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An Approximate Wave-Mechanical Description of Deuteron Stripping*
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An approximate wave function describing the deuteron stripping process is set up in a fashion similar
to that introduced by S. T. Butler. This wave function is made to fit boundary conditions at the surface
of the nucleus for the stripped-oR' particle. Thus the parameters characterizing the nucleus that enter this
description are similar to those familiar from the theory of single-particle nuclear reactions. The cross section
for the stripping process is calculated from the wave function by a method that gives the cross section for
stripping by virtual levels as well as that for stripping by bound levels. Some discussion is devoted to the
Coulomb effect.

I. INTRODUCTION

&IEUTERON stripping refers to an interaction
between a deuteron and a target nucleus involving

the breaking up of the deuteron in which only one of the
two particles making up the deuteron interacts directly
with the target nucleus. The early work on this subject
was concerned with estimating the total cross section
for the process as a function of the energy of the incident
deuterons. ' The methods used were Born approxima-
tions employing crude approximate wave functions, and
semiclassical models. Recent work, using more refined
Born approximations' ' and approximate wave-mechan-
ical methods, 7 has shown that there is a striking de-
pendence of the angular distribution of the liberated
particle on the orbital angular momentum of the
stripped-off particle. The normalization of the cross
section given by these methods does not lend itself to
a direct interpretation in terms of the parameters
usually used to characterize nuclei. Also, most of these
methods are limited to the case in which the stripped-oG
particle is captured into a bound state, and all these
methods neglect the Coulomb interaction between the
proton and target nucleus.

In what follows, an approximate wave function
describing the deuteron stripping process is set up in a
fashion similar to that introduced by Butler. ' This
wave function is made to fit boundary conditions at the
surface of the nucleus for the stripped-oG particle. Thus
the parameters characterizing the nucleus that enter
this description are similar to those familiar from the
theory of single-particle nuclear reactions. The cross
section for the stripping process is calculated from the
wave function in such a manner as not to limit the
result to only stripping due to capture of the stripped-off
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particle into bound states. Some discussion is devoted
to the Coulomb effect.

II. THE GENERAL THEORY

To start with, we make the following assumptions
about the d-p stripping process:

1. The Coulomb interaction can be ignored.
2. The protons have no interaction with the target

nucleus.
3. There is no interaction among the products of

deuteron disintegrations or between these products
and deuterons, so that deuteron fragments can be
treated as free particles.

The neglect of the Coulomb interaction makes the
theory symmetrical with respect to the possible roles of
neutrons and protons.

The physical situation is represented by a six-dimen-
sional wave function —three proton coordinates and
three neutron coordinates. For neutrons outside the
nucleus, the wave function must consist of a term
representing incident and elastically scattered deuterons
C~ plus a term representing liberated proton-neutron
pairs +I:.

P(r„, r )=O'D+4p.

The primed coordinates refer to the center of mass of
the deuteron and the target nucleus. Because we wish to
consider the interaction of the neutron with the target
nucleus and to find the angular distribution of the
liberated protons, it will be more convenient if we write
r„' and r„' in terms of r„, the separation of the neutron
and the target nucleus, and r„", the separation of the
proton from the center of mass of the target nucleus and
the neutron. This is accomplished by the substitution

(M„+Mr)
tr /!

rp = rp )

(M„+Mr+3f„)

ff
rp

M,+Mr+ M

where M = the mass of the neutron, M„=the mass of
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Z, m 0
"dkC, (K, k, r„)7',"(8„,

&&
„)e'"""

e.=g dkA, , „(K,k)h&&»(h„r„)

X F& (&&„, p„)e'~'»", r„)R. (6)

Yz is the normalized spherical harmonic and hz&" is the
spherical Hankel function of the 6rst kind. hz&'& is used
to represent the free neutrons for r„&E since these
particles are all created at the nuclear surface and con-
sequently must be all outgoing in this region. K is the
wave number of the plane wave of incident deuterons
relative to the center of mass of the deuteron and the
target nucleus, k is the proton wave number relative to
the center of mass of the deuteron and the target nucleus,
and k„ is the neutron wave number relative to the
center of mass of the neutron and the target nucleus.
The three are related by the conservation of energy for
the deuteron fragments:

the proton, and M» ——the mass of the target nucleus.
%hen 3f»—+~, of course, the distinctions between r, r',
and r" disappear. So we write

