than 5 percent. When all three ele-
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ments are plotted together, it is found that a Gaussian
charge distribution, Eq. (8), does not give a very good
straight line. If a straight line is fitted to the whole
curve, the value of ¢ can lie between 3.1 and 3.6 (all
lengths are expressed in units of 10~ ¢m). The small-
angle data are best fitted by a=3.7, and the large-angle
data by ¢=2.9. If a Gaussian charge distribution is
peaked enough (small enough ¢) at small R to fit the
large-angle data, it falls off too rapidly at large R to
give enough small-angle scattering; conversely, if it is
spread out enough (large enough a) at large R to fit
the small-angle data, it is too flat at small R to give
enough large-angle scattering. The root-mean-square
radius of the charge distribution for the Gaussian form
is Ry=(3)%a=1.224a, so that R, lies between 3.6 and
4.5 in this case.

The exponential charge distribution, Eq. (9), yields
a fairly good straight line with ¢=2.0 (see Fig. 1), It is
difficult to gauge the extreme values of @ that are con-
sistent with the experiments, because of the compres-
sion of the data that occurs in going from ¢(f) to G~%.
However, it is probably safe to say that ¢ must lie be-
tween 1.6 and 2.9 on the basis of the present data. In
this case, R,= (12)%¢a=23.46a, so that R, lies between
5.5 and 10.0, with the best fit occurring at 6.9. The
modified exponential charge distribution, Eq. (10),
which has zero slope at the origin, also yields a straight
line with ¢=1.3, and extreme values of 1.1 and 1.6.
Here, R,= (18)}a=4.24a, so that R, lies between 4.7
and 6.8, with the best fit occurring at 5.5. Finally, the
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e LEAD 125 Mev
= TANTALUM 150 Mev
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F16. 1. Plot of G~# against ¢2 (¢ in units of 10¥ cm™), where G

is the experimental form factor and %g is the momentum transfer.

A straight line implies that the nuclear charge density has the
form p(R) = poe~E/2, The line corresponds to ¢=2.0X107% cm.
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F16. 2. Nuclear charge densities p computed from Egs. (8),
9), (10), and (11) with optimum values of a. The last three are
in good agreement between R=2 and R=6 (in units of 10~ cm),
but the first only agrees between R=2 and R=4.

charge distribution, Eq. (11), can be fitted well with
a=3.9+£0.5; because of its long tail, this distribution
is rather unrealistic, and indeed R, is infinite in this case.
- The variety of shapes of charge distributions that
fit the experiments about equally well suggests that
only certain features of p(R) are significant in this
respect. This is confirmed when the above four charge
densities are plotted against R on semilog graph paper,
each with the optimum value of a. If the curves are
translated vertically with respect to each other, it is
found that Egs. (9), (10), and (11) can be made to
superpose within 15 percent over the region from R=2
to R=6 (see Fig. 2). The Gaussian distribution, Eq.
(8), with a=3.3 can, however, only be fitted with the
other three between R=2 and R=4. This suggests
that the range of ¢ covered in the experiments, from
¢=0.37 to ¢g=1.1 (in units of 10" cm™) is only suffi-
cient to determine the shape of the nuclear charge dis-
tribution between R=2 and R=6. Very roughly and
qualitatively, we can say that experiments with mo-
mentum transfers between %g¢; and 7g, explore the
shape of the charge distribution at distances between
Ry=2.2/g> and R;=2.2/q; from the center of the nu-
cleus, provided that there is no anomalous behavior of
p(R) elsewhere.

4. ELASTIC SCATTERING FROM BERYLLIUM

The more limited experimental data on beryllium® at
125 Mev can be fitted well with any of the four charge
distributions, Eqs. (8) through (11). The results are
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as follows:
Eq. (8): a=18 401, R,=2.2+0.1;
Eq. (9): ¢=0.74+0.03, R,=2.7+0.1;
Eq. (10): ¢=0.5540.01, R,=2.340.04;
Eq. (11): ¢=091+0.04, R,=.

As with the heavier elements, Egs. (10), (9), and (11)
yield increasing values of @, and Eq. (9) gives a larger
R, than Eq. (10).

5. ELASTIC SCATTERING FROM DEUTERIUM

When Eq. (2) is applied to deuterium, it must be
remembered that the ground state wave function is a
mixture of 35; and 3D; and is threefold degenerate. We
write it®

Y= (A7) (u+84wS12)xm, m=0, 1,
S12=37'_2(01'r> (0‘2‘1‘)_(0'1'0'2), (12)

where x», is a triplet spin function. The normalization
is such that

fw(u2+w2)dr= 1. (13)

Because of the degeneracy, the squared matrix ele-
ment on the left side of Eq. (2) must be replaced by

2

fgbm«*e“‘l"gbmdr . (14)

L DIDY

m m’

The factor % in the exponent arises because the proton
coordinate is half the relative coordinate that appears
in Eq. (12). Equation (14) may be reduced to

[ f w<u2+w2)jo<%qr>dr]2
H{f

jo(@)=2"1sinz, ja(z)= (3z7°—z1) sing—3z72 cosz

(2uw;2—*w2) 72 (%qr)dr] , (15)

where

are spherical Bessel functions.

