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I

The theory of the influence on angular correlations of per-
turbing interactions in the intermediate state is reformulated to
allow the description of the eBects of time-dependent as well as
of static perturbations. For static interactions of the nuclear
electric quadrupole moment with crystalline fields of axial sym-
metry in polycrystalline sources, attenuation factors are calculated
for the coeS.cients of the various terms in the expansion of the
correlation function in Legendre polynomials. No matter how
strong the quadrupole interaction, some anisotropy must remain
for polycrystalline sources but, for the same interaction in simple
single crystals, the anisotropy can be either undisturbed or com-
pletely destroyed, depending on the orientation of the crystal.
Fields of lower symmetry are shown also to leave, for polycrys-
talline sources, some anisotropy. Expressions for the influence of
randomly fluctuating- interactions, such as must exist in liquid
sources, are calculated and these predict arbitrarily complete

destruction of the correlation under certain conditions, but explain
the more nearly unperturbed results usually found with such
sources. For electronic shells having magnetic moments, the
influences of electronic paramagnetic relaxation and of anisotropy
of the hyperfine structure interaction are examined. An applied
static magnetic Geld in the presence of static quadrupole interac-
tions in polycrystalline sources is shown to have differing eftects
depending on the relative strengths of the two interactions.
Application of a magnetic Geld directed toward a counter cannot
reduce the disturbance of the intermediate state in liquid sources,
except under special circumstances. The influences of an applied
Geld in the presence of time dependent anisotropic hyperGne
structure interactions are discussed. Finally, the feasibility of
resonance experiments, for the precise determination of nuclear
moments in the intermediate state, is explored.

I. INTRODUCTION discussed. Particular emphasis is given to the effect of
the nuclear electric quadrupole moment of the nucleus
in solid and liquid sources. This cause of disturbance
has not been given much attention previously. In the
course of this study a few brief reports of work along
these lines by others have appeared, ' "including some
most conclusive experiments at Zurich on the effect
of the quadrupole interaction in a single crystal of
indium.

The basic theory of the effect of disturbances in the
intermediate state is reformulated in the present paper
in a manner that allows its application to both static
and. time-dependent perturbations. A particular appli-
cation of the latter type is to the eGect of electric
quadrupole interactions in liquids. A short section is
included describing the possibilities of observing reso-
nant transitions, in the intermediate state, induced by
suitable radio-frequency Gelds.

The possibility is discussed of applying the results of
this work to the measuremnt of nuclear magnetic and
electric moments. Some of these measurements would
be analogs of the experiment of the Zurich group' on
the magnetic moment of 8&(10 s secCdlii

II. GENERAL

'HE theory of the correlation of the directions of
emission of a sequence of two particles by radio-

active nuclei has been treated extensively in the liter-
ature. For references to the literature of that Geld the
review articles by Deutsch' and by Frauenfelder' are
recommended. The conclusions of those treatments are
only applicable, as was clearly recognized from the
beginning by D. R. Hamilton, if the intermediate state
of the nucleus, between the first and second emissions,
is completely unperturbed. Many angular correlations
observed experimentally are found to depend on the
physical and chemical. nature of the source. In other

'

examples of angular correlation the experimental results
also do not agree with the theoretical predictions based
on that simplifying assumption.

The eGects of perturbation of the intermediate
nucleus by interaction through its magnetic moment
with its electronic shell, the interaction responsible for
the well-known hyperGne structure in atomic spectra,
and also with applied magnetic Gelds have been analyzed

by Goertzel. ' He showed, for a hyperfine-structure
interaction, that only for an extremely short nuclear
lifetime 7.~ would the correlation be unaffected, and he
gave formulas for the calculation of the resulting corre-
lations for longer lifetimes. Alder' reformulated and
extended that treatment in a way which very clearly
displays the inQuence of the perturbation on the cor-
relation.

The present paper treats the e8ect of several mag-
netic and electric perturbing interactions not previously
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spin is coupled to the electron shell which must be con-
sidered quantum mechanically. In order to simplify
the discussion, we shall first assume that the fields
acting on the nuclear spin in the intermediate state
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(but not the nuclear spin itself) can be described clas-
sically. This is true, for instance, of applied magnetic
fields or, to a very good approximation, of crystalline
electric fields which will be our main concern. The
coupling of the nuclear spin to the field can be described

by a certain Hamiltonian K, represented by a (2I+1)
by (2I+1) matrix, where I is the spin of the inter-
mediate state. The Geld partially or completely lifts
the (2I+1)-fold degeneracy of the intermediate state B.

Goertzel shows the angular correlation to be given by

(~ IIIi I &) (f I
II2 I c) (c I &~ I

&') (&'I IIi
I ~)

W= SiS2
e, b, b', c 1—iris' (Et,—Eg )/h

In this formula, a and c are quantum numbers specifying
the diGerent substates of the initial state A and the
final state C; I b) and IV) are the eigenstates of the
Hamiltonian K in the intermediate nuclear state 8 and

Eq and Eb are the corresponding eigenvalues of K. The
eigenstates

I b) can be expressed as linear combinations
of the states

I m) which are eigenstates of the projection
I, of the nuclear spin along a certain axis os;

domain of validity can be derived simply in the follow-
ing manner. Let us first assume that no perturbation
acts on the nucleus in the intermediate state. The cor-
relation can then be written:

a, c,p, pr
(~IIIil p)(pIII2lc)(cIII2I p')(p'III2I ~)

(3)

Apart from the absence of denominators, Eq. (3) differs
from Eq. (1) by the fact that the state vectors lp)
form an arbitrary complete set in the intermediate
state 8, whereas in Eq. (1) the lb) represented eigen-
states of K. Suppose, now, that the second emission
takes place at time t exactly (the first emission being
taken as the time origin) and that the perturbing Hamil-
tonian K, which may be time-dependent, acts on the
nuclear spin during this time t. This can be taken into
account by replacing in Eq. (3), the quantities

(P III2I c) (cjH2IP') by (P IU+II2I c) (c III2UIP'), where

U(/) is a unitary operator describing the evolution of a
state vector

I
p') during the time/and U+ is its Her-

mitian conjugate. The corresponding hypothetical cor-
relation w(t) can be written

lb) =P cg„lm); (2) (&)=S,S Z ( III IP)(PIU'II I )
In Eq. (1), Zi and II2 are the Hamiltonians for the
emission of the 6rst and second radiation. The symbols
S~ and S~ indicate summations over the unobserved
features of these radiations, such as their polarizations,
and 7.N is the exponential lifetime of the intermediate
nuclear state.

Goertzel's proof is based essentially on an extension
of the Weisskopf-signer theory of natural line width.
It is a self-consistent theory in the sense that the
existence of a nuclear lifetime 7~ is a consequence of the
Schrodinger equations describing the evolution of the
nucleus as a radiating system. Although straight-
forward in principle, Goertzel s proof, even simpli6ed

by the introduction of the Laplace transform as sug-
gested by Biedenharn and Rose, ' remains somewhat
involved. Also, the domain of applicability of Eq. (1)
is somewhat restricted. First, it applies only if the per-
turbing fields are static. This requires that the nuclear
spin in the external field, or, more gem. erally, the
quantum-mechanical system formed by the nuclear
spin and its surroundings, such as the electronic shell,
have stationary energy states. Goertzel's formula
makes no provision for the perturbation of the corre-
lation by time-dependent fields such as electric fields
that Quctuate due to thermal vibrations or to Brownian
motion, in crystals or liquids respectively, or applied rf
fields. Second, Eq. (1) cannot be applied directly to the
measurement of delayed coincidence rates with finite
resolving time.

An expression applying in the above situations and
reducing to Goertzel's formula, Eq; (1), in the same

1' L. C. Biedenharn and. M. E. Rose, Revs. Modern Phys. 25,
7Z9 (195').

a, c,p, p'

X( I& UIP')(P'III I ) (3')

If the perturbing Hamiltonian K is time-independent,
U is simply exp( —iK//Ii). If K depends on t, we can still
write symbolically U= expl —(i/h) Joi K(t')dt'], where
the integral has to be evaluated according to Feynman's
prescriptions on ordered operators. "

The second radiation, however, is not emitted t
seconds after the first but rather has a probability
exp( i/r~)(dt/r~) —to be emitted between times t and
t+dt. If all coincidences taking place between fi and t2

are registered, the correlation becomes

~tg
8'= (1/r~)

~

e "'~w(t)dt
J tg

=SiS2 g (1/rir) e "'"(alIIilp)
e,p,p', c J„

X (plU+(&)III I c) (c j&~U(~) I
p') (O'IIIll ~)«(4)

If the Hamiltonian K is static, the eigenstates jb) of
K may be chosen as the state vectors I p).. Equation (4)
can then be written

W=SiS2 g (1/r~)
~

e '~'~ expLi(Et, —Eg )t/Iij
c,S,S',c 6 t1

X (~ I
IIi I &) (& I

II2 I c) (c I
II

I
&') (&'

I &i I a)d&. (5)

For $,=0 and i&= ~, Eq (5) reduc.es to Eq. (1).

"R.P. Feynman, Phys. Rev. 84, 108 (1951).
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The generalization to a nuclear spin coupled to
another quantum mechanical system 5 surrounding it,
such as the electronic shell in an atom or molecule, is
straightforward. There the Hamiltonian K contains
variables characterizing the surroundings 5 as well as
the nuclear spin. The hyperfine coupling ai J, between
nuclear and electronic moments in free atoms provides
an example of this situation. Each of the quantum
numbers a, b, c, P, and P' in Eqs. (1), (3), (4), and (5)
must now be thought of as a set of quantum numbers
describing a state of the entire system, atom or mole-
cule, rather than of the nuclear spin alone. An eigenstate
lb) of the Hamiltonian K can be represented by a
formula of the type

If) = 2 ~-'Im)
I ), (6)

fS p 7l

where m and n are the magnetic quantum numbers
specifying nuclear and electronic states, respectively.
The coefficients C „~ are elements of a unitary matrix
that depends on the nature of the problem. In the
hyperfine structure interaction of free atoms they are
the Clebsch-Gordan coefficients.

From now on, to simplify notations, we shall usually
omit summation and average signs and sum over
repeated indices.

In order to apply Eq. (1),one must know the energies
Et, and the eigenstates

l b) of the static Hamiltonian K
defined by Eq. (2) or Eq. (6). This may require the
solving of a secular equation in the more complicated
cases. The solving of the secular equation can always
be avoided if the perturbation introduced by the
Hamiltonian K is small, which, according to Eq. (1),
requires that (E& E&)r~/k b—e small compared, to
unity. If this is true, we can expand the operator
U=expL —(i/k)Ktj as

U= a —(iKt)/k —K't2/2k'P

V+= g+(iKt)/k — Kt'/ jP2+ (7)

where 8 is the unit operator. Using only the first-order
terms from the expansion, Eq. (4) becomes

tm

W= Wo —(1/r~) te 't'"dt's(i/I't )-(al H,
l p)

&&(pl& lc)(cl& lp")(p" IKlp')(p'I& l~)

+complex conjugate), .

alid fol II=0 alld f2= ~

W = Wo (rz/k) L~ (p"
I
K

I
p') (+

I
+i

l p)
& (pl H2l c) (el If2l p") (p'lrfll ~)

+complex conjugate), (8')

where 8'0 is the unperturbed correlation. It often
happens, and it will be shown to be true for perturbation
of the correlation by an electric quadrupole interaction,
that the first-order term in 7~ vanishes. Higher order
terms in the expansion of Eq. (7) must then be used.

Equation (8') shows that, when the perturbation is
small, it is sufhcient to know the matrix elements of the
perturbing Hamiltonian in an arbitrary representation
and, thus, it is not necessary to diagonalize K.

