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which the Cd"' is contained. The vibrations might, in
turn, cause reorientations of the spin in times shorter
than 7.~. Such vibrations, on the other hand, should be
very short lived and this, too, seems an unlikely
mechanism.

It should be emphasized that for y-y cascades fol-
lowing almost instantaneously after E capture, the
electronic configuration during the lifetime of the inter-
mediate state of the nucleus is less clearly defined than
it would be for a y-y cascade from a long-lived isomer,
such as 48-min Cd"'. In such a case, the radiation from
the isomer could be observed in a normal chemical
environment. For all other correlations than pure y-y

and y-conversion electron, the surroundings of the
nucleus in its intermediate state are not well known and
it is dificult to draw quantitative conclusions from
observed perturbations of the correlation.
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The general theory of Bloembergen, Purcell, and Pound of nuclear spin relaxation has been extended to a
more quantitative study of relaxation by translational diffusion. It has been found necessary to treat the
problem by the theory of random walk. In the case of isotropic diffusion two cases have been studied: one
in which the Right distance has a probability distribution, and the other in which it is constant. The problem
of random walk to nearest neighbor sites in a lattice is also treated and quantitative results are obtained for
a face-centered cubic lattice.

I. INTRODUCTION

LOEMBERGEN, Purcell, and Pound have given
a general solution to the problem of nuclear spin

relaxation. ' ' An important and prevalent mechanism
has been shown to be the coupling of spin orientation
with nuclear thermal motion via the dipolar magnetic
interaction of the nuclear moments. This influence and
the corresponding relaxation are particularly strong
whenever the nuclei perform random diffusive motions
such as occur in liquids of appropriate viscosity. Such
diffusive motions may occur also in the solid phase par-
ticularly in the case of solid solutions; for example,
hydrogen in palladium, but also in the case of self-
diffusion. Bloembergen' has applied his theory to
diffusive motions. His treatment of translational dif-
fusion is, however, admittedly crude and must be
regarded as only semiquantitative. It is the purpose of
this paper to present a more quantitative theory and
in particular to emphasize the possibility of examining
certain microscopic details of the diffusion process
which cannot be ascertained from a study of gross dif-
fusion phenomena alone. In Bloembergen's treatment
only the diffusion constant D enters as a parameter.

* Supported by the joint program of the U. S. Once of Naval
Research and U. S. Atomic Energy Commission, by the Radio
Corporation of America, and by the Rutgers Research Council.

' Bloembergen, Purcell, and Pound, Phys. Rev, ?3, 679 (1948).
N. Bloembergen, thesis, I eiden, 1948 (Martinus Nijho8, The

Hague).

II. APPLICATION OF THE THEORY OF RANDOM
FLIGHTS

We start from the general formula derived by
Bloembergen' ' for the relaxation time T1.

Tz ' ——4oy%'I(I+1)[So(2ooo)+2Si(ooo)g (2)

Thus his theory gives no basis for a closer study of the
diffusion mechanism than can be obtained by conven-
tional measurements of macroscopic diQusion. Nuclear
spin relaxation is however essentially microscopic in
character. The magnetic field of one nucleus at the
position of another depends on the inverse cube of the
distance and the inhuence of nearest neighbors is thus
relatively strong. It is apparent from this that one needs
to consider the individual motions of neighboring spins,
that is to say, the process of random Rights of which, as
is well known, the phenomenon of diffusion is only the
limiting macroscopic approximation. Thus it may be
expected that certain details of random Qights such as
(r'), the mean squared flight distance, and r, the mean
time between Rights, will enter into the description of
relaxation in other ways than merely in the familiar
combination:

D = (r')/67.

This is indeed the case and leads at least in principle
to the possibility of independent measurement of these
parameters in certain cases.
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pi —p .p . .(i) ([)

Here S~ and S2 are the spectral densities of the random
time functions:

(3a)

probability by Pi(r)(lr and the corresponding prob-
ability after I flights by P (r)dr. The theory of random
Qights then gives'

where
p —p. p, (2) (~) (3b)

P (r)= (1/8 ') ~A" (g) exp( —ir g)dy, (8)
P;;(') (t) = sin8;; cose;;e'~'~/r;„', (4a)

P;,(') (/) = sin'0;, c"&'i/r ' (4b)

and (r;;, 8;;, q;;) are the spherical coordinates of spin

j relative to spin i and are to be regarded as random
functions of the time.