P(r, ', r„')=e(r„",r„)=e»+@& . (4)

Now let us write these wave functions as Fourier
integrals over the proton wave number, and let us also
express the angular dependence of the neutron coor-
dinate in terms of spherical harmonics:

the nucleus in its neutron interactions. Because of the
orthogonality of the plane waves e'"'~", this can be
written

(8/&&r )(C», +A&, „h&&'&)

C&, +A&, h&&"

f&
—1

g R

Solving for A,

R(8/&&r„)C &,
„—(f&

—1)4»,

R(8/&&r„)h&&'& (f&
——1) h&'&& g

To get an expression for the stripping cross section
we will need the wave function describing the neutrons
associated with protons having wave number k. Our
wave function %(r„, r„") describes the neutrons asso-
ciated with protons having the position r„".%'e propose
to change from a representation in r„, x'„" space to a
representation in r„, k space. The wave function in r„, k
space, i.e., the wave function for neutrons associated
with protons of wave number k, is gotten from%'(r„, r»")
in the following manner:

g(k, r„)= (2n.)'Q C&, ~I'& +(2~)'Q A&, h&&'&V&~

Z f sl' 'p Y@ (13)= &&&D+ @p= &&&r, r„)R.

&S(k, r„)= ~ dr»4(r„, r„"')e '~'»". (12)
(2n)& ~

Performing this integration gives

$2/ 2 h2$2 $2~
+

2M ~z 2'p p 2Mg) z

Using g, we calculate the -radial neutron current
(7) density associated with protons of wave number k:

where M~I& —M~MI&/(M~+M—e), Mr =Mr+M„, and
e= magnitude of the deuteron binding energy. Equation
(7) thus provides a deinition of h„ for Eq. (6). Real
values of k„correspond to outgoing waves of neutrons
while imaginary values of k„cause hz~" to become a
decreasing exponential representing the situation in
which a neutron is captured into a bound state.

The coefficients Az, appearing in 0'p can be ex-
pressed in terms of the boundary conditions for the
neutron on the nuclear surface, r„=E. Writing our
wave function in the form

h ( 8 8
Ja=

~
V&a Pa &3a Pa

2M„I& E &&r„&&r„)
where n= D, F, T. Integrating —JT over the surface of
a sphere concentric with the target nucleus and having
a radius greater than or equal to R gives the net Aux F;
into the nucleus of neutrons associated with protons
having wave number k. Choosing this sphere at the
surface of the nucleus gives

ih (2&r)'R
P;= g (

4 &, „+A&, h& "&
i
g'(f& —f&*)

2M„» Zm

dk (C &, „+A&
„h&&")e*'"'»"Y&"

Z, md
aC 4, ah(') '

~h(2~)'R' Br„h&&'& Br g

2M.r &.-
~ f&

—p&" & )'
(f —f *), (15)

wherewe require that
R &&h&

&'& (h„r„)
p&'=&

h&&*'& (h„r.)(r-+i -) = f&L+~-j~.
Br~

, R
Integrating Jg over a sphere concentric with the target

The quantities f& are the parameters which characterize nucleus gives the net flux Po of the scattered free
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neutrons associated with protons of wave number k:
ih(2m)'R

Fo= Q lAg, hg&g&lgg'( —2isg&g&)

~r im

get
2m'hR'k 'lk„l'k'dk sg&" lh &'&h &'&

l
gg'

&~(k) =
JM~r g ~ (21+1)

ih (2')'R'

~C'i, m

C), ar„h)(') ar„

fg
—

g
g"&

where

84), C), Bhg(') '
M(') =

gr„h~('& 9r„

X {M&"gr,"&+M&"o,&'&}, (23)

Fdk= (F,+F0)dk (17)

But there is a one-to-one correspondence between the
liberated protons and neutrons. Hence Fdk is the total
Aux of liberated protons coming out with wave number
k in dk. Letting gi represent the current density of the
incident deuterons, the d-p cross section can now be
written

(F;+F0) dk (F,+Fp)
dgr (k) —= k'dk

gl dQ

(2x)'hR'k'dk

aC, C, ah(') '