Alder4 has given an important reformulation of Eq.
(1). He has shown that Eq. (1) can be rewritten as
follows:

W= p I(ki)II(k2)III(kik2, ti) I"ii"(&i)I'*t 2"(&2). (9)
. kyk2p

In this formula the I'l, I' are ordinary spherical harmonies,
and Q& and Q2 specify the directions of emission of the
first and second radiation. The indices k~ and k~ are
even integers which obey the inequalities:

0&k, &ZI, 0&k, &2I,
0 &~ k] ~&2Ly) 0 ~& k2 ~&2L2)

where L~ and L2 are the highest orders in the multipole
expansions of the first and second radiation, respec-
tively. We need not concern ourselves with the exact
expressions for the coefficients I(ki) and II(k,). All we
need to know is that they are independent of K. The
influence of K on the correlation is entirely contained
in the third coefficient III(kik2, t4), for which Alder
gives the formula:

III (kik2, ti) = P (Ik&m'ti
l Ik&Im) (Ik2m'ti

l Ik2Im)

X[1—(i/k) (E —E„)r~g-', (10)

where the factors ( 1 ) are the Clebsch-Gordon coef-
ficients. If in Eq. (10), (i/k) (E E)r~ can—be
neglected in comparison with 1, it follows from the
properties of the Clebsch-Gordan coe%cients that

2I+1
III(kik2, p) = b(ki, k2).

2k+ 1

(A slightly different normalization of the coefficients

I, II, III which would lead to III(kik, , p) =5(ki; k~) in

the absence of perturbation would have been preferable.
However, to avoid any confusion we shall retain Adler's
definitions. )

Alder's formulas, . Eq. (9) and Eq. (10), are only
valid if there exists an axis Os such that the projection
I, of the nuclear spin on this axis is a good quantum
number; that is to say, if the operator I, commutes
with the perturbing Hamiltonian K. These formulas
are valid, in particular, if K represents the coupling of
the nuclear magnetic moment to an applied magnetic
field or of the riuclear quadrupole moment to an electric
field gradient of axial symmetry. The well-known

result, that. the correlation is unperturbed by such a
coupling if either one of the two radiations is emitted
along Os, follows immediately from Eq. (9) and Eq. (10).

We want to extend Alder's formulation to more
general perturbations. We first consider the case in
which the perturbing field can be described classically.
The formula (3') in which we replace P by m, the value
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of I, along an arbitrary axis Os, can be rewritten:

~(t) = (~j& Im)(m[U+Im")(m" [II j~)
X(c[II2[m"')(m"'[U[m')(m'[Bi[a). (11)

From Eq. (11) it is easy to show, retracing the steps
which led Alder from Eq. (1) to Eq. (9) and Eq. (10),
that w(t) can be expressed as:

it'(t) = I(ki)II(kg)III(kik2) pi») t) I'ii»(Qi) I'ig&'"(Qg))

(12)

where I(ki) and II(k2) are the same as Alder's and
III(kiki, pi», t) is given by:

III(kiki, pipi, t) = (Ikim'pi [ IkiIm)
X (Ikgm"'pi [Ik/Im") (m[ U+jm") (m"'j II [m'). (13)

If the Hamiltonian K is static and has eigenstates jb)
and eigenvalues Ei„ the unitary evolution opera, tor U
can be written

U=gi, jb)(bj exp( —iEi,t/k),

and Eq. (12) becomes:

III(kiki, pipi, t)
= (Ik,m'pi [IkiIm) (Ikgm"'p,

j Ik,Im")
X (m [b) (b [m") (m"' [b') (b'[m')

Xexp[i(Ei, —Ei, )t/h). (14)

If all coincidences are registered, the observed cor-
relation W is equal to J~" w(t)e 't'~Ct/i~ and can be
written

W= I(kl)II(ki)III(kikg, pi») Yii"'(Qi) F'~2 "(Q2), (15)

where

111(kiki)»») = (Ikim»
I
IkiIm)

X (Ikgm"'pi[Ik Im") (m[b) (b [ni") (m"'j b')

X (b'[m')[1 —~(i-ii/A)(Ei, —Ei, ))—'. (16)

Among other things, Alder's formula, Eq. (9), differs
from the more general formula, Eq. (15), by the fact
that in the latter the indices pi and pi of F'i i»(Qi) and
Fi,»*(Qi) are independent. This is to be expected. If in
Eq. (15) we choose the direction to the counter de-
tecting, say, particle one as the Os axis, only terms with
p&

——0 remain. If p2 were equal to p&, and thus also zero,
as in Eq. (9), only correlations independent of rotations
about the s axis could be described by the formulation.
This would represent a restriction on the generality of
the Hamiltonian K.

When the electronic shell must be described quantum
mechanically, the problem is handled by the same
methods. The formulas, Eq. (12) and Eq. (15), are
still valid but Eq. (13) and Eq. (14) have tobe modified
as follows:

III(kiki, p,p, , t)
= (Ik,m'p, [IkiIm) (Ikim"'p,

j
IkiIm")

X (mn [ U+[m "p) (m"'p
[ U [m'n), (13')

where n and p are electronic magnetic quantum
numbers. In the derivation of Eq. (13') the assumption
has been made that the nuclear transitions leave the
electronic shell unaffected, which is equivalent to say
that the Hamiltonians H~ and H2 responsible for these
transitions commute with the electronic variables. If
the Hamiltonian K is static, Eq. (14) must be replaced
by

III(kikg, pipi, t)
= (Ikim'pi

j IkiIm) (Ikim"'p2
j
IkiIm")

X (mn
j b) (b [ m"p) (m'"p j

b') (b' [m'n)

Xexp[(i/k) (Ei,—Ei,.)t), (14')

where the state vectors jb) are eigenstates of K, and
coefficients like (mn j b) are the C „~ in Eq. (6).

Equation (16) must be replaced by Eq. (16'):

III(kiki, pipi)

8 t +III(kiki& pipi& t)haft

r~~0

= (Ik,m'p,
j Ik,Im) (Ikim"'pi [IkgIm")

X (mn j b) (b j m"p) (m"'p
[
b') (b'

j
m'n)

X [1—(i/k) i.ii (Ei,—Ei,i)) '. (16')

It has already been pointed out that when K is the
magnetic hyperfine structure, aI. J, the coefficients

(mnjb) are the Clebsch-Gordan coefficients. Racah's
summation rules can then be used to bring Eq. (16')
to a closed form leading to Alder's formula, Eq. (33) of
reference 4, for a correlation perturbed by isotropic
magnetic hyper6ne structure. In that case, it follows
from the properties, of Clebsch-Gordan coefficients that
that pi= p& in Eq. (16'). This is natural since there is
no privileged direction in space.

III. CRYSTALLINE POWDERS

The description of angular correlations perturbed by
a static Hamiltonian K is greatly simplified if the
radioactive source has the behavior of a crystalline
powder which is an ensemble of microcrystals oriented
at random. Each microcrystal gives a certain correlation
W described by Eq. (15) where the directions of emis-
sion Q~ and Q2 are referred to a frame of reference
attached to the microcrystal. The observed correlation
W is obtained by averaging Eq. (15) over all orien-
tations of the frame of reference. This is obviously
equivalent to keeping the frame of reference axed and
averaging over the directions of emissions Q& and Q2,
keeping constant the angle iP= (Qi, Qi) between the
two counters registering the coincidences. From the
orthogonality properties of spherical harmonics, it is
easily seen that this procedure leads to the disappearance
from Eq. (15) of all terms except those for which.
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tti ——tts ——tt and ki ——k2=k. The correlation W can then
be written:

W =P, Gt,A,I'p (cos4), (17)

where the Al, are the coefficients of the expansion in
Legendre polynomials of the unperturbed correlation
g 0 and the GI, are attenuation coefEcients given by

(c) There is a quantum-mechanical coupling between
the nucleus and the electronic shell.

1
Gt, —— (Ikm'ts

~
IkIm) (Ik m"'ttt IkIm")

(2I+1)r

X (mn [ b) (b [ m"p) (m"'p
[
b') (b'

(
m'e)

Gt, = Q III(kk, tttt).
(2I+1) o

1

If instead of the integrated correlation W we consider
the time dependent expression w(t), defined in Eq. (3'),
we can similarly write: X (mst [ &) (& (

m"p) (m'"p( b') (b'[ m'tt)

where
ro(t) =Pi Gp(t)AiI'p(cosP), XexpL (i/k) (E& Ee )t$.—(22')

(19)Gp(t) = Q III (kk, tttt, t)
2I+1 o

The attenuation coefficients Gj„which contain all the
information on the perturbation of the angular corre-
lation, depend only on the intermediate nuclear state
but not on the radiative transitions to and from it.

We rewrite below the explicit expressions for the
attenuation coeScients Gj„both integrated and time

dependent, in the following cases.
(a) The perturbing static field is described classically

and has axial symmetry.

ZTN

X 1— (E E), (20)—

In Eqs. (22) and (22') r is a normalizing factor equal
to the number of degrees of freedom of the electronic
shell. If the shell has a moment I, r=2J+1. From the
expressions (20), (21), and (22) it is easy to see that
Go= 1 and that G~—+1 when all the differences E —E ~

or Eb—Eb tend toward zero.
One interesting feature of the formulas (20), (21),

and (22) is that, even when the perturbing Hamiltonian
becomes so large or the lifetime v ~ so long that
7'ttt(E, —E& )/k is much larger than unity, the attenu-
ation coeS.cients G~ with k&1 have finite limits or
"hard cores" given by the contribution of the terms for
which m=m' in Eq. (20) or b=b' in (21) and (22).

The anisotropy of the correlation is never completely
wiped out. For instance, for. axial symmetry we obtain
from Eq. (20) with no degeneracies:

GI, (lim) = P (Ikmo
~
IkIm)'= . (23)

2I+1 ~ 2k+1

G„(t)= i ) P (Ikm'ttiIkIm)'
E2I+1) m, m' o

Xexp/i (E E)t/k j. (—20')

(b) The perturbing static field is described classically
but with no restrictions on its symmetry.

1
G, = (Ikm't ~ikIm) (Ikm'"t ~IkIm")

2I+1
X (m

~
b) (b [

m") (m"'
[
b') (b'

j
m')

(21)

1
Gl, (t) = (Ikm'tt

~
IkIm) (Ikm"'tt

~

IkIm")
2I+1

X (m ( b) (bm") (m"'
~

b') (b'
~

m')

XexpLi(Ee —Ee )t/It j. (21')

This is obviously only a lower limit. If there are de-
generacies such that, for some levels, one has E =E '
for mmmm', Gi(lim) can be larger than 1/(2k+1). The
existence of such hard cores has already been pointed
out by Alder' for the case of isotropic magnetic hfs.

It is important to emphasize that the existence of a
hard core is subordinated to the following assumptions:

(a) The perturbing interactions are static;
(b) No privileged direction exists in the radioactive

source considered as a whole.

If either one of these assumptions is violated, the cor-
relation can be wiped out completely.

IV. STATIC ELECTRIC QUADRUPOLE INTERACTIONS

A. Crysta11ine Powders

An important example of the eGect on the angular
correlation of a perturbation describable by Eqs. (20)
and (20') is that of the interaction of the nuclear
electric quadrupole moment" with an electric 6eld

II H. S. G. Casimir, On the Interaction Bete'eel Atomic Nuclei
ortd Eleotrorts (De Eryen F. Bohn N.V., Haarlein, 1936),
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having an axis of threefold or higher symmetry in a
sample composed of a large number or randomly
oriented microcrystals. Such interactions in solids are
well known in nuclear magnetic resonance and in pure
quadrupole resonance. " " Separations of adjacent
levels as high as about 900 Mc/sec have been observed.
For example, the levels m= &5/2 and m= &3/2 of I"'
in the solid ICN are separated by about 750 Mc/sec.
Thus, such a perturbation could be significant even
with intermediate nuclear lifetimes as short as 10 "sec.
Axially symmetric 6elds are not the most general kind

- nor is the method of treatment limited to them, but the
calculations are simplest and results can most easily be
displayed for such fields.

