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A general variational technique is developed to study the effect of recoil on the motion of a nonrelativistic
particle in a scalar field. The ground-state energy is determined, and the results obtained are shown to be
exact in the limit of both weak and strong field-particle coupling. This method is applied to investigate the
low-lying energy levels of a conduction electron in a polar crystal. The ground-state energy and eRective
mass so obtained are shown to be in good agreement with the results of Lee, Low, and Pines for the inter-
mediate coupling strengths occurring in real polar crystals.

a way as to allow correlation between quanta to enter
into the problem. This can be done by introducing
additional degrees of freedom for the field quanta, such
that a quantum can be emitted into any one of several
states. Our generalization of Tomonaga's formulation
is rendered easier by the introduction of certain formal
techniques which are developed in Appendix I.

We shall show that for the case of zero total mo-
mentum of the system (source plus quanta) it is suffi-
cient to introduce four possible states for the field quanta
corresponding to one "s"and three "p" states. Indeed,
the introduction of these extra degrees of freedom makes
possible an exact solution in both the weak and strong
coupling limits of the Geld-particle interaction. In the
strong coupling limit the importance of correlations
between successive quanta is reQected in the fact that
the mean value of the source recoil kinetic energy turns
out to be proportional to the square root of the total
number of field quanta, in contrast to the linear depend-
ence predicted by both weak coupling theory and the
simple Tomonaga model neglecting such correlations.

Our variational technique is applied to the problem
of a slow conduction electron (polaron) moving through
a polar crystal, and both the ground-state energy and
the polaron eGective mass are calculated. For this
latter case, in which the total system momentum is not
zero, it is necessary to introduce somewhat more com-
plicated trial functions than those required for zero
system momentum. For the intermediate coupling
strengths (g'&6) encountered in real crystals, we find
that the ground state energy differs very slightly from
that calculated by Lee, Low, and Pines' using the
simple Tomonaga approximation. The effective mass
correction is somewhat larger and may be as appreciable
as twenty percent for g'~5.

l
'HE motion of a nonrelativistic particle in a scalar

field serves as a prototype for a wide variety of
problems. Amongst these are the interaction between
low-energy nucleons and scalar mesons, and the electron-
lattice interaction in polar crystals, semiconductors,
and metals. In these cases the field-particle interaction
is frequently not- weak so that the usual perturbation-
theoretic methods are inapplicable. For such cases in
which the coupling is not weak and in which the recoil
of the source particle may be neglected, Tomonaga' has
recently introduced a very useful method of approxi-
mation which has acquired the sobriquet, "intermediate
coupling" approximation.

The Tomonaga approximation consists in a varia-
tional technique based on the physical assumption that
successive virtual quanta (mesons or phonons) in the
field around the source particle (nucleon or electron)
are emitted independently, and hence that there is no
correlation between different quanta, It is essentially
a Hartree-Pock approximation, in that all identical
quanta associated with the ground state of the system
are assumed to be in the same physical state. The num-
ber of quanta in the 6eld around the source is not
limited. Thp probability amplitude for finding a given
number of quanta and the particular functional form
for their momentum distribution are found by- a Ray-
leigh-Ritz variational calculation. This method for the
case of the interaction of a charged meson with a 6xed
nucleon leads to the correct answer in the limit of both
weak and strong coupling.

However, when the source particle is not 6xed, it is
easy to see that correlations will be introduced between
successive field quanta since the recoil kinetic energy
of the source will then come into play. Such correlations
are indeed favored, especially when the field-particle
coupling is strong, because they will act to reduce the
momentum fluctuation of the source particle. Thus it is
necessary to extend Tomonaga's formulation in suc

II
The Hamiltonian for a nonrelativistic particle inter-

acting with a scalar 6eld may be written as
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where (r, p) are the position and momentum of the
particle, n~ and nf, are the creation and annihilation
operators for the scalar field, a&(k) is the frequency of
the kth normal mode of this field, and g is the appro-
priate dimensionless coupling constant characterizing
the strength of the field-particle interaction. ' VFe find
it convenient to take advantage of the fact that the
total momentum of the system is a constant of the
motion. The total momentum operator is Zi, kni, *+i,+p
and commutes with the Hamiltonian, (1).It is therefore
possible to transform to a representation in which the
total momentum operator is diagonal and in which the
Hamiltonian no longer contains the particle coordinates.
The unitary transformation required is generated by