The functions S& and S2 may be more speci6cally
defined as follows. Let ki(!') and k2(t) be correlation
functions given by

k (~) =Z, (P';"'(~')P', "'*(~'+~))"( ),

k~(~)=Z (p ."'(~)p "'*(~+~))A«)

where an asterisk denotes the complex conjugate.
Then

(5a)

(5b)

(6)

In evaluating the spectral density functions, we
replace the time averages in (5) by ensemble averages.
To do this we 6rst introduce probability functions as
follows:

(a) Let P(r, ro, t)dr be the probability that, if spin j
is located at zero time at ro relative to spin i, at time t

spin j will lie within the volume element dr located at
r relative to the new position of spin i.

(b) Let N 'f(ro)drp be the probability that at zero
time, spin j is located in dro at ro relative to spin i
N designates the number of spins in the system; thus
f(ro) is the initial spin density.

We may now write for the correlation functions the
ensemble averages,

ki(t)=~
~

P(r, ro, &)P,; ' (ro)P,; '*(r)f(ro)drodr, (7)

with a similar expression for k2(t). The sum over j in

(5) has been replaced by multiplication by N.
The solution of the problem thus depends on the

construction of the probability functions. Of these

f(ro) is an initial datum depending on the circumstances
of the particular problem. Thus for a uniform spin
density f(ro) is a constant, while for lattice diffusion

f(ro) may be expressed as a sum over delta functions
centered at the lattice points. The function P(r, ro, t)
can be found from the theory of random Qights as
follows.

We shall assume that every position of a spin is
statistically equivalent in the sense that at each position
the same probability exists that after one Qight from
this position, the new spin position will be at r in dr
relative to. the previous position. We designate this

The probability P(r, t)dr that a spin initially at the
origin will at time t be located in dr at r is

P(r, t)=Q„P„(r)w„(t), (10)

where w„(t) is the probability that e flights take place
in time t. For w„()!) we assume the Poisson distribution

m„(/) = (1/e!) (t/r) "e ')'

where 7. is the mean time between Qights.
The sum in (10) includes of course +=0 where

evidently
Po(r) =I)(r),

8(r) being the three-dimensional delta function.
Substituting (8) and (11) in (10) we get

(12)

f
P(r, t) = (1/8~') exp{ ir y

—(t/i. )[1 —A(y)]}dy—.

(13)

Finally P(r, ro, t) is found by

(a) forming the roductp

P(r;, t)P(r, ro, t)dr;dr;, — (14)

where r; and r; are the position vectors of spins i and j
relative to a common origin;

(b) transforming to relative-centroidal coordinates,

r= r,—r;, R=-', (r,+r,);
and (c) integrating (14) over all centroidal positions R.
If, as is usually the case, A(y)=A( —p) the result is
easily found to be

P(r, ro, t) = (1/8~') exp( —iy (r—ro) —(2t/7)

X[1—A(p) )}dt, (15)
or

P(r, ro, t)=P(r —ro, 2t). (16)

If the condition A (y) = A (—y) does not hoM, one
must replace A(y) in (15) by —',[A(y)+A( —y)j and
(16) no longer holds.

' See, for example, S. Chandrasekhar, Revs. Moderxi, Phys. IS„
1 (1943).

where the integration is over the whole of y space.
The function A(y) occurring in (8) is defined by

inverting the three-dimensional Fourier transform (8)
in the case e=i:

A(y)=, t Pi(r) exp(ip r)dr.
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Substitution in Eq. (7) of P(r, rp, t) as given by (15),
together with an appropriate f(rp), completes the
formal solution of the problem. In the following sections
we shall investigate the results of particular assump-
tions as to the forms of Pi(r) and A (g).