(fg*—f,) Br„h &'&gBr„gg

Ifg
—

g
g"&l'

'

aC ), C ), ah)(') 2'

Br„h & ggB&r„C&g,„'. (18)
+sg&&&

fg
—

g
g&g&

If we were dealing with the interaction of free
neutrons with a target nucleus, we would have a wave
function of the form

P=Q Cg Yg (hg&'&(k„r) —»ghg&g&(k„r)). (19)

Using this wave function, one 6nds

hg(2 p)(2 g p ( )h ( )

h)('~ —g&hs

0,"'=L(2E+1)n/k 'j(i—g&g»g*)

= total reaction cross section for / neutrons,

o' &g&=L(2E+1)m'/k 'jli —g&gl'

(20)

(21)

(22)

= total scattering cross section for / neutrons.

Now if we define an qg by means of Eqs. (9) and (20),
and then use Eq. (20) to eliminate fg from (18), we will

X (—2isg &'&) (16)

Thus the total Aux of neutrons either absorbed or scat-
tered associated with protons of wave number k in the
interval dk is

(21+1)gr (1—»g»g*), k„')0,
0. (i)—

k„'

(21+1)7r

k„'

l (g&g
—»g*)/k~sg&'& (hg&'&)'j k '(0

-h, o&BCg „/Br„—Cg ~Bhg&g&/Br„-
7=

hg&"BC g, „/Br„Cg,„Bh—g&2&/Br„gg

When Cg ~ and BC g /Br„are both pure real or pure
imaginary, as will be the case in the approximation
introduced in Part IV, then

M"'=M&'& and y=exp(iag) for k )0
In this case we,can interpret Eq. (23) by saying each
term of the stripping cross section consists of two
factors: one factor represents the probability that a
neutron with quantum numbers l and m arrives at the
nuclear surface, and the other factor is the cross section
for interaction of such neutrons. The appearance of the
phase shift o. in 0.,(') no doubt reAects the fact that the
outgoing free neutrons do not interfere with free
incident neutrons but with incident neutrons bound to
protons.

The»g appearing in Eq. (23) is not necessarily the
same as the g&g appearing in Eq. (19).The»g of Eq. (19)
represents the interaction of free neutrons with a target
nucleus. The»g of Eq. (23) must describe the interaction
of neutrons with a target nucleus in the presence of the
accompanying proton. Nevertheless, it may not be
unreasonable to assume that the two g~'s are similar.
Such an assumption, while not necessary, is consistent
with the previous neglect of proton interaction. It can
be tested in the range of single-particle interactions if
the reaction cross section is predominant. The scat-
tering cross section should not be expected to be the
same for single particle and deuteron reactions because
of the phase shift o..

Up to this point, we have ignored the fact that the
particles we have been discussing have, intrinsic spins.
To be exact, we have assumed .that lthe 'interaction
between the stripped-off particle (the neutron) and the
target nucleus is independent of 'spin. It is our purpose
now to generalize our result to allow for the possibility
that the neutron and target nucleus interaction might
depend on the total angular momentum Jof the neutron
and target nucleus system and on the difference 'in
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parity m between the final target nucleus and neutron
system and the initial target nucleus. This generaliza-
tion depends on the interpretation of our expression for
the stripping cross section, say Eq. (18), as a sum of
partial cross sections arising from the interaction with
the target nucleus of neutrons of diAerent l and m:

d~( t, m) (f )
I

We eGect our proposed generalization by representing
each partial cross section do-(" ' as a sum of cross
sections corresponding to all the diITerent values of J
and m attainable by neutrons of orbital angular mo-
mentum Vi, each of these terms being multiplied by the
appropriate statistical weight:

BC) C) Bh)~» '

X~ l. „Br„h)~'& Br„g
f 2 {(E—E ')'+r'/4}

hei, C), ah)&» 2

r. C) ar„h)o) ar„
+— +

2, p$R E—El'+-,'iT'

Substituting Eq. (27) into Eq. (26) gives

(22r)2R23l„pkdE (22+1)y,
do (k) =

hei~sr t m ~ 2(2I+1)(2l+1)

(28)

s r+t+f=(2J+1) where I' =2st&t)yt, F=F +F„, and Eq. (7) has been
do=+ )(ft(I, 2r)) used to give

tm~, s, =[~i—tl —il 2(2I+1)(2l+1) (25)
kdk = —(M,p/h2) dE.