S=expi[(P Zuni—,*ai,k) rg,

"p" state wave functions must have the same radial
dependence. Thus we have

g, = (k,&3/k)g(k), (i=x, y, s), (4)

where g(k) is a normalized "s"wave function.
The calculation of this mean energy for a trial func-

tion of the form (3) is quite complicated. However, the
manipulations in such mean value calculations may be
simplified considerably by going over to a suitable re-
duced space for the operators n~ and o.~*. In Appendix I,
we show that if the Hamiltonian is ordered in such a
way that aemihilatioe operators ahcays appear oe the
ngkt of creation opercftors, then these operators may be
formally replaced by

ni,—+nf (k)+Z;P,k, [&3g(k)/k],

which transforms with a corresponding expression for ni, *. ci and P; are
the annihilation operators for "s" and "p" wave
quanta and are independent of k. The problem of 6nd-
ing the minimum energy for the Hamiltonian (2) then
reduces to solving the equivalent minimum value prob-
lem in the reduced space,

H~S 'HS = (P Zi, kni—,*ni,)'/2m+ Zi(v (k)ni,*ni,

+g&~(Vi~i+ Vi,*~a*), (2)

where P is a "c"number representing the total system
momentum.

Let us first consider the case in which I'=0. We
shall use a variational technique and work in a repre-
sentation in which the Schrodinger function 0' of our
system is described by a set of functions corresponding
respectively to states of no quanta, one quantum, two
quanta, etc. I.et (kik2 k~/@) be the probability
amplitude of finding X quanta of momenta kik2 k~
respectively in the field around the source particle,
assuming these quanta are distinguishable. A trial
function which corresponds to allowing field quantum
emission into one of four possible states is

~a=~(c Ixjc)=o, (6)

where C is a normalized reduced space wave vector,
and BC is given by

z

+ilII Q [(8?I:)2~2+(~8)2p.2+2~4p p~p j (7)

where'

(ki. kN/+) = c~,ml, m2, m8 (~!II m$!/.v!).'*

n n+ml n+ml+m2

xs[&if(k,) II g'(k„) II
72=n+mI+171=n+l

N

x
7'=n+mI+rn~l

(u =Z ((o+k'/2m) I f(k) I', (Sa)

~ =Z„(~+k'/2m)
I g(k) I' (Sb)

V=ZiV(k) f(k), (Sc)

M= [Zif*(k)g(k)kf'/6m. (Sd)

g (k;,)j (3) In carrying out the variation of E with respect to
C, we shall restrict our trial function to the form

where f(k) is a normalized "s" wave function for the
field quanta, and the g, (k), etc. , are the three normalized
"p" wave functions. Cn, m mi, 2mis3the probability am-
plitude for finding e "s" quanta, and ml, ns2, and m3

of the three kinds of "p" quanta, respectively. S is the
symmetrization operator with respect to all quanta,
and we also have

n+mi+m2+ma 1V, ——

where Ã may vary from zero to infinity. The functional
form of f(k) and g, (k), together with the numerical
value of the Cn, ml, m2, ms, are to be determined in such a
way as to minimize the system energy. It is clear that
since no preferred direction exists (for P=O), our three

3 Both A and the system volume will be taken =1 throughout
this paper.

where I is an arbitrary real numerical constant (to be
determined variationally) and F is an arbitrary func-
tion of P;. Io) is the state vector corresponding to no
quanta in the field. This choice will be seen to be su%-
ciently general to enable us to obtain an exact solution
in the limit of both strong and weak coupling. Using

(9), we see that

and thus

XC = [(cubi
—3M)I'+ 2' V+co2Z,P;*P;

+MN'Z;(8;+p;~)')C. (10)

The ground-state energy corresponding to (10) may

4 It will be seen that V and M are both real.
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E= —g' V'/(oi. (13)

In this limit, E depends only on f(k) This foll.ows from
the fact that in our Hamiltonian the interaction term
between the source particle and the field quanta
directly excites only "s"waves, and hence just involves

f(k) The "p"w. aves are coupled to the source indirectly
through their coupling with the "s"waves via the recoil
term. Consequently in the limit of weak coupling these
will only inQuence the energy for higher power of g.

Vpon minimizing E with respect to an arbitrary
functional variation of f(k) we find the best form of f(k)
ls

XiV*(k)
f(k) =

co+k'/2m
(14)

where A ~ is a normalization constant. The correspond-
. ing minimum value for the energy is

[ V(k) ['
g2 P

& o)+k'/2m

This is precisely the familiar expression derivable from
second-order perturbation theory.

For the strong coupling limit (g))1), we find on ex-
panding in a power series in (1/g).

E= [(a)i—3M)e'+ 2gg VX1+0 (1/g) ), (16)

so that minimum value of the energy with respect to
Q 1S

E= —g' V'/ (&ui
—3M) .