It might be thought that a useful approximation could
be obtained by taking P(r, t) as that solution of the
diHusion equation,

BP/Bt =DV'P (17)

with the initial form P(r, 0)=6(r). This solution is, as
is well known,

P (r, t) = (4n.Dt) & exp( —r'/4Dt). (18)

where

A (e)=2 (—1)"(r'")p'"/(2I+ 1)
n=o

=1—p(r') p'+o(p'),

(19)

(20)

However, the conditions under which this approxi-
mation is justi6ed are so stringent -that it is unlikely
to correspond, except under exceptional circumstances,
to any physical reality. Equation (18) is of course the
limiting case of the random Qight theory in which the
mean squared fight path (r') is small and the mean time
r between Rights is short. It can in fact be obtained
from the above theory under these assumptions, as
will now be shown. In the case of isotropic diffusion we
may expand (9) in powers of p'.

(ip)" q r

A(ti) =p P, (r)rn+'dr cos"0 sinodedq,.=p~! J J J
OI

we shall carry out these calculations for ki(t) and Si (ip).
Substituting (4a) and (15) in (7) we obtain

e p p t
sin&ocos00 sinecos8

ki(t) =—,4~JJJ roar3

2t
Xexp ip (r——rp) — 51 A (p) J drdrpdti. (22)

r

We now introduce expansions of exp( —i' r) and
exp(iy rp) by means of the formula:

exp (ipr cosC) = (pr/2pr) & p (2m+ 1)i nJ„+i( pr) 'P„(cosC),
n=o

(23)

where J and E'„are the usual Bessel and Legendre
functions. For P„(cosC) in (23) we use the addition
formula for the Legendre polynomials:

(n —m)!
P„(cosC)=P (cosg)P„(cosn)+ P

=i (I+~)!
XP„(cos9)P„(cosn)cosm(y —P), (24)

where (g, pp) and (n, P) are the polar-azimuthal angular
coordinates of two directions separated by the angle C.
The integrals over r and ro have the limits a and ~
where a may be physically interpreted as approximately
the closest possible distance of approach of two nuclei.
Making use of the orthonormal properties of the
Legendre functions, we obtain after some reduction

(rn) 4~ I Pi (r)rn+pdr
~0

(21)
See r" 2t dp

ki(t) = exp ——I:1—A (p)l ~ (~p)— (25)
15m' J, r . p

is the Nth moment of the distribution Pi(r).
If the series (19) is substituted in (13), it is clear

that if (r') is suKciently small and t/r sufFiciently

large, the integral will be cut off by the term in p' in
(19) before higher powers of p become effective. We
then obtain precisely (18) with D=(r')/6r. In the
following section it will appear that the physical con-
ditions thus imposed on (r') and r are so severe that
this approximation has little physical interest. Thus it
is necessary to assume specific forms for Pi(r) and
examine their consequences. In Sec. III we treat the
case of isotropic diGusion and in Sec. IU the case of
random Rights to nearest neighbor positions in a lattice.

III. ISOTROPIC DIFFUSION

The case of isotropic diffusion is defined by the con-
ditions: (1) A (y) depends on the magnitude of y only
and (2) f(rp) =e (uniform spin density). If these con-
ditions hold, we may perform all integrations in the
calculation of the correlation functions and their
spectral densities save that over p which must await
a specific choice for the form of A (g). As an illustration

'A similar calculation for kp(t) gives

kp(t) =4ki(t). (26)

The spectral density function by Eq. (6) is, e.g. ,

Sp (pp) =4$i (pp). (29)

Before proceeding to discuss the consequences of
possible assumptions as to the form of A(y), we first
consider three limiting cases to which all possible
choices of A (y) must conform.

We shall first consider the limiting cases (a) pir))1
and (b) ppr((1. Since in practice we may assume that r

t'

Si(pi) = 2 cospit ki(t)dt.
Jo

Substituting (25) in (27) and integrating first with
respect to t, we get

8~mr 1—A (p) dp
Si(~)= ' ~- (ap) (28)

15a' Jp L1—A(p)j'y(pir/2)' p
and
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~aries with temperature according to

(30)

The minimum Ti obtained from (36) when &or=42
is given by

where E is an activation energy, these limiting cases
give respectively the low-temperature and high-tem-
perature asymptotes for 1& in between which T& will
have a minimum.