(22r) shRsksdk
do (k) =

M

z=r+t+I (2J+1)
tm~s I,Ir—t,l

—='*I 2(2I+1) (2l+1)

In Fq. (25), I is the spin of the target nucleus. Con-

sequently Eq. (18) becomes
%'e will assume that the total level width F is small

compared to the energy interval required to produce
an appreciable change in the functions appearing in
Eq. (28) (excluding, of course, the resonance denomi-
nators). Then we can carry out the integration over the
resonance by means of the following relations:

ac'l, m 4'l, m ayl

)&) (f,*—f,) ar„ht&» ar„!)I

2

f, »n) R g~'

2i
f fl —Pt&t) f'

C), ah]&')

+st&» ar„h &» tar„et, m (26)

x/2 dy 4 fX q 4f'2l=- tan-'f —
f
=-I —-+

~—/2y'+-,'I' r kr i r E2 x ) ' (29)

f
X/2

X/2-
2

dy=aa*p

Taking F/)t —+0, we get

A+
y+-,'iT'

4
+ftBB*+',ir (AB* AB)j tan 'f ——f. (—30)r &r)

where ft is now regarded as a function of J and 2r as
well as l.

f,= —(I/&, ) (E—E,+-,'ir„). (27)

2 J. M. Blatt and V. F. Weisskopf, Theoretical Nttctear Physics
(John Wiley and Sons, Inc , New York, 19. 52), Chap. VIII.

III. INTEGRATION OF THE CROSS SECTION
OVER A RESONANCE

Next let us assume that there is a resonance in the
neutron-nucleus interaction and integrate the cross
section over this resonance. Such a resonance corre-
sponds to a level in the neutron+nucleus system. Our
result will be the cross section for stripping by this level.

In the vicinity (on the neutron energy scale) of a
resonance due to a level characterized by

J=Jg, x=~g,

reduced width=yt=yt(J, 2r) =gas, q,"o,

radiation width =1'„=F„&"(Jl, ort),

energy =E~' ——E~—yA~, &",

f, has the form'

(2w)'R'k, iV, p C,, „
o(kt) wt, Jt)= g st&))x

t

(2J)+1)2ly ac t „c,„aht t ) '
+Z'—'" 2(2I+1)(2l+1). ar„ht&t) ar„

2 iso) f—2(sl"')' +
R ( ™ar„

84)
(31)ar„)

where g is the range of integration and the sum over /

in the primed sum must be limited to the range

f f
I J

f

——,
'

f
& I &I+T+—

all the l's in the primed sum being even or odd depend-
ing on the value of m. ~.

The unprimed sum in 3j. represents the contribution
of potential scattering, the first term after the primed
summation sign results from resonance scattering and
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y = I'a/2si&'& (32)

For, bound states, kn&'&0, we may use a suggestion of
Feshbach et ul. ' They suggest that the quantity

absorption, and the second and third terms following
the primed. summation sign arise from interference
between potential scattering and resonance scattering.
Clearly, the difference between the knts(0 (s&&'&=0)

case and the kn~') 0 case is all due to the appearance of
potential scattering when kny &0.

We see that the only nuclear parameters entering
our final expression are the radius R and the reduced
width y. For virtual states, km~'&0, we can interpret y
in terms of the partial width for neutron emission, F:

where
Mr

rr= K— k,
Mr+M.

ks= k— K.

Y&"(8., y„) is defined relative to the same axis as the
I'i (i&„, rp„) which appears in Eqs. (5) and (6). We can
choose this axis parallel to any function of K and lr

we like. We choose the axis to be parallel to K—k. Then

ji(&ir„). (38)
n'+ kp' p'+ ks'

D*=rrKsRy, ICs= 1.0)& 10"cm ' (33)
Substitution into Eq. (31) gives

may correspond to the approximate average energy
level separation at the excitation energy E&'.

Since the reduced width y of a level enters the ex-
pression for the cross section essentially as a normalizing
factor, the use of stripping experiments to determine y
will not be so sensitive to errors introduced by poor
resolution as are the usual methods for measuring level
widths.