Upon minimizing E with respect to an arbitrary func-
tional variation of f(k) and g(k) we find these take the
following optimum forms:

f(k) =1Vi V (k)/co(k), (18a)

g(k) = X2f(k)k, (18b)

where Si and E2 are normalization constants. The

readily be obtained, since the eigenvalue problem is just
.that of three simple harmonic oscillators. We find

E= ((oi—3M)u'+ 2gl V+-,'co2[(1+4M''/cog) &—1j. (11)

Thus our minimum value problem becomes one of
minimizing E with respect to the parameter n and the
arbitrary functional form of f(k) and g(k).

We now wish to examine the solution of our mini-
mum value problem in the limit of both weak and
strong coupling. For both these limits, on differentiat-
ing (11) with respect to e it may easily be seen that I
will be proportional to g. In the weak coupling case,
(g((1), we find on expanding in a power series in g,

E= id,cP+ 2gu V+0(g')+, (12)

so that the minimum value of the energy with respect
tolis

corresponding minimum value for the energy is

i V(k) ['
Eo= —g' 2

(0(k)
(19)

5 A direct calculation of the strong coupling limit in this problem
is also possible, provided one introduces creation and annihilation
operators for spherical waves, rather than the plane waves used
in {1).Similar results concerning the ground-state energy and the
role of the source recoil can be obtained.

To show that this is indeed the exact solution in the
strong coupling limit, we return to our original Hamil-
tonian, (2). We note that if the recoil terms,
(Zi, kni, *nq)'/2m, were absent, the minimum value of
the energy would be just (19). The recoil term is,
however, always positive, so that (19) constitutes a
lower bound for the energy. On the other hand, Eo is
the result of a variational calculation and is hence an
upper bound for the ground-state energy. Since the
upper and lower bounds here coincide, Eo must be the
exact ground-state energy.

The magnitude of the recoil term can be obtained by
carrying out the expansion of (16) in powers of (1/g)
to the next order, and one finds that it is of order g.
Since the total number of quanta (iV= n*a+Z,P,*P;) is
on the average proportional to g', this result indicates
that the meari square momentum Quctuation of the
source particle, (p')A„ is proportional to (1V)A,l. If there
were no correlation between the direction of emission

'of successive quanta by the source particle, (p')Ay

would be proportional to (X)A,. Consequently in the
strong coupling limit these correlations are seen to play
a very important role by acting in such a way as to
limit the recoil kinetic energy to order g.'

It is perhaps surprising that one can obtain an exact
solution in the strong coupling case by using a simple
trial function of the form (3) and (9). This may be
understood in the following way. As we have remarked,
in the general Hamiltonian (2), the source is directly
coupled only to "s" waves. This coupling is linear in
the amplitude of the "s" waves, and thus its main
e6ect is to produce a simple displacement. in the "s"
wave amplitude, as reQected in our restricted trial wave
function (9). The number of "s" quanta in the field is
then proportional to g'. On the other hand, the recoil
term may be regarded as giving rise to a dipole-type
coupling between the field quanta, i.e., "s" waves are
coupled only with "p"waves, which in turn are coupled
in addition just to "d" waves, etc. In virtue of this
coupling, which according to (10) gives rise to a change
in frequency for the "p" waves, the number of "p"
wave quanta is proportional to the square root of the
number of "s"wave quanta and hence to g. Since the
"d" wave couples to the "p" wave in similar fashion,
the total number of "d" wave quanta will be of still
higher order in 1/g, and their influence may be neglected,
corresponding to our trial function (3).

For intermediate coupling strengths, the ground-
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state energy depends on the specific form of V(k), and
we shall not enter on a general discussion of this here.
In the following section we shall consider the detailed
solution in this range of coupling for the polaron prob-
lem. It may be of interest to note here that the general
form of f(k) and g(k) can be obtained by minimizing
E with respect to arbitrary functional variations of
f(k) and g(k), under the constraint that these functions
are normalized. We find these may be written as

EiVg~ (k'+ 2m(o+ X)
f(k) =

(k'+ 2m(v)'+ p (k'+ 2nuo)+p+ gk'
(20)

g(k) =
k'+ 2mcu+ X

(21)

where E» and A2 are normalization constants, and X,

p, p, p are numerical constants to be determined by our
variational calculation.

We now wish to apply the above considerations to a
determination of the ground state energy of the polaron.
In this case, we have from LLP,

&oz (8m ) '

k&m )
(22)

e' (2mc'q & (1 1)
g'= —

I

2c& cg ) En' e)
(23)

2(ko')&
I

a'~.
~ &2nuu)

(25)

It is of some interest to investigate the region of validity
of our strong coupling solution, (25). This can be esti-

'Here g' denotes the coupling constant instead of a as used
by LLP.