(a) ((or))1). By Eq. (9)

Ti —' ——(16&2~/45)y4k'I (I+1)rt/a'cu. (37)

It may be shown that the approximation made here
by putting A(p)=0 is equivalent to the neglect of all
but the erst term in the series of Eq. (10).

(d) We now consider the consequences of assuming
special forms for P, (r) and A (y). We first take

~

A (y) ~

&
~
expiy r

~
Pi(r)dr= 1. P, (r) = (4rrDrr) ' exp[—r/ (Dr) '*], (38)

T~ ~ ~2~ ~27.p~E/kT (32)

(b) (&or«1). Here we simply put cur=0 in the de-
nominator of the integrand in (28) and obtain

8m.er
l
" A'(ap) dp

Si(a)) =-
15a3 ~, [1—A(p))p

(33)

By Eq. (20) the integral in (33) always converges and so

Ti ~ 1/r= (1/ro)e e "r— (34)

(e) We now consider the special case for which the
incan flight path is long: (r')»a'. The function 1—A (p)
which enters in the integrand of (28) in two places has
the following general behavior. By Eq. (20) it vanishes
at p=0; at large p it approaches unity by Eq. (9). It
may increase monotonously or may oscillate about its
asymptotic value. In any case, the rapidity with which
it approaches unity is essentially determined by the
magnitude of the mean squared flight path (r'). Thus,
if (r')))a', the value of Pi(r) is everywhere small and
by Eq. (9) 1—A (p) approaches unity quickly for small
values of ap. Thus it may be replaced by unity in the
integrand of (28).

We then obtain

Si(co) =
45a3 1+ (our/2)2

and, for the relaxation time,

(35)

Sm e 7
y4fi'I (I+1)—+

Tj i5 a' 1+ ((vr/2)' 1+co'r'
(36)

It will be recognized that (35) and (36) have the
well-known forms appropriate to an exponentially
decaying correlation function with a "correlation time"
r,= r/2

'Thus 1—A(y) never becomes larger than the order of
unity, and we may neglect the factor [1—A(g)]' in
the denominator of (28), obtaining

327l R t dp
Si(~)= — I1'(ap) L1—A (p) 3— (31)

iSQ:M 7 &p p

Thus,

which corresponds to

A (&)= [1yD,p27
—~ (39)

Equation (39) is the mathematically simplest form for
A which satisfies all the conditions that can be imposed
for an acceptable form. It leads to a closed form solu-
tion for T& expressible in terms of elementary functions.
We 6rst show that the following physical conditions
lead to (39). Let us suppose that a spin can exist in
one of two states: (a) bound in a potential well, or (b) a
thermally excited state in which the nucleus may move
rapidly about in a random diGusive type of motion. We
suppose that the motion in the excited state is so rapid
that its details contribute only to very high frequencies
in the Fourier spectrum S(+) and have no effect on the
relaxation. It is possible that this type of motion may
approximate the motion of protons in highly rifted
metallic lattices such as in hydrogenated palladium or
other metallic hydrides. It will not be necessary to
specify the excited state precisely, but we shall assume
that the motion in this state can be described by the
solution of the diffusion equation (17) given by Eq. (18).
That is, we shall suppose that after a spin has vacated a
trapping site and before capture by another, the prob-
ability after time t that it will be at r in dr relative to
the site it has vacated is

(47rD't) l exp( —r'/4D't)dr, (40)

where D' is a diffusion coeKcient appropriate to the
excited state. We shall later see how D' is related to
the overall diffusion constant D. We now multiply
(40) by e 't" dt/r', which we take to be the probability
that the nucleus will become trapped again after a time
t in dt. Thus 7- is the mean life time in the excited state
and will be small compared with r—7-', the mean life
of the trapped state. Integrating the resulting expression
over t we obtain the probability Pi(r)dr that a single
jump (i.e., a single life in the excited state) will find
the nucleus a distance r in dr from its starting place.
Hence:

Pi(1)—J~ (4vrD't) i exp ( r'/4D't t/r')d—t/r . (41—)
p

This integral is easily evaluated' and we get Eq. (38)
4 See, for example, W. Magnus and F. Oberhettinger, Formulas

arId lheorems for the Special Functions of Mathematical Physics
(Chelsea Publishing Company, New York, 1949), p. 128.
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TAnLE I. Tables of the functions f(n, x) )Eq. (55)) and
e(o, *)LEq (56)j. part. Substituting (47) in (42), we get