IV. AN APPROXIMATION FOR THE DEUTERON
WAVE FUNCTION

MDrM„rSN'Rskr
to. (L&, s.r, Jr) =

Ek'M„g

1 1

ns+kdls p +k& 2
~

aji(s,r„)
X

ji(Klrn) Bhl (knlrn)

hi &'& (knrrn)

j&(srR) ' (2Jr+1)ym
&& Z(2~+1)« "&x +P'

R & 2(2I+1)

To apply our results, we must know the deuteron
wave function 4&. If the cross sections are suKciently
small, the deuteron wave function can be well approx- The quantity
imated by the incident plane wave. Suppose the internal
wave function of the deuteron is

ji(&rrR) '
2 (s (1&)2 (39)

ns+kgrs Ps+kg snp(n+p)
—$ (e ar p pr) /(& ar ——

& pr)— —

(34)
2m (n —P)s r r c&ji(&rr ) ji(&err ) c&hi&'& (knrrn) '

X

where

piK. RQ(p—ar p pr)/r-
R= (M„r„+M„r„)/(M„+M„).

(35)

This approximation for 4D is also used by Butler. '
The deuteron current density becomes

where r= r„—r„(r„=separation of proton from target
nucleus). This is equivalent to the assumption that the
proton-neutron interaction is given by the Hulthen
potential. Then, on the basis of the above assumptions,

hi &'& (kntrn)

is just the angular distribution derived by Butler.
Thus our theory is identical to Butler's in so far as the
relationship between the orbital angular momentum of
the captured particle and the angular distribution of the
liberated particle for stripping by bound levels is con-
cerned. The agreement of this relationship with experi-
ment is surprisingly good in view of the fact that the
Coulomb eGect has been neglected.

V. THE COULOMB EFFECT

and
rf= Eh/MD,

4, ~= ' dr„"dQ„e '"'n" Fi (8n, fPn)%'r&

(2rr)s ~

2S' 1 1
~'ji(«.) 1'i "(O.r ~.))

n'+ kg' P'+ kg'

(36)

(37)

To include the eGect of the electrostatic interaction
between the proton and the target nucleus in our theory
we must replace the free space proton functions used in
our analysis by their Coulomb analogs, and O'D must
be replaced by a wave function 4&', which describes the
motion of the incident and scattered deuterons without
neglecting the Coulomb field. These functions'o will be

'0 Tables of Coulomb S'ave Functions, Volume 1, National
'Feshbach, Peaslee, and Weisskopf, Phys. Rev. 71, 14S (194'I). Bureau of Standards: Applied Mathematics, Series 17.
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d' 2g L(l+1) '

+ 1——
p p

y=O.
dp2

de6ned in terms of the two solutions, Fg(p) and G&(p),
of the equation

(40)

single strok"- —we merely take our previous results and
substitute O'D' for O'D and substitute y~ for hg and
@(kr) for e'~' when the argument contains the proton
coordinate. Thus, if we write the deuteron wave
function in the form-

F~ is the regular solution, G~ is the irregular solution,
and they are normalized so that they have the asymp-
totic forms

F g(p) —+ sing —g ln2p —-', lm+o )1,

+D'=Q, dkC), „"(K,k, r„)F) (8„, y„)@(k,r„")

"dke "(K l r )I'-(e & )e* '-"
(45)

Gg(p) ~ costp —g ln2p —'2l~+o Ej,

e &
——arg(gamma function (1+1+irl)) .

(41)

(42)

the d-p cross section is identical with Eq. (31) ex;cept
that C & must be replaced by C &,

'~, and the d-n cross
section results from Eq. (31) when C& is replaced by
C &,

'" and s&~'& is replaced by
Now we list the free space functions we have used in

our analysis together with their Coulomb analogs:
s&&"'= imaginary part of

f((kr) =
F((kr)e '~

+j ) (k-r),!

G)(kr)e
gi(kr) =-

k
-+e)(kr),

y(&" (kr) =f(+ig~h("'(kr),

y&
"&(kr) = f&*—ig&*~h&~" (kr),

8(kr) =47r Q PI'i (8„, p„)Y) "(BI, go)

Xfi*(kr)~e'"',

K(kr) =4~ Q PI'g" (8„, q „)Y(- (Bg, q g)

Xf((kr)—+e'"'.