'

Some features of the results
with 6elds of lower symmetry are discussed in Sec.
IV(C). The results discussed here should be directly
applicable, for example, for a nucleus in its normal
lattice site in a metal of hexagonal crystal structure.

The energy levels speci6ed in terms of the component
m of the spin along the axis of symmetry" are given by

E =
l eQ(8'V/8s')/4I(2I —1)fl 3m' —I(I+1)j. (24)

Using these values in Eq. (20'), the attenuation coef-
ficients G&(t), for the detection of delayed coincidences,
for 1 &I &3 are:

I=3'. ~

111 2
Gp (t) =——+—cospopt

5 7 21

5 20
+—cos3copt+ cos4copt

7- 21

25 10 '

+ cos5copt+ —cosScopt, (31)
21 21

1 17 30 92
G4 (t) =——+—coscopt+ —.cos3copt

9 7 77 77

6 60
+ cos4copt+ —cos5copt

77 77

192 126
+ cosSpopt+ cos9popt, (32)

77 77

1 50 23
Gp (t) =—5+—coscopt+ —cos3copt

13 33 ii
32 67

+—COS4co pt+ COS—5copt
33 33

I=1: Gp(t) = —,
' (3+2 coscopt),

I=): Gp(t)=-', (1+4 cospopt),

(25)

(26)

34 4
+ cos8copt+ cos9copt . (33)

33 ii

I=2: ~

113 2
Gp (t) = —+—coscopt

5 7 7

12 8
+ cos3copt+ cos4copt

& (27)
7 7

In these formulas, ~0 is the angular frequency equivalent
to the smallest nonvanishing energy difference or, thus,
2m times the lowest frequency of resonance that could
be observed were pure quadrupole resonance prac-
ticable. For integer I, or for half-odd integer I, re-
spectively,

1 29 12
G4 (t) =— + coscopt

9 7 7 or
cop(even) = [fI(2I 1)reQ(8PU/B—s')/Ps], (34)

~p(odd)=l:p (2 —1)ll: Q(8' /8s')/hj ( )
16 6

+ cos3copt+ cos4copt . —(28)
7 7

1 13
Gp (t) =— 1+—COScop

5 7

5

'2

10 5
+ cos2copt+ cos3copt

& (29)
7 7

1 15
G4(t) = 1+ coscopt

9 7

18 23
+—' cos2copt+ —cos3copt ~ (30)

7 7

~ R. V. Pound, Phys. Rev. 79, 685 (1950)."R.V. Pound, Progr. Nuclear Phys. 2, 21 (1952).
'4 Gordy, Smith; and Trambarnlo, Microwave Spectroscopy (Iohn

Wiley 8z Sons, inc. , New York, 1953), Chap. 5.

The quantity eQ(8'V/8z')/It is 2a. times the frequency
AvQ frequently used to describe the electric quadrupole
interaction.

As an application of these formulas, an example that
would allow the determination of an electric quadrupole
interaction may be considered. The p —p cascade of
Cd"' following Q capture in In&II studied by the
Zurich group and others' has an angular correlation
described by W(8) =1+ApI'p(cos8)+A4I'4(cos8) with

lA4l« lA&l. The intermediate state has I equal to
5/2 and a half-life of SX10 ' sec or r~= 1.2X 10 ' sec.
The ratio of delayed coincidences at 180' to those of
same delay at 54', where I'2 vanishes, should, as a
function of the delay time t behave just as 1+ApGp(t),
where Gp (t) is given by Eq. (29), provided that anumber
of conditions are satisfied. First, all Cd'" nuclei must

be in closely similar electric fields of axial symmetry.
Because a nuclear recoil plus a chemical change accom-
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TABLE I. Observed frequencies, Aug, of electric quadrupole inter-
actions of stable nuclei in representative compounds.

panies the E capture, it is not safe simply to assume
that the symmetry and uniformity pertaining to the
indium of the source would app]y for the Cd"' daughter.
Hovrever, the beautiful experiment of Albers-Schonberg,
Hanni, Heep, Novey, and Scherrer with a single
crystal of indium show that, for that lattice, the
daughter element does remain in the indium lattice site
and, thus, a polycrystalline metallic indium source
would satisfy this condition.

The second condition is that ~0 must not be much
smaller than 1/r~ in order that coincidences be still
observable with a delay time as large as 2s./~s. This
condition is also satisded by the indium metal source,
as evidenced by the Zurich experiments and those of
SteGen, ' in that the time-integrated correlation is
severely perturbed by the crystalline 6eld.

Finally, the resolving time of the coincidence circuits
must be much shorter than 2~/Mp, ol, thus, Mp cannot
be determined if it is too large. With a resolving tim
not negligible compared to 2s./are, some smearing ou
of the function Gs(t) would result. The function Gs(t),
Eq. (29), is plotted in Fig. 1. The time of the 6rs
maximum is 27t/top or 407I./36vq.

From such a measurement the magnitude of th
electric quadrupole moment (but not the sign) coul
be determined if the dificult problem of determinin
the value of (O'V/fis') could be solved. In this respec
the problem is less easy for the In"' source than fo
some others because, in spite of remaining at an indiu
lattice site, the Cd"' is both an impurity and in a
unknown electronic state. These additional complexitie
could be avoided by the use of 48-min Cd'" in metalli
cadmium as a source instead, which has the same inter
mediate state. Even in the pure metal, however, reliabl
values for O'V/cia' are not available.

A more informative example would be an elemen
that has a stable isotope of spin higher than ~. For it,
by rf resonance methods, the electric quadrupole inter
action of the stable isotope in the same chemical for
as used in the source could be determined and, thus,

bt g, Mc/sec ReferenceCompoundNucleus

D2
Li
L17
Qll
N14

Na"
AP'
Cu63
As"
Br"
Sb123
I127

Bi'09

0.30
0.0015
0.066
4.87
3.39
0.33
2.39

52
232
765
489

3037
669

' Li2SO4 D20
LiAI(S103)2

LIAl(SIO, ),
a(CH3),
ICN
Na2Ã08
A1202
Cu20
As406
Br2
SbC13
ICl
Bi(C685) 3

b
b

C

d
d
C

C

C

C

C

C

a R. V. Pound (unpublished).
& N. A. Schuster and G. E, Pake, Phys. Rev. 81, 157 (1951).
o See Gordy, Smith, and Trambarulo, Micro7/trave Spectroscopy (John

Wiley R, Sons, Inr. , New York, 1953), Appendix, Table A.6.
~ See reference 12.

I.Q

0.75

0.50
Gp (t)

(I = 5/2)

0.25

-0.25 2.50.5 1.0 l.5 2.0

Fro. 1.The attenuation coeflicient Gs(t) for I=5/2 as a
function of coot/s. '6 Battey, Madansky, and Rasetti, Phys. Rev. 89,' 182 (1953).

'7 Beling, Feld, and Halpern, Phys. Rev. 84, 155 (1951).
's A. Abragam and R. V. Pound, Phys. Rev. 89, 1306 (1953).

's Rolf M. Steffen, Phys. Rev. 89, 903 (1953); Phys. Rev. 90,
1119 (1953).

the magnitude of the ratio of the electric quadrupole
moments established.

The eGect of the static quadrupole interaction, in
powdered sources, on angular correlations of the usual
type in which the resolving time is longer than r& and
delays are not used, is given by attenuation factors G&.

These are found from the functions G&(t) of Eqs. (25)—
(33) by replacing all quantities of the form cosn~st by
[1+(ntosrtv)'$ ' In th.e limit cosr~(&1, the attenuation

m factors approach unity, or the correlation is undis-
turbed. For v~=10 ' sec, Av@ must, for this, be small
compared to 1 Mc/sec. As examples of what might be
expected, Table I lists electric quadrupole interactions
in solids determined by rf resonance. It is reasonable to
assume that the-quadrupole moments, and, so, the
quadrupole interactions of low-lying excited nuclear levels
would be of similar magnitudes. Thus an eGect from this
interaction must be expected to be present in a large
fraction of cases of observation of angular correlations
from solid sources.

The situation obtaining in the source for many
angular correlation measurements is complicated by'

recoil of the nucleus in emissions preceding the forma-
tion of the intermediate state. For example, in the
n —p correlation of radio thorium observed by Battey
et al. '6 and by Beling et al. '7 one cannot ascribe any
properties of the symmetry or the chemical bonding of
the primary compound to the surroundings of the
intermediate nucleus because the recoil energy of
approximately 100 kev from the a decay is certainly
sufhcient to move the nucleus many atomic radii
through the lattice. One would, then, expect some dis-
persion in the values of coo from nucleus to nucleus and,
thus, to be able only to observe some average eGect.
Nevertheless, as reported earlier, " application of the
appropriate formulas, G2 and G4 for I= 2, to the results
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shows that a value of coor~ a little larger than unity
brings the results into agreement with the 0-2-0
scheme predicted on other grounds for that cascade.
Indeed, convincing evidence of the validity of this
explanation of the original discrepancy is the con-
sistency of the experimentally determined values
G~=0.42 and G4 ——0.50 with G2=0.40 and G4=0.52
obtained for cuor~ taken as 1.8. This test diGerentiates
much more clearly from magnetic perturbations for
I=2 than it does for half-odd integral spins because,
for I=2, G4&G2 for all values of odor~. For other spins
the contrasts between the relative attenuations from
the two eGects are less marked. A value for Apg of 160
Mc/sec, by no means unreasonably large, is required
if r~ is taken as 1.5&10 8 sec.

Extensive studies of the dependence of the correlation
on the nature of the source have been made by Aeppli
et al."and by SteGen" for the p-p cascade of the Cd"'
daughter of In'". It seems likely that the ability to
obtain a correlation near to the unperturbed one (the
anisotropy observed later by the Zurich group with
one counter along the hexagonal axis of the single
crystal of indium' must be considered more completely
unperturbed) from a source of In"' embedded in
metallic silver" is a result of the indium, and its cad-
mium daughter, being situated and remaining in a
vacancy of the cubic silver lattice, even though some
recoil energy is imparted in the E' capture. Consistent
with this is the observation that thin films did not give
as large anisotropies as thick, which may be the result
of the existence of considerable lattice strain in thin
films, with consequent departures from cubic sym-
metry. The retention of the Cd"' with a recoil energy
probably smaller than 1.5 volts at a lattice site, or else
its capture in a neighboring one, in both a silver and an
indium lattice must be considered demonstrated by
these experiments.

It is not entirely safe to assume that the quadrupole
effect is absent even if the nucleus is known to lie in a
cubic lattice at a good lattice site. Studies of nuclear
paramagnetic resonance of iodine and bromine in
crystals of KI and KBr have revealed that these ions
are extremely sensitive to the symmetry of their sur-
roundings. " Even in the most perfect single crystals
obtainable, lattice strains probably resulting from a
certain density of dislocations, cause a mean squared
electric quadrupole interaction of many kilocycles.
Much larger interactions, perhaps of the order of a
megacycle/sec, are found in powders. Metallic ions
seem less sensitive to this source of interaction.

The nuclei most likely to be observable in predictable
environments would be reasonably long lived isomers
from which a y-y correlation can be studied. With such

' Aeppli, Bishop, Frauenfelder, Walter, and Zunti, Phys. Rev.
82, 55G (i95i).