0.2
0.4
0.6
0.8
1.0
1.071
1.1
1.2
1.3
1.4
1.6
1.8
2.0
2.041
2.2
2.4
2.6
2.8
3.0
3.6
4.2
48
5.4
6.0
6.6
7.2
7.8

f(l/u, x)

0.0266
0.0552
0.0890
0.1265

0.1685

0.2046
0.2353
0.2596
0.2753

0.2866
0.2902
0.2884
0.2823
0.2730
0.2354
0.1954
0.1604
0.1323
0.1097
0.0918
0.0782
0.0669

q (1/12, x)

0.0770
0.1531
0.2425
0.3336

0.4160

0.4784
0.5240
0.5490
0.5566
0.5568 (max)
0.5534
0.5392
0.5185
0.4931
0.4655
0.3813
0.3070
0.2475
0.2022
0.1667
0.1391
0.1180
0.0909

f(s, X)

0.0130
0.0688
0.1451
0.2286
0.2920

0.3112
0.3215
0.3231
0.3182
0.2942
0.2582
0.2290

0.1989
0.1728
0.1493
0.1318
0.1161
0.0821
0.0608

0.0455
0.1996
0.3915
0.5445
0.6090
0.6128(max)
0.6122
0.5983
0.5756
0.5489
0.4849
0.4135
0.3585

0.3075
0.2649
0.2281
0.1998
0.1757
0.1269
0.0936

If we put

16m'e
St(co) = Re

ESCA 9)

J:(aP)II;"'-(aP)

2 'EM 7

(up (coa'/2D) l

E s ) (4+co'r') ' (4+(o'r') '*

If we de6ne parameters x, q, and n by

n= (r')/12a', x= (ooa'/D) l,

6)r/2
q=

t 1+ (~r/2) jl (1+n'x')l'

we can write Eq. (50) as

(u) 1 q(1aq) '

4sj 2 n

ap= u+is,

where u and v are real, we obtain from Eq. (44):

(49)

(50)

(51)

with D'r' in place of Dr. Now clearly D'r'= (r')/6= Dr,
and so we get Eq. (39).

We shall now adopt Eq. (39) and examine its con-
sequences. Substituting (39) in (28) we get

St (to) = (16x.e/15a') Re (J), (42)

we get

where
St(oo) = (8xn/15a' )fto(n, x), (54)

If now we substitute (49) in (48), and use the ex-
pressions of the half-integral Bessel and Hankel func-
tions in terms of elementary functions,

J;(s)B'.u& (s) = (1/x.s)(1+1/s'+ (1+i/s)'e"*]

where

dp

,
.J- (ap)—.

J s 2Dp' ioo(1+ Drp') — p
(43)

f(n, *)= (2/x')(~L1 —1/(u'+") j
+(v(1+1/(u'+t'))+2je-'" cos2u

+ut 1—1/(u'+s'))e —'" sin2u}. (55)

If now we de6ne

P'= ioo/D(2 uor), — (44)

The function f(n, x) is tabulated in Table I as a
function of x for n= ~~, ((r')=a') and n=', , ((r')=6a').

From (58), (29), and (2) we get for Tt.
we can put (43) in the form: Tt—' ——-'~'O'I (I+1)(u/a'(o) fp(n, x), (56)

t' 1 q p' 1 dp

I 1+
2 ioor &s & —DrPs) p' —P' DrP' p

(45)

Making use of the integral formula, '

J'(ap) (p' p') 'p&p= (&~/—2)J (ap)%"'(ap) (46)
0

where p(n, x) = f(n, x)+f(n, v2x).
The function y(n, x) is tabulated as a function of x.

for n= —,', ~'~ in Table I. In this table are also given the.
maximum values of p(n, x) from which the minimum
values of Tj may be obtained.