(43)

By" (k„)
8r~

VI. COMRARISON WITH EXPERIMENT

R
1+ (46)

y &'~(k„r„) R

Actually this procedure introduces an additional
approximation for the d-p case. The calculation for the
d-p case involves using (K(k„, r„")to represent liberated
protons, Such a representation would be correct if the
electric charge of the target nucleus resided at r~"=0
rather than at r„=0. Our approximation is justified
when the neutron is captured into a bound state or
when the target nucleus is heavy.

Application of these Coulomb expressions to the
interpretation of experiments must wait upon the dis-
covery of suitable approximations to the 4&, '& and
Cg, '" de6ned in Eqs. (45).

For our problem
g =Ze'M~r/k'k, (44)

where e is the charge of the electron. 5 is constructed
so that its outgoing part is asymptotically a pencil of
particles of wave number k. 8 is constructed so that
its incoming part is asymptotically a pencil of particles
of wave number k.

Now if we re-examine our derivation in part II, we
will find that the only properties of the free space func-
tions that played a role in the argument were:

(a) the Wronskian property of the k's t Eq. (11)j,
(b) the orthonormality of the plane waves,
(c) the interpretation of the outgoing part of a plane

wave as a pencil of particles.

It can be easily verified that the y's have the same
Wronskian property as the k's and the K's have the
same orthonormality property as plane waves. Asymp-
totically the outgoing part of 5 has the same inter-
pretation as the outgoing part of a plane wave. Thus
we can take the Coulomb eGect into account with a

According to the results of Sec. IV, the angular de-
pendence of the cross section for stripping due to a
certain level in the residual stripped-oG particle and
target nucleus system can be used to identify the orbital
angular momentum of the stripped-oG particle in that
level, while the normalization of the cross section
determines the reduced width of the level. Ke will
consider two experiments —one involving stripping by
bound levels and the other involving stripping by
virtual levels. %e will evaluate l, y, and D* for these
levels.

As our first example we will consider an experiment
involving capture into bound states. %e use the data of
Fulbright et at'. ," who measured the angular distribu-
tions for the Be~(d,p)Be' and Be'(d,p)Be"* reactions.
The diGerential cross sections for these processes were
measured with an accuracy of only 20 percent. The
angular distributions can both be fitted by choosing
l= j., 8=4.5&(TO-" cm. Using these parameters and
their data, we get the following values for the reduced

"Pulbright, Bruner, Bromley, and Goldman, Phys. Rev. 88,
700 (1952).
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widths of these levels:

y =36/(2J+1) kev for the ground state,

y =41/(2J+1) kev for the excited state.

Vhth these values of y the "approximate average level
spacing" D~ is

D*=620/(2 J+1) kev for the ground state,

D*=690/(2J+1) kev for the excited state.

In these expressions J is the spin of the residual nucleus.
Since the spin of Be' is ~ and since the neutron is
captured with l= 1, J must have a value between 3 and
0.

So far as we know, the only investigation o'f stripping
angular distributions due to virtual Levels has been done

by Goldberg. " Using 4-Mev deuterons to initiate the
Mg24(d, 12)APs reaCtiOn, he haS meaSured the angular
distribution for three virtual levels in AP'.

To analyze Goldberg's data we will assume that the
stripped-off particle can be captured into a given level
with only one value of l which is characteristic of that
level. Then the cross section for the d-n reaction becomes

Jh
E (
+
~ lO

O' ZO 40
e (e.t4.)

60' 8o

(4)r4)RsktM„p (2J+1)y
0'~ =

hclM„z (2l+ 1)(2I+ 1)
cn @ cn gy (1) 2

Br~ y~('& gr„z
2,(» it ac,,
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ie, ,„" ' —c,,ar„' ar )

Fzo. 1. Angular distribution (with respect to the center-of-mass
system} of neutrons from the Mg'4(d, n}AP' reaction. Deuteron
energy in the laboratory system was 3.973 Mev. The Q was -2.44
Mev.