~ G. D. Watkins, thesis, Harvard University, 1952 (unpub-
lished); G. D. Watkins and R. V. Pound, Phys. Rev. 89, 658
(1953).

nuclei, the chemistry of preparing a source can be
performed with the isomer itself, and, unless it is very
energetic, the recoil from the first y emission would be
insufFicient to break a chemical bond or to displace the
nucleus from its lattice site. Furthermore, the electronic
shell should remain unexcited for such nuclei for which
the p ray is not internally converted. An n-y reaction,
in a metal, that produces such an isomer could be used
directly, although the recoil energy in the (e-p) reaction
could certainly be sufhcient to displace the nuclei.
Annealing or melting and refreezing the metal should
restore the normal metallic lattice. Such a simple
remedy may not work for compounds, especially for
molecular crystals.

It has already been noted that, even for coor~ &&1, no
term in the correlation is completely destroyed by the
axially symmetric quadrupole interaction in the poly-
crystalline source. This means that the mechanism
described, if the compounds are truly randomly oriented
powders, cannot explain the results of the Zurich group
and of SteGen for several solid compounds where the
correlation was found to be much smaller than the
hard core for G2.

The attenuations measured for coincidences with
resolving times longer than r~ can, of course, be used
to determine (coos~)' and, thus, if r~ is known, d.ro.
For coor&) 1, the functions G& are nearly reduced to the
hard cores and the accuracy of determination of
(coom~)' is correspondingly poor. For large a&or~ the
delayed coincidence technique would be much superior
if suKciently short resolving time can be obtained.

The failure of magnetic fields, directed toward a
counter, to restore the correlations perturbed by quad-
rupole interactions can be understood in terms of the
discussion in Sec. VI(B).

B. Single Crystals

In discussing the inhuence of the quadrupole inter-
action in single crystals, we restrict ourselves for
simplicity to cases where all the radioactive nuclei
experience 6elds of threefold or higher symmetry, iden-
tical in direction as well as in magnitude. It is evident
from Eq. (10) and it has been demonstrated experi-
mentally7 that, if the axis of symmetry of such a crystal
is parallel to the direction of emission of one of the
radiations, the correlation is the same as if no quad-
rupole interaction were present. If the axis of the crystal
is perpendicular to the plane of the counters, the corre-
lation can be written

(36)
where

B„=I(ki)II(k2)a(ki, p)u*(k„p) (Ikinz p iIkiIm)
)& (Ik2m'p

~
Ik2Im)L1 —ice,r~(m' —m")j-', (37)

and, of course, no summation is made over the index p,.
In Eq. (37), the quantities u(k, p) are defined by

Yp&(0, P) =a(k, p)e'»
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The quantity &u, is cats, defined by Eq. .(34) for integral
I and is (&os/2) of Eq. (35) for half-odd integral I.

Interference terms with ki Wks exist in Eq. (36). No
simple relationship can be established between B„and
the analogous coefIicient b„of the unperturbed corre-
lation, given by

b„=I(k)Il(k) i a(k, 1i) i
'(2I+1)/(2k+1). (38)

The situation is more complicated than when the per-
turbation is entirely caused by a magnetic field since
then the terms with k&&k2 vanish. To interpret the
results of an experiment which intends to determine co,
or Av@ by comparing the experimental values of b„and
8„, the coe%cients II & and IIr~ must be known sepa-
rately, rather than only through their diagonal product
II,IIJ, given by a measurement of the unperturbed cor-
relation. In general, this requires an accurate knowledge
of the multipole expansion of both. the first and the
second radiation. The requirement may prove dBBcult
to meet when one of them or both are mixtures of dif-
ferent multipoles. The interference terms disappear, and

8„2k+1
(Ikm'1i

(
IkIm)'L1 —i&a,r~(m' —m")j ', (39)b„2I+1

only when I(ki) and II(ks) vanish for ki and ks larger
than two. This condition is more restrictive than the
requirement that the expansion of the unperturbed
correlation contain no harmonics higher than the
second. The present condition is satisfied only when the
spin I is smaller than two or when both radiations are
dipolar. The diKculty of interferences can, of course,
always be met by taking averages of correlations
measured with different crystalline orientations.

C. Rhombic Fields

We now brieQy consider the effects of quadrupole
interactions of lower than axial symmetry, limiting
ourselves to sources in the form of crystalline powders.
The attenuation coefficients G& are given by Eq. (21).
In order to apply that equation we must know the
eigenstates and eigenvalues of the general quadrupole
interaction, as it is given, for instance, by Eq. (15) of
reference 12.

Symmetry considerations somewhat reduce the order
of the secular equations to be solved. The maximum
order of these equations is I+—„if I is a half-odd integer,
(I/2)+1 if I is an even integer, and (I/2)+ (1/2) if I
is an odd integer. "If I is an, integer, the ~m degeneracy
of the axial case is lifted but if I is half-odd, an essential
so-called Kramers' degeneracy remains. The two de-
generate states

~
b) and

~
b) are sometimes called

Kramers' conjugate and satisfy the condition

(b~m)=( —m~b) (40)

For any spin, the only nonvanishing matrix elements
of the quadrupole interaction K are (m~K~m) and
(m~ El m+2) if one of the principal axes of the electric
field is chosen as the s axis.""As a consequence, if an
eigenstate ~b) has components along two states ~m)
and ~m'), m —m' is even; if two Kramers' conjugate
states have components along two states m and m',
respectively, m —m' is odd.

Our main interest in considering 6elds of lower than
axial symmetry is to find out whether such interactions
could lead to very small values of the hard cores and
thereby explain the very small attenuation coefIicients
Gl, observed in some crystalline compounds such as
indium chloride. "'9 The hard core, having been defined
as the limit of GI, when the strength of the interaction
tends toward inanity, is given, for integral spin where
there is no remaining degeneracy, by Eq. (21) taking

)I,
)

t'
G (»m) =

I
1(Ikm'1il»Im)(»m"'pl»Im")

E2I+1J

y (m
~
b) (b)m") (m"'~ b) (b

~

m') (41.)

For half-odd integral spins, terms of the form

(Ik m'~1iIkIm)(Ik m"' iiiIkIm")

)& (mtb) (b) m") (m'"
( 5) (5~ m') (42)

would seem to contribute to Gs(lim). However, to each
term of the sum (42) corresponds another term ob-
tained by replacing m by —m', and m' by —m. This
latter term is equal and opposite to the former because
of the properties of the Clebsch-Gordan coe%cients.
Equation (41) is therefore valid for all I, integral or
half-odd integral.

The values of Gs(lim) for a few values of I are given
below '.

I=1;Gs (lim) = s. It will be remembered that the value
of the hard core for an axially symmetric field was —,'.
Although the degeneracy is completely lifted G&(lim)
does not reach the value 1/(2k+1), equal to —,'.

I= s; Gs(lim) = s. This is the same as for a field of
axial symmetry.

I=2; Gs(lim) =G4(lim) =2/7. This can also be
written 10/35 or 18/63. For axial symmetry Gs(lim)
and G4(lim) were, respectively, 13/35 and 29/63.

I=5/2. Here the hard core depends on the amount
of the asymmetry which can be characterized by the
coefficient g defined in reference 12 or 22. A cubic equa-
tion must be solved to find the eigenstates ~b) of the
quadrupole interaction. For small g, perturbation for-
mulas can be used to determine the states ~b) and Gs
is found to be

1 1373 1
Gs(lim) =—+ r)'+0(r)4)=+0.24rP.

5 210&27 5

"King, Hainer, and Cross, J. Chem, Phys. 11, 27 (1943). e' R. Bersohn, J. Chem. Phys. 20, 1505 (1952).
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For maximum anisotropy ~rl~ =1, the cubic secular
equation reduces to a quadratic and a linear equation. "
Thus, for (g( =1,

Gs(lim) =443'/1715 0.258.

It is seen that Gs(lim) is larger than the value s of
axial symmetry. An asymmetric field therefore cannot
explain the very low values of anisotropy observed in
the solid indium compounds.

The following sum rule can be deduced from Eq.
(41):

Qy(2k+1) Gg, (lim) =2I+1. (43)

In this formula both odd and even k should be counted.
However, if I is integral, it follows from the properties
of the Clebsch-Gordan coeKcients that the quantities
Gq(lim) vanish for odd k. For that case the summation
in Eq. (43) can be limited to even k.

D. Free Molecules and Atoms

We now briefly consider the problem when the system
producing the inhomogeneous electric in the quadrupole
interaction must itself be treated quantum mechani-
cally. This is true for free atoms or molecules and would

apply to gaseous radioactive sources. The reason why,
in solids or liquids, the pure quadrupole interaction can
be treated classically as far as the electronic shell is
concerned, is that, there, the orbital degeneracy of the
shell is.lifted. The shell can still have degrees of freedom
connected with spin degeneracy in a solid but the electric
field does not depend on these. Classical treatment is
not valid in the presence of magnetic hyperfine struc-
ture.

The interaction between the nuclear spin I and the
gradient of the electric field can be represented by the
usual operator,

3(I J)'+-s, (I J)—I(I+1)J(J+1)
K=a

2J(2J—1)2I (2I—1)

where J is the angular momentum of the electronic shell
of the atom, if the gas is monatomic, or that of the
electronic shell plus the rotational moment in a gaseous
molecule.

For atoms, where the total angular momentum P is
a good quantum number, Goertzel's treatment of the
correlation and Alder's formulas (33) and (34) of
reference 4 remain valid. There is only a trivial change
in the energy diGerences E&—Ep".

The same statement applies to molecules if F=I+J
remains a good quantum number; that is to say, if no
other nuclear spins in the molecule are coupled to the
moment J. (The magnetic couplings between the dif-
ferent nuclear spins themselves are always much smaller
than the qua, drupole interaction and can be disregarded. )
If this is not the case, the treatment is more compli-
cated. The general formulas, Eqs. (15) and (16'), have
to be used.

It is important to point out that these considerations
are valid only if the collision time in the gas is so much
longer than the nuclear lifetime ~~ that the gas mole-
cules can really be considered as isolated during the
decay process. Incidentally, this also applies to
Goertzel's treatment of the atomic hyperfine structure.

We have seen that observations of correlations per-
turbed only by quadrupole interactions do not give
the sign of the quadrupole interaction. The sign of the
nuclear quadrupole moment is even more important
than its magnitude for an understanding of nuclear
structure. If a measurement of perturbed correlation in
a free atom, where magnetic and quadrupole interaction
are both present, could ever be so precise as to detect
the departure from the Landh interval rule due to the
presence of a quadrupole interaction, the relative sign
of the magnetic and quadrupole moments (or the ab-
solute sign of the quadrupole moment if the sign of the
magnetic moment is known) could be obtained. Such
an experiment seems hardly feasible in the present stage
of experimental techniques. A possible suggestion of
such an experiment is made in Sec. VII.

V. TIME DEPENDENT ELECTRIC QUADRUPOLE
INTERACTIONS

Several experimenters have found that liquid sources,
usually aqueous solutions, give much more nearly the
expected theoretical correlations than do solid sources
of the same chemicals. Ste8en has found that molten
metallic indium, for the y-y scheme following K capture
in In"

y gives nearly Ave times the anisotropy of the
'

solid metal. " The improved performance of liquid
sources has been attributed to rapid disappearance of
magnetic electronic states previously invoked to explain
the disturbance in solids, or to the smallness of electric
fields in liquids. In terms of the eGect of the nuclear
electric quadrupole moment an explanation that can
reveal the limitations as well as the utility of liquid
sources can be constructed.