The asymptotic forms of p(n, x) for large and small
x are of interest. First, if nx'=&or/2»1 (limiting case
of low temperature or high frequency), u and s reduce
approximately to u= 0, v = 1/(2n) l, and

we obtain

J=i/3~y (~/f~(2 i~r) ))Jf (aP) II;&'l (—aP), (47)

where p is the root of (44) with positive imaginary

f(n, x) = (4/3cor)P(v),

F(t) = (3/2ss) Ls' —1+(v+ 1)'e—'"g.

For the relaxation time, we obtain in this case:

(58)

'G. N. Watson, Treatise oe the Theory of Besse/ Functions
(Cambridge University Press, Cambridge, 1944), second edition,
p. 428, F.q. (4).

(cor)&1): Tt '——(8s/5)y4h'I(I+1) (e/asco'r)
&(F((6a'/(r')) lf (59)
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F(v) as given by (58) descends monotonously from
unity at v=0. For small v,

For f(ro) we may take

f(ro) = c +„8(r,—r„), (67)
F (v) 1——',v'+-', v' —(6/35) i'+ . (60)

In order to obtain the limiting case for ~T&&1, one
may expand the Bessel and Hankel functions in (48)
in powers of aP and then proceed to the limit cor—4.
In this way it is found that

where c is the ratio of the number of nuclei to the-
number of lattice sites. The sum is over all lattice sites.
Also,

(68)

If in Eq. (50) one neglects cor in comparison with
unity, one obtains 44=v=x/2 and, substituting these
values in (55), one gets A(e) = (1/s)E exp(te r')

i=l
(69)

(cor&(1): Ti '= (4n/5)y4A'I(I+1)
y(44r/e3)(1+12e2/5(r&)). (61) where the sum is over the s nearest neighbors of a.

lattice site. From (9) we find

1 2 e t' 2q
f(~, x)=——+ ~

1—
~

sinx
x x' x E x')

4 2
+ 1+—+—cosx, (62)

g x'

which no longer depends explicitly on n. If (62) is sub-
stituted in (56) one obtains precisely the same result
that follows on taking for P(r, t) the expression (18).
A detailed analysis shows that (62) is valid only if in
addition to cor«1 one assumes (r'-)&(6a'. Thus (62) and
inferentially (18) have only a very limited range of
validity. Equation (62) has a maximum giving a mini-
mum Tl, but of course does not behave correctly at
the low temperature limit.

(e) As a final example we mention the case in which
a nucleus walks randomly in direction, but makes
jumps of equal magnitude l in distance. In this case we
may take for Pi(r):

k(t) = (1/2s.) e 4~4S (co)dco, (70)

so that

k(0) = (1/2m) S(co)dco. (71)

Putting t=0 in (15) and substituting in (7), we get

k(0) = (c/8r') F (ro) F*(r)gi, 8 (ro—r~)
f t

&&exp[—iy (r—ro)]drdrody,

It is not possible to carry out explicitly all the inte-
grations to find k(t) or S(co) in the general case. We
can, however, find k(0) which normalizes the spectral
density function according to the transform of (6):

Pi(r) =b(r t)/4n P. —

The corresponding A (y) is given by

A (y) = (sinlp)/lp,

(63)

(64) =c Pa~F(ri) ~'.

&&exp[—~p (r—r.)]drdp,

= (c/8e)Z, F(r,)F*(r)

and by Eq. (28)

Si (co) = (8vrrcr/15k't3) G(k, —,'cor),

where k= a/t and

Making use of (4a) and (4b) we find, after averaging-
(65) over all crystal orientations,

ki(0) = (2c/15)girl, ', kg(0) =4ki(0). (73)'

1—sinx/x dx
G(k, y) = JP(kx) ——. (66)

& o (1—sinx/x)'+y' x

We shall defer a detailed study of this case to the
following section, in which it will be shown it has par-
ticular relevance in the case of lattice diffusion.

IV. LATTICE DIFFUSION

There is one extreme case in which an explicit result.
for S(co) may be obtained, namely the case cor))1, i.e.,
the low-temperature asymptote.