Thus we can take s~&'&'=0 and incur an error of less
than I percent. In this approximation we have

42r4R2M„pkt(2J+1) y(

hciM„z(2l+1) (2I+1)

C 1,
'" 2 2 (2l+1) (2I+ 1)

2($ (1)c)2
' +
E 7Ã

cc,

()fy

(/I1 (1)c 1) ' 2

Cg, „'" . (48)

cn 2

X ' . (47)
g

The Q's for the three virtual levels measured are

Q1= —2.44 Mev, Q2 ———2.6/ Mev, Q = —3.04 Mev,

and the incident deuterons had a mean energy of 3.9/
Mev in the laboratory. We see that the protons are
captured with very small energies:

E=—Q—e= —Q—2.226 Mev,

E~=0.21 Mev, E2=0.44 Mev, E3=0.81 Mev.

As a consequence, the penetration factor,

kgb.
g (1)c

F12(kptR)+G)2 (kp1R)

will be quite small. For instance, choosing R= 5.8)(10 "
cm, l =1, and using E3, one 6nds that

s,&) =o sx&0-2.
'2 E. Goldberg, Phys. Rev. 89, 760 (1953}.

E 1
C1m'" =

a, oi'(2—l+ 1)'* j)(sr„),
ns+k 2 $2+ k 2

with

(49)

glvlng us

Mg &r
24= I(.— k= K— k,

M p Mz+M„

42rlV2R2M pMDz(2J+1) 1 1
&ivi

hM z(2I+ 1)E u'+kdt' p'+kz12

aj &(((rp) 81(')'—1
X j,(.r,) . (50)

E g

Having used the CouLomb eGect to eliminate the
penetration factor we will now, somewhat inconsistently,
neglect Coulomb effects. Neglecting the Coulomb effect
allows us to use
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served'4 in Mg" These turn out to be about 200 kev at
the same excitation as the levels in AP' discussed above.

The fact that we cannot fit the three curves using
the same value of R is disappointing.

We have already noted that the boundary condition
for the quantity @+Ah are not necessarily identical to
that for a "free" neutron with the corresponding energy.
Consequently, the reduced width that enters our ex-
pressions is not necessarily equal to that measured in
single particle reactions. Nevertheless, it is to be ex-
pected that the two reduced widths are of the same
order of magnitude.

The fact that we neglect the Coulomb interaction in
our approximation for C. leads us to underestimate the

/=0

p
0' 20 40'

8 (c.~.)

l

60 80

Pro. 2. Angular distribution (with respect to the center-of-mass
system) of neutrons from the Mg~4(d, n)AP~ reaction. Deuteron
energy in the laboratory system was 3.973 Mev. The Q was -2.67
Mev.

We have plotted this angular distribution for various
choices of E and l and compared it to Goldberg's data
in Figs. 1, 2, 'and, 3. The values of the parameters used
in the calculations are

0.=2.32X10"cm-',

P= 16.24X10" cm—',

e= 2.226 Mev,

jrlg =24.00 amu,

Mp= 25.00 amu,

3f„=1.01 amu,

M„=1.01 amu,

MD= 2.01 amu,

1 amu= 1.66X10-& kg.

With these choices one gets the following values for the
reduced widths yE and for D*:

py=327/(2J+1) kev, D*=5180/(2J+1) kev, for Q&,

go=108 kev, D*=1965kev, for Q2,
.

yq=207/(2J+1) kev, D*=2600/(2J+1) kev, for Q3.

Level 3 has been studied by Koester" by the elastic
scattering of protons. Koester classifies this level as a Pg
state having @ reduced width y=436 kev. Using this
assignment of J we get y=52 kev. The values we get
for D* may be compared with the level spacing ob-

13 ',. J. Koester, Jr., Phys. Rev. 85, 643 (1952).

It is seen that the best 6t to the data is secured by
choosing

l=1, 8 5.05X10 "cm, for Qg,

1=0, X=5.8X10—"cm, for Q2,

/=1, E=4X10 "cm, for Q3.

g:o

P.O' +0' 60
e(c.~.)

80

Pro. 3. Angular distribution (with respect to the center-of-mass
system) of neutrons from the Mg'4(d, n)Al2' reaction. Deuteron
energy of the laboratory system was 3.973 Mev. The Q was —3.04
Mev.

reduced widths. This is because we expect the true
expression for the stripping cross section to be smaller
than ours by a factor giving the diminution of the
square of the wave function of the incident deuterons
resulting from the partial penetration of the deuterons
into the Coulomb barrier.
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