Liquids possess, instantaneously, certain local con-
6gurations characteristic of their particular composition
not very dissimilar to local configurations in solids. The
work of Bernal and Fowler on x-ray diBraction of
water, " for example, demonstrates that a pseudo-
crystalline structure exists in the liquid state. On the
other hand, it is clear that no given configuration, and
so no preferred direction, can exist for very long at the
position of any particular constituent of the liquid. The
local configuration of a given nucleus, and so any
electric quadrupole interaction resulting from it, is in
a state of continual change, in a random manner.
Particularly significant is the resultant continual reorien-
tation of the direction of the normal axes of the in-

teraction relative to external coordinates. If many
uncorrelated directions of the axes occur in the nuclear
lifetime 7~, we can say that the nature of the source

"J.D. Bernal and R. H. Powler, J. Chem. Phys. I, 515 (1933l.



ANGULAR CORRELATIONS

imposes no preferred direction at any particular nucleus
and the direction of the first particle in the cascade
decay can, then, be taken as an axis of quantization of
the nuclear spin.

Under this condition, detection of the first decay
establishes the probabilities of occupancy of the various
intermediate substates relative to the axis to the
counter at the instant of the first decay. Then, as usual,
the angular correlation function is just the angular dis-
tribution of the second decay from such a distribution
over the intermediate substates, if they are not dis-
turbed before the second decay. However, because of
the Brownian motion and its accompanying Quctuating
electric quadrupole interaction, transitions between
these substates can result. Eventually, the nucleus
must become likely to be found in any one substate
with equal probability. Thus, if 7~ were suKciently
long, the second emission would become isotropic and
the correlation would be completely destroyed. The
mechanism described is the direct analog of that giving
rise to thermal equilibrium between spins and the
liquid in nuclear paramagnetism. (The corresponding
efFect is usually far less rapid in solid sources and, in
them, it would usually be negligible in any of the
lifetimes r~ we are considering. ) Although the effect
of the random fluctuations in direction of the axes of
the interaction would be to reduce its inAuence as
compared to a static one of the'same magnitude, unlike
the static efFect, no recovery after a time delay and no
hard core should exist.

K =Q„Tmtj, (X)T2I'*(I„I„,I,), (46)

A. Formal Treatment

The time dependent angular correlation w(t) in
liquids can be obtained from the general formulas,
Eqs. (12) and (13). Choosing as the z axis the direction
to the first counter makes p, & equal to zero and, ac-
cordingly, p2 is also zero because there is no other
privileged direction associated with the source. Equa-
tions (12) and (13) become

w(t) =I(k,)11(k,)III(k]k2p 00, t) I'~io(0) I"a2'(Q2)) (44)

and

III(kik2, 00, t) = (IkirNO
~
IkiIm)

X(Ik2m'0iIk, Im')
(
(m'( U(t) [ie) (' (45)

where [ (m'( U(t) [m) i' is the probability W (t) that
if the nucleus were in the state m at t=0, it would be
in the state m' at the time t. Equations (44) and (45)
may also be used to describe the behavior of a crystalline
powder. However, in that case it is more convenient to
use Eq. (21) where the z axis of quantization is referred
to the axes of each microcrystal.

The Hamiltonian K describing the quadrupole inter-
action of the nuclear spin. with its surroundings can be
most generally written

J((o)= I e '"'G(r)dr, (4g)

may be termed the spectral density of the random func-
tion f. We define somewhat loosely the correlation time
r, as the time r such that for r = r„G(r) is appreciably
smaller than G(0). One often assumes

G(r) =G(0)e-~'~'". (49)

As a consequence of the above assumption of random
rotation of the axes of the electric field,

(Tm&(X) T2&*)A„——d'5(p, tl, '),

where the constant d' is independent of p, . It then
follows from the properties of the tensor operators that

m m m m '

Ay

=b'8(m' m") (I2m'tI,
~
I2Im)' (50)

With the usual notations, the constant b' is given as

1 (I+1)(2I+3) (O'V) '
(0)' I, I, (»)

80 I(2I 1) E Bs"i—
where s' is the direction of largest field gradient in coor-
dinates moving with the Ructuation. The Hamiltonian
K induces transitions between different magnetic sub-
states of the nucleus. According to first-order per-
turbation theory the probability of transition in a time
t from a state m to a state m', for a single spin, is given

by

pt
W„„(t)= (1/It') K (t') e '""""dt', (52)

Jo

where co is the angular frequency corresponding to
the energy difFerence between the two states m and m'

in the absence of the perturbing random field.
In order to display the properties of the random

~ G. Racah, Phys. Rev. 62, 438 (1942).
~5 See, for example, Ming Chen Wang and G. E. Uhlenbeck,

Revs. Modern Phys. 17, 323 (1945).

where the functions T2I" are tensor operators defined by
Racah'4 and the quantities X are parameters describing
the local electric field at the nucleus. In accordance with
the above model for a liquid, they are randomly Quc-

tuating functions of time.
The ensemble average, taken over all the nuclear

sites at a given time, given by

G=(f(t)f*(t—r) )A (47)

we call the correlation function of the random function
f. ' If the ensemble is stationary, this quantity is inde-
pendent of t and can be written G(r). The function G(r)
can be shown to be a real, positive, even function of 7.

decreasing to zero with increasing
~
r~. For r=0,

G(0) = (~ f ~
')A, . The Fourier transform of G(r),
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functions E (t') we rewrite Eq. (52) as

(t) = (1/A')
~t

dt' dt"E „.(t')
0

W„„.(t) = (1/1't') ) dre
0

K„(t')K„„"(t' r)dt'—

dze—s~mm r

(t&&) &
iv—~~'(i' i")-

Introducing t' —t"=7-, this can be rewritten as

(53)

(W „(t))A„——(1/1't') t2(i E„„i ')A, . (61)

As a consequence, for times much larger than ~, but
still so small that (~E ~')tr, /t't'&&1, the time de-
pendent correlation w(t) for a liquid can be obtained
by expanding the suitable formulas of Eqs. (25)—(33)
as a power series in t and replacing in the first term,
which is the square, t by 2tv, This is equivalent to
replacing 7.~' by r~r, in the series expansion of the time
independent correlation

In Eq. (56), for t«r„on the other hand, the quantity
(r) in both integrals can be replaced by G(0)
=(~Em~ ~')Av. For cd =0, this is precisely the case
of the crystalline powder (cu ~ is the distance between
levels m and m' ie the abseece of the quadrupole inter-
action) which should obviously correspond to an
infinitely viscous liquid (long r,). Equation (56) gives
then

t+r

E (t')E=.*(t'—r)dt' . (54)
Jo W= exp( —t/sir)ii (t)dt/r , ir

~0

+ dre '"""(t+—r)G~~ (r), (55)

where

G„„(r)= (E„„(t')E„(t'—r) )A, .

Equation (55) is equivalent to

t

(W (t))A, = (1/A') t I e '"" "G„„.(r)d-r

If we take the ensemble average of Eq. (54), we get

pt
(W (t)) = (1/ft') ' dre '"" "(t r)G„„(r—)

"0

and explains why in many cases liquid sources give
better correlations than solids.

For the intermediate situation between Eq. (60) and
Eq. (61), when t is neither large nor small compared
with r, but ( ~

K ~
~
')A,tr, /I't ' is still small, the transition

probability is given by the general formula, Eq. (56).
If (W )&„, given by Q of Eq. (60) multiplied by t,

is not small compared with unity, it is not correct to
use that expression for (~ (m~ U~m')(')A„ in Eq. (46).
(W )A must then be calculated as follows. If the
probabilities of occupancy of the different states ~m)
are called P„(t), these quantities obey the usual dif-
ferential equations for a relaxation process,

—
2J cos(a&~~ r)rG~~ (r)dr . (56)

0

If t is large compared with the correlation time r„ the
ratio of the two integrals is approximately t/r„and
the second can be neglected compared with the first.
In the first integral, the integration limits can be
replaced by + and —~. The result is

(W (t) )A„——(t/1't') J(o)„). (57)

A transition probability per unit time can be defined as

Q- =(W- (t))"/t= (1/~')~- ( —) (»)
Taking G(r) as G(0) exp( —

~

r ~/r, ), the result becomes

2r, G ~ (0) 2r, (~K~~
~

)A,

(59)
fi2 1+((o r,)2 k2 1+(~ r,)2

Frequently for nonviscous liquids co r,((1 and

(62)

5dC
i(adam' tG

Ns'
(63)

to Eqs. (62) can be jusified, formally, using arguments
analogous to the derivation of Eq. (57) from Eq. (52).

The function W (t) is now defined as the solution
I' (t) of the system, Eqs. (62), corresponding to the
initial conditions P (0)=8 . From Eqs. (50), (51),
and (60) it is found that

where Q„~ are the transition probabilities per unit
time defined in Eqs. (59) and (60). In order for the
system of equations described by Eq. (62) to be valid,
the condition that Q ~ r,((1 must be satisfied. If it is,
the passage from the ordinary quantum-mechanical
equation for the probability amplitudes C,

Q- = (2r /&')(IE- I')". (60) Q„.=a(12m'ti
~
I21m)', (64)
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where
r, (I+1)(2I+3) t'eQ ) ' ) O'Vy

40 I(2I—1) & k l E Bs")

The time-dependent attenuation coefficients are

GA, (t) =e-"'

and the integrated coefficients are

(72)

1dP
+1=P (I2m'p

~
I2Ire)'P

a dt mI
(66)

Remembering that P (I2m'p
~
I2Im)' = 1, (62) can be

written:

B. Applications of the Results for Liquids

(73)

1
(W (t))A„—— P (Ikm0

~
IkIm) (I mk' 0(IkIm')

2I+1 ~

X (2k+1)e '&" '&'. (69)

Equation (69), introduced in Eq. (45), shows that
III(k~k2, 00) vanishes unless k~ ——k2 and

2I+ 1
III(kk, 0) = e "",

2k+1
(70)

k (k+1)L4I (I+1)—k (k+ 1)—1$
X~.— (71)

I2(2I 1)'—
~6 The procedure used to calculate the inverse time constants

'AI, is a generalization of a procedure that can be used to calculate
in liquids the inverses of the well-known relaxation times T& and
T2 of nuclear paramagnetism. One, then, is normally concerned
with the rate of approach to a Boltzmann distribution over the
substates m) from a distribution initially uniform, because an
applied 6e d splits the substates. The procedure used here relates
to the inverse process of the disappearance of nonuniform dis-
tributions. If coL, is 27'- times the Larmor frequency g&II/k and if
co&,r,((1., T1= T2 and the value obtained from Eq. (71) by putting
k=1 is just (T1) ' or (T2) ' for nuclei of spin I in a liquid when
the relaxation results from Quctuating electric quadrupole inter-
actions. An analogous calculation for relaxation by local, con-

If the substitution P (t) =P e "I' is made,

(1—X/a) P =P (I2m'p,
~

I2Im)'P . (67)

Equation (67) is an eigenvalue linear system of the type

AX= yX,

where X is a vector with (2I+1) components. The
matrix element 2 „ is (I2m'pjI2Im)', and the eigen-
value is p = (1—X/u).

Using Racah's formula for the reduction of a product
of three Clebsch-Gordan coefficients, it can be shown
that the (2I+1) eigenvectors V&"& of Eq. (67) are given
by

V &"= (IkmO~IkIm),

and the eigenvalues pI, are

pg ——(2I+1)W(I2kI/II), (68)

where 8' is the Racah function.
The function (W „(t))A„ is then easily seen to become

The foregoing results appear capable of explaining
for at least some cases the discrepancies remaining
between the angular correlations expected and those
observed from liquid sources. As an example, reported
brieRy previously, " the p-p correlation of Pd"' fol-
lowing the 2.44-Mev P emission of Rh"' shows, from
the results of Kraushaar and Goldhaber, "relative to a
0—E2—+2—E2—+0 decay scheme, a G2 of 0.779 and a G4

of 0.864. The values of the quantity

$(eQ)'((O'V/as")')A„/h, '$r~r,

required to give- these values of 62 and G4 are, respec-
tively, 2.66 and 2.53. The consistency of these two
independent determinations of the same quantity seems
to be strong evidence for attributing the discrepancy
to this cause.