For use in connection with the next section, the ex-
pression for the quadrupole moment of the deuteron
is quoted here®

0= (200)~} f  Qww—2-vaP)rdr. (16)

6. EFFECT OF NUCLEAR ELECTRIC
QUADRUPOLE MOMENT

A nucleus that possesses an electric quadrupole
moment is somewhat distorted from spherical shape,
and we might expect that even if the charge distribution

5W. Rarita and J. Schwinger, Phys. Rev. 59, 436 (1941).
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had a sharp edge, this edge would be effectively fuzzed
out because the observations average the scattering
produced by nuclei with all possible orientations.

In dealing with elastic scattering from a heavy nu-
cleus, it is sufficient for a discussion of quadrupole
moment effects to assume a charge distribution

p(R)=po(R)+p2(R)Ps(cosh), 1n

where 0 is the angle between the vector R and the
nuclear axis, and Py(u)=%(3u?>—1) is a Legendre poly-
nomial. The electric quadrupole moment measured
with respect to an axis fixed in space that makes an
angle 6’ with the nuclear axis is

0(8') =Z(8/5)Ps(cost’) f  po(R)RUR. (18)
0

Equation (18) is classical, and from it we want to
obtain an expression for the quadrupole moment Q,
which can be related to the quantum analog of Eq. (18)¢

3mr—I(I+1)

121-1) (19)

Q(m)=

where 7 is the total angular momentum of the nucleus,
and m is its component along the axis fixed in space.
We could simply equate the maximum value Q(0) of
Eq. (18) to the maximum value Q(I) of Eq. (19).
However, a better comparison in the case of the deu-
teron (see below) is obtained if we equate the mean
square computed from Eq. (18) by integrating over
¢, to the mean square computed from Eq. (19) by
summing over 7. The result is

Q=A41Z(8x/5) f sz(R)R‘*dR, (20)
0

where A1= (1/10)%, A3/2= (1/5>%, A2= (2/7)%, A5/2
= (5/14)}, As=(5/12)}, Ajp=(T/15)}, - - - A=1.

In calculating the scattering, we -make use of the
fact that the period of rotation of the nucleus is large
in comparison with the transit time of a fast electron
across the nucleus. Thus, the form factor calculated
from Eq. (3) refers to a particular orientation of the
nucleus with respect to q. The scattering, which is
proportional to F? must then be averaged over all
orientations of the nucleus. It is easily shown that

2

<F2(q)>;v= 1672[ f po(R) jo(gR)de]

2

—I—(167rz/5)[f pz(R)jz(qR)deR] , (21)
0

which agrees with Eq. (4) if p,=0.

6 J. M. Blatt and V. F. Weisskopf, Tkeoretical Nuclear Physics
(John Wiley and Sons, Inc., New York, 1952), p. 28.
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It is interesting to compare Eqs. (17), (20), and (21)
with the corresponding Egs. (13), (16), and (15) for
the deuteron (Sec. 5), when it is remembered that p(R)
is normalized to unit volume integral. We note that
R=1r; then if 4mp,R%R is identified with (u2+w?)dr,
and (167%/5)%0.R%R is identified with (2uw—2—*w?)dr,
the normalization of p(R) in Eq. (17) agrees with Eq.
(13), (21) agrees with (15), and (20) agrees with (16).

We can now see under what circumstances the second
term on the right side of Eq. (21) can fill in the first
diffraction minimum of the first term, that is predicted
by a sharp-edged uniform charge distribution. We
assume that po(R)=po, a constant, out to R=R,, and
is zero for larger values of R. We also assume, as is
justified if the quadrupole moment or the eccentricity
is not too large, that po(R)=B&(R—R,). Then B can
be expressed in terms of Q from Eq. (20):

0=A41Z(87/5)BRy.

It is convenient to define the nuclear eccentricity?
1=5Q/4R?Z, in which case Eq. (21) can be written

(F2(q) )w=9(singRy— qRy cosqR.)*/ (¢Ry)®
+49%j*(qR0) /542,

when it is remembered that 4mpoR,*/3=1.