For S(co) we have, in general,

1
S(co)= cr P — F(rg)F*(r) exp[+i' (rg —r)]

~ 8~'»
(e)

drdp. (74}
[1—A (,)]~+ («/2)2

We now attempt to apply Eq. (7) with P (r, ro, t) given
by (15) to the case of random walk in a space lattice.
We consider specifically the case in which a spin-bearing
nucleus jumps between nearest-neighbor lattice sites. If [1—A(y)] in the denominator is negligible com-
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pared with (cur/2)', we get

4c 1
S(oo) = Q ~

~ E(r~)F*(r) expl +iy (r~—r)$
u'7 & SX'~

8

1——p expiy r; drd8

4c ]. z

, P IF(r~)l' ——~(r~)PF*(r~+r') .
G7 7 S i=I

(75)

As an example we compute Si(co). Substituting from
Zq. (4a) we get

4c sin'01, cos'01, 1 sinOA, .cosoI,
Si(~)=

oPr ~k 7 PA;

sin0; cos0,
ei(va —

q q') (76)

vrhere n, is the angle between r; and rI, .
Thus we obtain, after the average over f,

In this expression r, = rl,+r, ; 8;, q; are the polar and
azimuthal angles of r;, and the sum over j is over all
nearest neighbors of the lattice site at rI, . In this sum
all terms for which r, =0 have to be excluded of course.
This expression must now be averaged over all lattice
orientations. We average each term in the sum over k,
independently. For each term we transform to Eulerian
angular coordinates 8, P, P where 8=8', P= q~+x/2
.and P is the azimuthal angle of r, about ri. Averaging
over the angle P we find

(sin8, cos8,e '"~)A,

= L1—
~3 (P/rP) sin'n, ] sin8q cos81,e '"I„(77)

(2~) ' Si(oo)doo= 8m+/45k'P. (81)

Substituting for e, n= ceob ', where eo is the number
of lattice sites in a unit cell, and by Eq. (71) equating
the right member of (81) to ki(0) as given by (73a), we
obtain

k'= (4/3)mnob 'l '/Q-„rg, ——'.—
(82}

where b is the edge of a unit cell. A similar calculation
gives 52 (&o) =45i (&o).

Since it is not possible to integrate (74) in the general
case, we have sought to obtain an approximate formula
which will give 5(co) with sufhcient accuracy over the
whole range of cur.

To this end we turn to the case, considered in Sec.
III(e), of isotropic diGusion for which the single jump
distance has always the value /. There are good reasons
for believing that Eq. (65) properly normalized will
meet these requirements. For the case of random walk
in a lattice the jumps are to nearest neighbors which in
many cases (e.g. , f. c.c. lattice) are symmetrically dis-
posed on a sphere. The use of Sec. III(e) approximates
this situation by allowing a jump to any point on the
sphere. Furthermore, the fact that in the lattice case
we eventually would average the result over all lattice
orientations, lends support to the isotropic approxima-
tion in which this averaging may be considered to have
already been performed in a different, if less precise,
way.

Normalization of (65) involves a proper choice of
the parameter k, which amounts to a proper choice of
the lower limits of integration for r and ro in Eq. (22).
Fortunately, the proper normalization to apply to the
lattice case can be obtained from Eqs. (71) and (73).
From Eqs. (65) and (66) we obtain

4c sin'0~ cos'0I,
Si(~)=

M 7

1 (r~1'
1—Zl —

I

~r, )
3t'

For a face-centered cubic lattice g, r~ '——115 375b ', .
rio=4, and b=&21, and inserting these values in (82)
we find

xl 1—
2r2

sin'n;
l

. (78) k =0.74335, (83)

Finally averaging over 8„, since (sin'8I, cos'8, )A„——2/15,
we get

8c 1 1 ~r~)'
5,( )= Z —1—-Zl —

l
15(o'r ~ rg' z ~ Er, )

3t2

Xl 1— sin'n,
l

. (79)

This sum which converges fairly rapidly can be
applied to find 5&(cu) for various lattice structures. For
a face-centered cubic lattice we obtain

The assumption that Eq. (65) gives a good approxi-
mation to the lattice diffusion problem may be tested
by comparing its low temperature (a&r))1) asymptote
with the exact result of Eq. (80) for a f. c.c. lattice.
For large y we may neglect the term in 1—sinx/x in
the denominator of the integrand of Eq. (66), and 6nd

G(k, y) = (4/~'r') ~" J,*'(kx) (1—sinx/x)dx/x.
0

This integration can be performed exactly, with the
result

Si(co)=98.245b '(8c/15(u'r) (80) G(k y) = (1/ ' ') (1—1/12k'l (k) —'} (84)
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Substituting (84) in (65), using k as given by (83),
and putting r4=4cb ', l= b/v2, we obtain from (65)

TABLE II. Tables of the functions G(k, y) LEq. (66)) and ik(k, y)
$Eq. (87)) (k=0.74335).