Neither 7-~ nor 7., are known for this example. From
nuclear paramagnetism and from Debye's studies of
polar liquids, it seems reasonable to take a value of
about 10 "sec for the v, of water molecules themselves
in dilute aqueous solutions at room temperatures.
Sufficient information to allow estimates of values for
r, appropriate to the ions in the solution is not available
but it might be supposed that the same 10 "sec applies
for the Pd"' ion or atom. If the lifetime 7-~ is taken as
less than 5)&10 ' sec, then Avo'=eQ((8'V/Bs")') l/k
must be larger than 1160 Mc/sec. Any interaction of
that scale would; in the solid state, cause attenuation
nearly to the "hard core, " thus explaining Steffen's
failure to observe diGerences among various solid
sources of diGering composition. "If the nuclear lifetime
were only 5)&10 ' sec, a three times larger Avg' would
be required to explain the liquid results and the remark
about solid sources still holds. It should be kept in
mind that the Zurich group s ability to obtain an essen-
tially unperturbed correlation from Cd"' in thick silver
films probably results from the fitting of the parent
In"' into and retention of the daughter Cd"' at a

tinuously reorienting, magnetic interactions, such as an I J
interaction in a tumbling molecule, can easily be made by using
1 for 2 in Eq. (46), Eq. (64), and following, and using k=1 for
relaxation of magnetic moments or k=2, 4, ~ ~ ~ for e6'ects on
angular correlations. The expression for the paramagnetic relaxa-
tion X&= (TI) ' derived from Kq. (71) for quadrupole relaxation
is identical to that found by R. K. Wangsness and F. Bloch, Phys.
Rev. 89, 728 (1953), using a different approach."R.V. Pound and A. Abragam, Phys. Rev. 90, 903 (1953)."J.J. Kraushaar and M. Goldhaber, Phys. Rev. 89, 1081
(1953).

~ R. M. Steven, Phys. Rev. 86, 632 (1952).
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normal lattice site of the cubic silver lattice. That
evidence is not sufhcient to allow the inference that
other "double stream" metal sources would have similar
qualities in general, independently of the nature and
energy of the decay from parent to daughter and of the
chemistry of the three metal atoms involved. Relevant
to the difference is the fact that the Cd"' nucleus has
much smaller recoil energy than that of Pd"'.

As to the magnitude of Avg', probably greater than
1160 Mc/sec, the value of 2500 Mc/sec for Ave for I"I
with a single pure p bond may be compared. 30 The elec-
tronic state of the Pd" is not known but it is unlikely
that ((O'V/Bs")') *'is as large as that of the P electron
in iodine. Thus it seems likely that the magnitude of Q
is at least as large as 0.2&(10 '4 cm'.

If the magnitude of the electric quadrupole interac-
tion is such that 2xhv@ v,))1, in spite of limitations on
the realm of validity of the quantitative formulas, the
behavior of the factors GI, as functions of r, can be
seen qualitatively on physical grounds. They start
from unity and decrease toward zero as z, increases
from zero since XI, is proportional to r, . For ~, of the
order of magnitude of r~, the values of the Gq begin to
rise again and approach the "hard core" values of the
static quadrupole interaction as v-, becomes large com-
pared to r& because the liquid is then indistinguishable
from a crystalline solid except, perhaps, with respect
to the uniformity of the magnitudes of the interactions.

Measurement of the attenuation factors G& for liquid
sources can be seen to allow determination of Ave'(r~r, )&.

If v~ is known, a determination of v-, would result in
evaluation of Av@'. Some information on r, can be
found from studies of nuclear paramagnetic resonance
of stable isotopes in similar solutions or liquids because
of the analogy between the mechanism causing the
attenuation GI, and that producing the line width and
the thermal equilibrium in paramagnetic resonance.
This comparison could be safely made only for y-y
cascades not immediately preceded by a chemical change
like that accompanying E capture or n or P emission,
because the chemical behavior must be known to be
identical for the isotopes compared in the two experi-
ments. If a stable isotope of known quadrupole moment
is available for the comparison, a direct elimination of z,
and ((O'V/Bs")')„„& can be made to obtain the ratio of
the magnitudes of the quadrupole moments of the short-
lived intermediate isomer and of the stable nucleus.
Unfortunately the scale of eGects that make the attenu-
ation coeKcients GI, appreciably less than unity is such
as to make the paramagnetic resonance very dificult to
detect unless either v~ is quite large or the quadrupole
moment of the isomer is much larger than that of the
stable isotope.

The result to be expected from the application of a
static magnetic 6eld to liquid sources that show some
attenuation because of the rapidly Quctuating electric

30C. H. Townes and B. P. Dailey, J. Chem. Phys. 17, "f82
{1949).

quadrupole interaction can now easily be seen. The
description of the behavior of an ensemble of spins in
the presence of a static applied field is frequently much
simpli6ed if it is considered relative to. a system of
coordinates that rotates about its s axis, taken parallel
to the direction of the applied 6eld, with the angular
velocity of Larmor precession co& g&H——O/h, where g& is
the nuclear gyromagnetic ratio. With respect to the
rotating coordinates the field Bo can be ignored and
any other interactions present must be suitably trans-
formed. The rapidly fluctuating electric 6elds that aet
on the nucleus through its quadrupole moment, with
respect to the rotating coordinates, appear essentially
unchanged provided that the frequencies characteristic
of them, measured by 1/r„are large compared to coz, ,
or, thus, col.r,((1.This restriction is analogous to the
earlier one co r,((1. For ordinary nuclear magnetic
moments and 6elds up to 20 kilogauss this condition is
satis6ed for 7-,&10 ' sec. This approach shows in a
simple way that a field applied along the direction to a
counter can have no inhuence on the attenuations of the
correlations, so long coL,7-,((1, because the correlation
is independent of rotation about that direction. For a
magnetic 6eld applied normal to the plane of the coun-
ters, the correlation function becomes

w(8, t) =1++1,GI, (t)ApP, [cos(8—cvgt) j, (74)

where Gq(t) is given in Eq. (72).
If the coincidence rate at, say, 180' is observed as a

function of a variable time delay with' a small resolving
time compared to 1/co~, and multiplied by exp(t/r~),
the result w(180, t) is an oscillating function of time
with the fundamental frequency 2~I,, just as in the
absence of a quadrupole interaction, but the various
harmonics of the fundamental frequency are damped.
The damping factor of each harmonic k is a linear com-
bination of terms exp( —XI, t) with k' & k. On the other
hand, for observation of the coincidence rates without
time delay and with resolving times greater than v.~,
as in the usual experiments, the interpretation is more
complicated.

If, however, only A2 is signihcant a rather simple
result obtains. In that case w(8, t) can be written

w(8, t)=1+~~A2e "&'+ 'A2e "'cos[2(-8—(or,-t)). —(75)

The correlation integrated over all nuclear lifetimes is
obtained as before as

which gives

322
8"(8)= 1+

2 (1+F2~~) 4(1+47~)

cos(28)+[2&vI r~/(1+X~r~)] sin(28)
X (76)

1+[2(ol,r~/ (1+X2r~)$'
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if the two counters distinguish between the first and
second radiations. It is interesting to note that, without
independent knowledge of A2 or of ) 2, the correlation
might be considered unperturbed and the quantity
Az' A——z/(1+XzrN) would be mistaken for Az. In that
event the eGect of the field, measured by the quantity
tt2&ol, r&/(1+'h&r&) jwould be mistaken for the quantity
2cv1,7-~. Thus the Larmor frequency would be mistaken
for ~zAz'/Az. For this example, then, an error identical
to that in the coefficient A2 itself would be made in the
nuclear magnetic moment so measured. The argument
also holds if the counters do not distinguish between
the two decays.

VI. ANGULAR CORRELATIONS PERTURBED
BY MAGNETIC FIELDS

The influence of an applied magnetic field on angular
correlations has been considered by Goertzela and by
Alder. ' Alder's treatment assumed that the coupling
of the nuclear spin to the applied field is the only per-
turbation present. Because of the frequent presence of
quadrupole interactions, often much larger than the
magnetic coupling, this assumption is fulfilled only
under special circumstances. For moderately large
nuclear quadrupole moments the quadrupole coupling
could' be ignored only when it is greatly reduced by
either cubic symmetry of the crystal structure in solids
or by Brownian motion in liquids. The influence of
applied fields in liquid sources has been considered in

Sec. V(B).

A. The Quadrupole Coupling Small Compared
to the Magnetic

In solids, when the quadrupole interaction is much
smaller than the coupling of the nuclear magnetic
moment to the applied field, it can be treated using first
order perturbation theory, i.e., taking into account the
small changes, due to the quadrupole coupling, in the
eigenvalues of the magnetic coupling but neglecting the
changes in the eigenvectors.

If the direction of the applied field is chosen as the
axis of quantization, the correlation can be written

jV= I (kg) II (kz) FI && (0&)Taz&'(0 z)

X (1k&m'zz
~
Ik&Im) (Ekzm'zz j IkzIm)x, (77)

1 zzz~l. r~ z(m' —m")&u, r~—coszb—

where &u, is coo of Eq. (34) for integral spins and cu,/2 of

Eq. (35) for half-odd integral spins. In Eq. (77), b is the
angle of the axis of symmetry of the crystalline field

with respect to the direction of the magnetic field and

or& is 2m times the Larmor frequency of the nuclear
magnetic moment in the applied Geld. We can rewrite

the denominator of Eq. (77) as

i (m' m—")cu,rN coszb

[1 z—/Mr, r~ j 1
j —SIJGogv'~

(78)

x- . (81)
1 i~, (m' m—")r~ ic—oLzz cosb—

and expand 8' as a power series of MqT& In this series
the interpretation of terms in (&o,r~)& with p)0 is
complicated because they contain interference terms
with k~/k2, which do not exist either in the unperturbed
theoretical correlation or, if the substance is a powder,
in the zero field correlation perturbed by the quadrupole
interaction only.

When pcs&7& becomes significantly larger than unity,
we take the second bracket equal to 1, remembering
that cvq((orl. , and the correlation perturbed by both the
magnetic field and the quadrupole interaction is the
same as if the latter did not exist. As a consequence, if
the field is perpendicular to the plane of the counters
and the correlation is expanded as

W= QI, BI,e"&, (79)

the coefficients BJ, are given by

8Jg= bA/(1 zkcoLr~). (80)

Here b~ is the corresponding coeKcient in the com-

pletely unperturbed correlation, rather than the one
which is observed in zero magnetic field where an
effect by the quadrupole interaction is present. The
simplified view that it is the coefFicients b~' in the
expansion analogous to Eq. (79) for the correlation in

zero field, rather than the completely unperturbed
coefficients bj„which are reduced by the factors
$1 zk~u—v~f ' leads to a nuclear magnetic moment in
error by a factor bz'/b& for (b& bl, ')/bI, ((1—This error.
is reduced to (bk /bI, )& if the counters do not distinguish
between the two radiations. In Cd'", if we regard. the
anisotropy of, say, 0.23, as observed by the Zurich

group, in experiments on a single crystal of indium

metal, as completely unperturbed, a value for the
magnetic moment obtained by assuming that the un-

perturbed anisotropy is 0.20, ' should be increased by
about 7 percent. This last statement applies only if the
value of the magnetic moment has been extracted from
the measurement of magnetic fields so strong that
(2ruz, r&)' is much larger than unity.