The first term on the right side of Eq. (22) vanishes
when gR¢=24.5, and has its second maximum at ¢R,=26,
where it is equal to 7.0)X10~2. At the zero point of the
first term, the second term is equal to 0.038(n/Ar)%.
We can say that the zero predicted when the quadru-
pole moment is neglected would be difficult to observe
as a minimum if the second term had there a value com-
parable with the value of the first term at its second
maximum, that is, if 0.038(y/A7)?227.0X1073, or if
(n/Ar)=20.43. For Ta'® 5=0.14 (one of the largest
values known) and I=7/2, so that (y/4r)=0.205.
For Au¥’ I=3/2, and the quadrupole moment has not
been measured ; however, it would have to be extremely
large to be effective in the present connection, and this
seems unlikely from other considerations. Three-
quarters of normal lead consists of the isotopes Ph8
(I=0) and Pb®7 (I=%), neither of which can have a
quadrupole moment. It seems probable, therefore, that
a nuclear electric quadrupole moment cannot account
for the smoothness of the observed scattering curves.

(22)

7. CONCLUDING REMARKS

The picture of the nuclear charge distribution arrived
at on the basis of the Born approximation is radically
different from that which has been commonly accepted
until now.® However, such centrally peaked, smoothly
tapering charge distributions are not necessarily incon-
sistent with information obtained from other types of

7 Reference 6, p. 26.

8 A slight indication of a central charge concentration was ob-
tained from the scattering of 15.7-Mev electrons, by Lyman,
Hanson, and Scott [Phys. Rev. 84, 626 (1951)].
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experiments. As an example, any experiment that meas-
ures the average value of the difference between the
actual electrostatic potential and that of an equal point
charge, measures in effect the root-mean-square radius
R, of the charge distribution. For a uniform charge
distribution of radius Ry, R,= (3/5)¥Ry=0.775R,. This
gives R, values ranging from 6.14 for tantalum to 6.42
for lead, if the usual expression Ry=1.44% is used; for
beryllium, R,=2.25. It is apparent from Sec. 3 that the
heavy elements are consistent with this if either Eq.
(9) or Eq. (10) is used. In the case of beryllium (Sec. 4),
the values found from Egs. (8) and (10) are consistent
with that obtained from the A? rule, and Eq. (9) yields
a somewhat larger value; for such a light nucleus, the
A% rule probably underestimates the radius.

The nuclear Coulomb energy may be calculated for
each of the charge distributions considered here. It is
characterized by a length, which is equal to the ratio
of the square of the total charge to the Coulomb energy.
This length is (5/3)R, for a uniform charge distribution
of radius Ry, (27)%a for the Gaussian distribution (8),
(32/5)a for the exponential distribution (9), (512/63)a
for the distribution (10), and (7/2)e for the distribution
(11). With the optimum values for @, the distributions
(9) and (10) are 5 and 14 percent, respectively, higher
than the Coulomb energy calculated with Ro=1.443%
while the other two distributions give about twice as
large a Coulomb energy. Thus, as with the root-mean-
square radius, the more likely charge distributions (9)
and (10) are in satisfactory agreement with earlier
results.

It is important also to realize that electron scattering
and nucleon scattering measure quite different prop-
erties of a nucleus. We have assumed here that electron
scattering is determined by the electric charge density,
which is equivalent to assuming that there is no appre-
ciable non-electric interaction of electrons and nuclear
matter. Since lower energy scattering experiments are
in good agreement with this assumption,® any anoma-

9 See reference 8, and Buechner, Van de Graaff, Sperduto,
Burrill, and Feshbach, Phys. Rev. 72, 678 (1947).
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lous interaction would have to be strongly momentum-
dependent in order to be significant in the present situa-
tion, and we suppose that such an interaction does not
exist. According to present ideas, the electric charge
density is proportional to the density of protons, since
meson charges are expected to average to zero. Nucleon
scattering, on the other hand, is determined by the
nucleonic potential, which is believed to depend on the
nucleon density but need not be proportional to it.
Indeed, it is quite possible that this potential is pro-
portional to the density only for quite low densities,
and that for higher densities the potential increases
less rapidly than linearly.’® In this case, the potential
that is effective in nucleon scattering will be more
nearly uniform and have a sharper boundary than the
electric charge density, and hence make the nucleus
appear more like a uniform sphere. This might explain
the agreement between the usual R, and the nuclear
radius measured from fast neutron scattering and
alpha-particle decay, and also the very striking diffrac-
tion patterns recently observed in the scattering of
22-Mev protons by various elements.!!

It is, of course, possible that exact calculations
will fit the experimental observations on electron scat-
tering with charge distributions that are less peaked
at the center and fall off more sharply at the edge of
the nucleus. Such calculations are now under way here,
and will be reported in the near future by D. R. Yennie,
D. G. Ravenhall, and R. N. Wilson.
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