Si(40) = 98.85b (8c/154' r), G(k, y) 4 (k y)

f(k, y) =yG(k, y)+2yG(k, 2y). (87)

In Table II we have also tabulated f(k, y) as a
function of y for k given by (83).

Finally we state the limiting form of (86) for un«1
(high temperature asymptote). For small y, ik(k, y)
~3yG(k, 0). By numerical integration G(k, 0) =0.6151
(f. c.c. lattice) so that Eq. (86) reduces to

(4or«1): Ti '= 11.292y4h'I(I+1)gr/ts. (88)

V. APPLICATION

In applying the results obtained above to nuclear
spin relaxation times as determined from nuclear
resonance data, one must be sure that the relaxation is
entirely the result of the diffusion process. It is rarely
possible to be perfectly sure of this, but one can be more
confident about it in the neighborhood of the minimum
in Ti(Ti ) than well up on the asymptotes of the
T&-temperature curve. One needs therefore a way of
analyzing data in terms of the above theory in the
neighborhood of the minimum T~. It is convenient for
this purpose to express the above results in terms of
universal curves. One way of doing this is to express
Ti /Ti as a function of r/r, where r is the value of
r at Ti——Ti~. From experimental values of Ti~/Ti one
can then obtain from these curves the corresponding
values of r/r . Plots of log(r/r ) thus obtained against
the reciprocal of the absolute temperature should result
in straight lines whose slopes give the activation energy,
provided a relationship of the type of Eq. (30) holds.

which agrees with (80) to 0.6 percent. We may therefore
have some confidence in the use of (65) as an adequate
approximation to the lattice diffusion problem. The
function G(k, y) as given by Eq. (66) has been calcu-
lated by numerical methods with k as given by (83) and
is tabulated as a function of y in Table II.

Substituting (65) and Ss(o&)=45&(co) in Eq. (2), we
get (with y=-,'4or)

Ti ' ——(8rr/5)y4k'I(I+1) (r4/k'Poi)P(k, y), (86)

where

0
0.025
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.6024
0.65
0.70
0.80
0.90
1.00
1.20
1.40
1.60
1.80
2.00
2.25
2.5
3.0
3.5
4.0
5.0
6.0
7.0

10.0
20.0
30.0
40.0

0.61505
0.53804
0.50844
0.46388
0.42913
0.39965
0.37357
0.34997
0.32832
0.30831
0.28971
0.27239
0.25621
0.24111

0.22700
0.21381
0.19004
0.16916
0.15113
0.12161
0.09909
0.08178
0.06835
0.05775
0.04749
0.03963
0.02867
0.02161
0.01683
0.01100
0.00772
0.00571
0.00283
0.000712
0.000317
0.000178

0
0.03887
0.07181
0.12632
0.16936
0.20325
0.22959
0.24966
0.26458
0.27535
0.28262
0.28732
0.28981
0.29060
0.29060(na, x)
0.29003
0.28840
0.28287
0.27528
0.26662
0.24802
0.22958
0.21242
0.19687
0.18282
0.16742
0.15406
0.13236
0.11570
0.10249
0.08327
0.06999
0.06030
0.04253
0.02138
0,01427
0.01070

Graphs of Ti /Ti versus r/r can easily be constructed
with the aid of the above tables.

VI. CONCLUSION

It is hoped that the results derived here will be of
some aid in analyzing data on nuclear spin relaxation
when the dominant mechanism is of the translational
diffusion type. We have not attempted to treat certain
special diffusive processes such as ring-type diffusion
involving the correlated motion of several nuclei. For
rotational diffusion, the Bloembergen treatment is
satisfactory.
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