B. The Quadrupole Coupling Large Compared
to the Magnetic

When the quadrupole interaction is much larger than
the applied field, we consider the latter as a perturbation
and choose the axis of the crystal as axis of quantiza-
tion. The correlation can be written with the same
notation as Eq. (77).

W= I(k,)II(kz) 7'I 1"(Ql) Faz" (Qz)

X(lk, 'mIIkzgIm)(Ik, &mIIk, Im)
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In writing Eq. (81) we have again assumed that the
small perturbation, in this case the magnetic Geld,
changes only the eigenvalues but not the eigenvectors
of the principal Hamiltonian which is now the quad-
rupole interaction, and that I, quantized along the axis
0f the crysta1, remains a good quantum number. This
assumption may be questioned since, in the quadrupole
interaction, the states &m are degenerate and may not
be the right zero-order states in a perturbation by a
magnetic field making an angle with the quadrupole
axis. Since the magnetic coupling g&H I has only
matrix elements Am=0, &1, the question only arises
for the states no=~-,' of half-odd integral spins. It is
well known that there the right zero-order states are
two linear combinations,

~
k) and

~

k'), of the &—', states
with coefficients depending on the angle 5. The more
general formula, Eq. (16), must be used to calculate
the contribution of these states but it is easy to show

that, because of the properties of the Clebsch-Gordan
coefficients, the contribution of the states ~b) and ~b')

to W in Eq. (16) is the same as if the magnetic field did
not exist. Equation (81) can therefore be used quite
generally. We can rewrite the denominator of Eq. (81)
ss

zeal, 7 ~p cos5

a,nd expand 8' as a power series of M1,7.&. If the source
is a powder and if the quadrupole interaction is so
strong, or the lifetime so long, that co,~~&&1 and the
correlation in zero magnetic field is reduced to its
minimum value or "hard core, " Eq. (81) shows that
the e8ect of the magnetic field is greatly reduced except
for the terms m'=m", @&0, i.e., for m= —m'. The situ-
ation is diGerent depending on whether the nuclear
spin I is integral or not. If it is not integral the Clebsch-
Gordan coeflicients (Ik; —m, 25

~
IkInz) vanish and the

hard core is practically unaffected by the applied field.
On the other hand, for integral spins, these coefficients
do not vanish and the magnetic field may change the
angular correlation appreciably. If the magnetic field
is so strong that co~7~, although still much smaller than
~,v.~, is Inuch larger than unity, the only terms which

give an appreciable contribution to Eq. (81) are those
for which ns=m', except if cos5 is so small that
~g7~ cosh is not much larger than one. If col.v-~ is suf-

ficiently large, the proportion of microcrystals in a
powder for which this is true is small and their con-
tribution to the average correlation 9' may be neg-
lected. Then W becomes

W= P A~I'I, (cosg),
2kj1

where the A& are the coefficients of the completely
unperturbed correlation. This result is independent of
the direction of the magnetic Geld with respect to the
counters.

D. Static, Anisotropic Magnetic Hyper6ne
Structure

The perturbation by an atomic magnetic hyperfine
structure has been discussed by GoertzeP and Alder'.
Goertzel showed that an applied magnetic field directed
toward one of the counters, and suKciently strong to
decouple the nuclear and electronic spins could restore
the full correlation otherwise perturbed by the hyperfine
structure. Both Goertzel and Alder have considered
only the isotropic hyperfine structure described by the
coupling aI J which exists in free atoms. In solids,
however, this description is inadequate in general. In
the iron group of paramagnetic elements, where the
hyperfine structure has been most extensively studied
experimentally" and theoretically, " this coupling can
be represented by the expression

K=I T.S, (82)

where T is a symmetrical tensor and S the spin of the
electronic shell. Reduced to its principal axes, Eq. (82)
can be written

K=XI,S,+BI,S,+CI„S„. (83)

A correlation perturbed by such a Hamiltonian can be
described by the general formulas, Eqs. (15) and (16'),
after determination of the eigenstates and eigenvalues

~1 B.Bleaney, Physica 17, 175 (1951).
&A. Abragam and M. H. L. Pryce, Proc. Roy. Soc. (London)

A205, SS5 (&95)).

C. The Quadrupole and the Magnetic Couplings
of Comparable Strength

Finally, when the coupling to the applied magnetic
Geld and the quadrupole interaction are of comparable
magnitude, the treatment becomes complicated and the
general formulas, Eqs. (15) and (16), have to be used.
These are used after the secular equation, giving the
eigenvectors and the eigenvalues of the Hamiltonian K,
the sum of the magnetic and electric couplings, has been
solved. This must be done numerically except in special
cases." As already mentioned in Sec. II, there is no
need to solve the secular equation if the correlation is
only little perturbed because of short nuclear lifetime
or because both the quadrupole and the magnetic
couplings are small.

If the source is a crystalline powder, the simplified
treatment of Sec. III cannot be applied since the per-
turbing Hamiltonian is different for two microcrystals
diGerently oriented with respect to the applied magnetic
field. The correlation has to be calculated by the
general formulas, Eqs. (15) and (16) and averaged over
the orientations of the microcrystals, taking into
account the angular dependence of the energy levels E&

themselves. Until the results of a specific experiment
can be discussed there seems little to be gained by
going beyond these general considerations in this com-
plicated case.
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of K. If no external field is applied and if the substance
is a powder, the somewhat simpler formulas, Eqs. (17)
and (22) can be used.

We consider in some detail the simple example of a
crystalline powder where one of the coefficients A, 8,
and C in Eq. (83), say A, is so much larger than the
other two that K can be approximately taken as AI,S,.
This case is physically significant. It occurs both in

copper and cobalt Tutton salts where A is several times
larger than 8 and C, and is the basis of Bleaney's
method for aligning nuclear spins at low temperatures. "

Formula (22) is then simplified, since both I, and S,
are good quantum numbers, and leads, for S=—,', to
the following expression for the attenuation coeKcients.

G„= P [1 ipAr—v/25]
2k+1 i=&

(84)

K=gP,IIS,+AI; (S, cos0+S, sin0). (86)

Here g and Pp are, respectively, the gyromagnetic ratio
of the paramagnetic ion and the Bohr magneton. (We
neglect the direct coupling of the applied field with the
nuclear moment. ) If the Zeeman interaction gppIIS, is
much larger than the hyperfine coupling AI, S, , which
is the condition required for the decoupling, we can in

Eq. (86) treat the second part of K as a perturbation
and replace there S, and S, by their expectation values.
The expectation value of S, in an eigenstate of S, is
zero. For this particular microcrystal there is an eGec-
tive Hamiltonian which is

K,ii ——AI, S, cos0.

If Ar~/k is so much larger than unity that the coef-
ficients G& given by Eq. (84) are practically reduced
to their limiting values 1/(2k+1), the Hamiltonian
AS,I, cos0 of Eq. (87) will have practically the same
effect as AI, S, except for the small proportion of micro-
crystals for which coso&&1.

"B.Bleaney, Phil. Mag. 42, 441 (1951).

If Ar~/h is large compared with 1,

G„(lim) = 1/(2k+ 1). (85)

The magnetic hyperfine structure is usually several
times larger than the quadrupole interaction, and we

can, as a first approximation, disregard the latter. An
interesting feature of this example is that, even in the
absence of quadrupole interaction, an external magnetic
field, however strong, applied toward one of the counters
cannot restore the correlation perturbed by K. This can
be shown as follows.

Let us consider one microcrystal. We call Os the direc-
tion of the magnetic field, which is also the direction
toward the counter, and Os' the axis of the microcrystal,
making with 0» the angle 0. The total Hamiltonian K
can be written

K= gPpIIS, +AI;S;,

The attenuation coefficients Gi, in Eq. (88) are larger
than those given by Eq. (84), but still smaller than
unity and, when A becomes very large, they decrease
toward 1/(2k+1), although more slowly than in Eq.
(84).

If we introduce P= k/Ar~, we find

1 27 189
Gp ———+—P'+ P —24P'(4P'+ 1) arctan(1/2P)

4

3p
+—(1+P') arctan(1/P). (89)

This can be compared to

32P'1 8P'
G2=- 1+ +

5 1+4P' 1+16P'
(90)

in the absence of the decoupling field.
As an order of magnitude, in copper Tutton salts

A 0.01 cm '. If v~=10 ~, p 1/200 and Gp is prac-
tically —,

' even in the presence of the applied leld.

E. The In6uence of Electronic Paramagnetic
Relaxation

The discussion of the attenuations caused by mag-
netic hyperfine structure interactions in Sec. VI(D)
supposed that entirely stationary electronic states, at
least over times comparable to 7~, exist. There must
always be present some coupling of those states to the
thermal vibrations of the lattice which, for most ions
that show spin-only paramagnetism, is a result of spin-
orbit coupling. A relaxation time for the electron
moment can be dined and this can, in some cases, be
so short as to require a different approach to be taken
to the treatment of the eftect on angular correlations.
In electronic paramagnetic resonance it is necessary to
work at temperatures as low as O'K, in some cases, in
order to obtain lifetimes of the electronic states suK-
ciently long to allow detection of the resonance lines.

The methods applied to the discussion of the electric
quadrupole eGect in liquid sources, Sec. V, can be used
in some circumstances to analyze this eGect. The eGect
of the spin-lattice coupling would mainly be to cause

Because the energy levels of K,«depend on the
orientation of the microcrystal, Eq. (22) cannot be
used as it was in the absence of the applied Geld. How-
ever, because of the linear dependence of these energy
levels on the magnetic numbers l,=vs, and because of
the orthogonality properties of the Clebsch-Gordan
coefFicients, the correlation S averaged over all micro-
crystals can still be represented by Eq. (17), where the
attenuation coefficients Gl, are defined by

1 t
~I' (0, $)~'dQ

(88)
2k+11 &" 1—(ipAr~ cos0)/25
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and
X

' =a'L1 —(2I+1)W (I1kI/II)] (91)

a'= -', rs~8'I(I+1)5(5+1). (92)

It is apparent that the attenuation considered here can
be arbitrarily complete for su@.ciently large values of
the quantities AI, '~&.

Because 78, in general, shortens as the temperature
increases, the correlation largely destroyed by such an
eGect would improve as the temperature is raised. The
quantitative formula is not valid for r8 v.~ or for
co8z8 not much smaller than unity but, nevertheless, if
78 becomes greater than ~~, as it must at sufficiently
low temperatures, the effect goes into that of the iso-
tropic static hyperfine structure interaction for which
a "hard core" remains no matter how strong the inter-
action. There is, thus, for a large co8, a maximum dis-
turbance somewhere between a very small 78 and one
longer than r~.

A sufficiently strong magnetic 6eld applied along the
direction to the first counter can completely restore the
correlation. The condition for that is for gP,II/O, the
angular Larmor frequency of the electron in the held H,
to be made suKciently large compared to the larger of
cu8 and 1/r8. In effect, the spectral density of the
fluctuating component of local magnetic 6eld in the
plane normal to the direction to the counter must be
reduced and this results only if the above condition is
satis6ed. The g factor of the electron is such that a field
of 10 kilogauss would be sufhcient to'partially restore
the correlation unless ~q were shorter than SX10 '2 sec.
At room temperatures shorter relaxation times than
this do occur for some ions.

VII. RESONANCE METHODS

If angular correlations are to be used to measure
nuclear moments of the intermediate state the improve-
ment over the observation of the eGect of static 6elds
obtained by inducing resonant transitions by an rf
field, analogous to that gained by Rabi in molecular
beams, might be considered. Several difhculties present
themselves as discussed for a couple of examples below.

continual random changes in the orientation of the
electronic spin angular momentum S. The result of
this would be equivalent to a continuously reorienting
classical magnetic 6eld at the nucleus and the resulting
time dependent behavior of the nuclear spin can be
calculated in a manner analogous to the calculations of
Sec. V. If the interaction energy is ho&8I S and
cv8r8((1, where v-8 is the relaxation time of the electron
spin, the eGect on the angular correlation is expressible
by attenuation coe%cients

'Gi (1+4 rN)

where, here, the XI,
' are calculated as in Sec. V, but in

Eq. (46) TiI" is used and corresponding changes are
made in the expressions leading to Eq. (71).Expressions
for the ) I,

' are then

A. Nuclear Magnetic Resonance

It has already been stated that in a double decay
cascade the 6rst radiation can be considered as creating
in the intermediate state of the nucleus unequally
populated magnetic states quantized along the direction
of emission of this radiation. The existence of an angular
correlation between the two radiations, i.e., of an
anisotropy in the direction of emission of the second
radiation with respect to the first, is precisely due to
these inequalities of population.

If resonant transitions between the magnetic sub-
states can be induced by an applied rf field, their eGect
will be to decrease these inequalities of population and
therefore to decrease the anisotropy of the angular
correlation, thus providing a means of detecting the
resonance. If there is no static quadrupole interaction
or magnetic hyperfine structure, a uniform magnetic
field H applied along the direction to the first counter
splits the magnetic substates without aGecting the cor-
relation and the resonance frequency for an rf field in
the plane normal to II is the Larmor frequency &ul/27r

of the intermediate nucleus in the static field.
In order for a resonance experiment to provide an

accurate measurement of the nuclear magnetic moment,
the following conditions must be realized.

(a) The natural width of the magnetic levels due to
the finite lifetime of the intermediate state of the
nucleus must be much smaller than the spacings
between these levels. The ratio of the spacing between
two adjacent levels to the line width is ~1.7.~ which,
thus, should be much larger than unity. This is equiva-
lent to saying that the uniform field, if applied per-
pendicular to the plane of the counters, should destroy
the correlation completely. As an example, for Cd"'
where r~ 10 ' and g„0.3 nuclear magneton, orl,r~ 2
in a 6eld of 15 000 gauss, which makes this type of
experiment for this particular nucleus relatively unre-
warding.

(b) The amplitude of the rf field should be sufFiciently

large for the resonant transitions to have an appreciable
probability during the nuclear lifetime. This requires
that co]7 &—1 where cv& is 2m. times the Larmor frequency
of the nucleus in a constant field equal to the amplitude
of the rf field. It is equivalent to say that such a constant
field, if applied perpendicular to the plane of the
counters, should have a detectable eGect on the corre-
lation. This rules out this experiment for Cd'", since rf
6elds so large would be extremely difficult to produce.
More conventional resonance experiments seldom utilize
rf fields larger than about 10 gauss.

(c) The lifetime of the nucleus should be shorter than
the relaxation time of the nuclear spin in the source.
Since, in order for the resonant experiment to be feasible,
rather long nuclear lifetimes are required, this may be
a limitation in liquid sources. with strong quadrupole
relaxation, but probably is not a limitation in solid

sources. In the latter a crystal structure of cubic sym-
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metry is required in order to avoid perturbation by the
static quadrupole interaction.

To sum up, it can be said that a resonance experiment
is probably feasible for a nucleus for which the product
g„~~ is as large as for a free proton with a lifetime of
one microsecond. No such nucleus is known at present.

The time-dependent correlation w(t) in the presence
of the rf field is given by the general formulas of Eq.
(12) and Eq. (13).If the z axis is parallel to the direction
of the applied magnetic field tii=ti2 ——0. In Eq. (13),
(m~ U+~m")(m'"[U~m') becomes

~

(m"
~
U~m) [', which

is the well-known Majorana function P(I, m", m, t),'4

expressing the probability of finding the spin in the
state m" at time t if it was in the state m at t=0. The
integrals

e "'~P(t)dt/r~

have been calculated and tabulated by Bitter and
Brossel for several values of the spin. "

In principle, the resonance method could also apply
to the quadrupole interaction in a single crystal with
its axis parallel to the applied field, or to a crystalline
powder.

B. Resonance in Magnetic Atoms

If the atom containing the radioactive nucleus has a
magnetic moment and therefore a hyperfine structure,
2 I J, a somewhat different resonance experiment
might be attempted.

If a strong magnetic field parallel to one of the
counters restores the correlation perturbed by the
hyperfine structure interaction as already discussed,
the correlation could again be disturbed by an rf field.
The energy levels of the system are given by E=gPpH J,
+AJ I„and transitions AJ, =O, AI, =&1 can be
induced between the levels J,=M, I,=m and J,=M,
I,=m&1, whose separation is A3f. The point of these
remarks is that AM, which measures the hyperfine
structure of the atom, can be orders of magnitude larger
than the Zeeman splittings of the nuclear moment in
an applied field, thus relaxing the limitation (a) of the
resonance method. The limitation (b), however, remains
unchanged and especially dificult to meet because the
frequency is high.

Perhaps a better method is to induce transitions
between diGerent eigenstates of the total atomic
moment P, where F= I+J, in zero applied field. Alder
has shown that, even if (E& Ei )r~/h is very —large,
which is precisely the condition (a), the correlation does
not disappear completely but leaves a "hard core."A
resonant rf field could produce a detectable change in

'4I. I. Rabi, Phys. Rev. 51, 652 (1937); F. Bloch and I. I.
Rabi, Revs. Modern Phys. 17, 237 (1945).' F, Bitter and J. Brossel, Technical Report No. 176, Research
Laboratory of Electronics, Massachusetts Institute of Technology,
1950 (unpublished).

this hard core. The important point here is that in these
transitions the rf field Hips the electronic moment but
since the electronic moment is coupled to the nuclear
spin both flip and the angular correlation is altered.
Since the coupling of the rf field to the electronic spin
is thousands of times larger than its coupling to the
nuclear spin, the probability of a transition during the
time r~ is considerably increased and condition (b)
can be met.

The measurement of the hyperfine structure in a
stable isotope of known nuclear moment by conven-
tional methods would, by comparison, give the magnetic
moment of the radioactive nucleus.

As remarked in Sec. IV(D), by measuring the de-
partures from I ande's interval rule in the energy dif-
ferences Ep —Ep, the sign and magnitude of the quad-
rupole interaction could be measured if J&—,'.

These considerations apply most directly to free
atoms such as those in a gaseous source. It is clear that
a condition that should be met by the source is that
collisions between atoms or against the walls, which
result in changes in F, must not occur, on the average, in
times shorter than, or of the order of, v~.

VIII. CONCLUSION

It has been shown that static electric quadrupole
interations in polycrystalline sources can reduce the
angular correlation. For both axially symmetric and
rhombic fields, no matter how strong the interaction,
there remains some anisotropy.

In liquid sources, the electric quadrupole moment
interacts with a randomly Auctuating field and the
resulting attenuations are expressed as Gi, = (1+Xi,r~) ',
where the Xi are given in Eq. (71).Here the correlation,
although usually less disturbed than in solid sources,
can be completely destroyed for sufficiently long 7-~. A
similar eGect is possible if the electronic shell is magnetic
with a short lifetime of a given magnetic substate. The
application of magnetic fields in the first of these cases
should have little eGect if directed toward either counter.
In the second, unless the relaxation time vz is very
short, it should be possible to reduce the disturbance
by application of such a field.

The explanation of the observation by the Zurich

group and by Stefen of correlations from the p-p
cascade from the CdiII daughter of InIIi in solid com-

pounds of indium remains unclear. It would appear
that a purely static interaction in the intermediate
state could not be the sole eGect unless the crystallites
of the source were preferentially oriented, which seems
unlikely. Instead, the existence of a magnetic shell,
following the K capture, in compounds is a possibility.
In that event, the most likely mechanism for the dis-

turbance would be that associated with relaxation of
the electron spin. Even more speculative would be the
suggestion that the recoil energy accompanying E cap-
ture excites vibrations of a complex or molecule in
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which the Cd"' is contained. The vibrations might, in
turn, cause reorientations of the spin in times shorter
than 7.~. Such vibrations, on the other hand, should be
very short lived and this, too, seems an unlikely
mechanism.

It should be emphasized that for y-y cascades fol-
lowing almost instantaneously after E capture, the
electronic configuration during the lifetime of the inter-
mediate state of the nucleus is less clearly defined than
it would be for a y-y cascade from a long-lived isomer,
such as 48-min Cd"'. In such a case, the radiation from
the isomer could be observed in a normal chemical
environment. For all other correlations than pure y-y

and y-conversion electron, the surroundings of the
nucleus in its intermediate state are not well known and
it is dificult to draw quantitative conclusions from
observed perturbations of the correlation.
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Nuclear Spin Relaxation by Translational Diffusion*
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The general theory of Bloembergen, Purcell, and Pound of nuclear spin relaxation has been extended to a
more quantitative study of relaxation by translational diffusion. It has been found necessary to treat the
problem by the theory of random walk. In the case of isotropic diffusion two cases have been studied: one
in which the Right distance has a probability distribution, and the other in which it is constant. The problem
of random walk to nearest neighbor sites in a lattice is also treated and quantitative results are obtained for
a face-centered cubic lattice.

I. INTRODUCTION

LOEMBERGEN, Purcell, and Pound have given
a general solution to the problem of nuclear spin

relaxation. ' ' An important and prevalent mechanism
has been shown to be the coupling of spin orientation
with nuclear thermal motion via the dipolar magnetic
interaction of the nuclear moments. This influence and
the corresponding relaxation are particularly strong
whenever the nuclei perform random diffusive motions
such as occur in liquids of appropriate viscosity. Such
diffusive motions may occur also in the solid phase par-
ticularly in the case of solid solutions; for example,
hydrogen in palladium, but also in the case of self-
diffusion. Bloembergen' has applied his theory to
diffusive motions. His treatment of translational dif-
fusion is, however, admittedly crude and must be
regarded as only semiquantitative. It is the purpose of
this paper to present a more quantitative theory and
in particular to emphasize the possibility of examining
certain microscopic details of the diffusion process
which cannot be ascertained from a study of gross dif-
fusion phenomena alone. In Bloembergen's treatment
only the diffusion constant D enters as a parameter.

* Supported by the joint program of the U. S. Once of Naval
Research and U. S. Atomic Energy Commission, by the Radio
Corporation of America, and by the Rutgers Research Council.

' Bloembergen, Purcell, and Pound, Phys. Rev, ?3, 679 (1948).
N. Bloembergen, thesis, I eiden, 1948 (Martinus Nijho8, The

Hague).

II. APPLICATION OF THE THEORY OF RANDOM
FLIGHTS

We start from the general formula derived by
Bloembergen' ' for the relaxation time T1.

Tz ' ——4oy%'I(I+1)[So(2ooo)+2Si(ooo)g (2)

Thus his theory gives no basis for a closer study of the
diffusion mechanism than can be obtained by conven-
tional measurements of macroscopic diQusion. Nuclear
spin relaxation is however essentially microscopic in
character. The magnetic field of one nucleus at the
position of another depends on the inverse cube of the
distance and the inhuence of nearest neighbors is thus
relatively strong. It is apparent from this that one needs
to consider the individual motions of neighboring spins,
that is to say, the process of random Rights of which, as
is well known, the phenomenon of diffusion is only the
limiting macroscopic approximation. Thus it may be
expected that certain details of random Qights such as
(r'), the mean squared flight distance, and r, the mean
time between Rights, will enter into the description of
relaxation in other ways than merely in the familiar
combination:

D = (r')/67.

This is indeed the case and leads at least in principle
to the possibility of independent measurement of these
parameters in certain cases.