Frohlich, Pelzer, and Zienau, Phil. Mag. 41, 221 (1950).

where e and e are the optical index of refraction and the
static dielectric constant, respectively, and co is the
constant frequency of the longitudinal optical mode of
the lattice vibrations. ' There exists a natural cutoff
for our interaction in k space, kp, due to the discrete
nature of the crystal structure, and we shall understand
that in this section k is always considered to be less
than kp. For the continuum theory of lattice vibrations,
kp is the usual Debye limit.

For the case of the polaron, our weak coupling solu-
tion, (15), becomes, on substituting (22),

(24)

a solution first obtained by Frohlich, Pelzer, and
Zienau. In the strong coupling limit, in contrast to
weak coupling, the cutoG kp, plays an important role,
and we find from (19) and (22)

mated by a consideration of the importance of the
terms neglected in (16), and one finds that the strong
coupling limit is valid when

g))-,' (Ma) 2/ V') '.
On substituting (8) and (18) into (26) we find

(26)

TABLE I. Ground-state energy and polaron effective mass
for three values of the coupling constant.

5.2
10
15

—Bo/N

5.52
11.17
17,56

meff/m

2.21
3.96
6.35

1.86
2.67
3.50

g', the result obtained by perturbation theory and also
by the simple one-phenon state Tomonaga approxima-
tion of LLP. However, as anticipated by LLP, for the
case of NaCl, where g'=5.2, the correction is quite
small, being of the order of 6ve percent.

IV

In this section we consider the calculation of the
eGective mass of the source particle for the general
Hamiltonian, (2). In order to do this, we must consider
the case in which our Hamiltonian (2) describes a sys-
tem for which E'QO. We will however confine our
attention to very small system momenta, such that
(P'/2m~)((1. For the effective mass is defined by the
relation,

2meii EBB ) i '=0
(28)

and hence it is suf6cient to calculate E to order I".
When P~O it is necessary to adopt a somewhat

more general trial function than that given in (3). This
may be done by introducing in place of the spherically
symmetric f(k) an arbitrary function F(k) which is
normalized and orthogonal to the g;(k). The functional
forms of F(k) and g;(k) again are determined by the
variational principle. Since we are only interested in

g'))(3/40m) (ko'/2m')&. (27)

For typical polar crystals ko'/2m&v 100, and hence the
criterion for the validity of the strong coupling solu-
tion is

g'&)25,

For real polar crystals, the coupling constant g' is
generally of the order of 3 to 6, so that neither the
weak nor strong coupling solutions are valid. Thus it is
necessary to find the minimum value of E, (11), more
precisely. The calculation is straightforward, albeit
somewhat complicated, and the details are given in
appendix II. The results of a numerical calculation for
three values of the coupling constant g' are given in
Table I. We note that —Eo/a& is always greater than
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calculating 8 to order P', it will be suAicient to use a
wave function which is accurate to order P. To this
order, the g, (k) are found to be unchanged. However,
F(k) di6'ers from the spherically symmetric f(k) by
the addition of a "p," wave, i.e.,

F (k) =f(k)+ (dk,V3/k) h(k)P+0 (P'),

where d is a constant, h(k) is a spherically symmetric
function, and we have taken P in the s direction. The
presence of a "p," wave in F(k) thus corresponds to a
removal of the symmetry among the "p" waves and. is
to be expected since for PWO a preferred direction
exists, namely that of P.

The effective mass calculation is similar to that for
the ground-state energy and is given in Appendix III,
where we derive the following expression for the source
particle eGective mass,

m, fi/m=1+ (4/3)Zi, If(k) I'(k'/[k'+2m'(k)7)N', (29)

where N and f(k) are determined by the P=0 calcula-
tion. It may be seen directly that this expression re-
duces to the appropriate perturbation theory value in
the limit of weak coupling. However, in contrast to
the P=O calculation, our expression (29) cannot be
regarded as yielding the correct strong coupling limit,
since the latter expression is not yet known.

For the polaron, we utilize the numerical results
following from Appendix II, and the results of our
calculation for three values of the coupling constant
are given in Table I. There we have compared these
new results with that obtained by LLP

m. ii/m = 1+-',g'.

We remark that in general the change in eGective mass
due to our consideration of additional "p"wave phonon
excitation is in the direction of increasing m, ~q. Per-
centage-wise this correction is considerably large for
ss ff than for the corresponding ground state energy
calculation. For g'= 5.2, we find an increase of twenty
percent in m, ii over the LLP value, which is in good
agreement with their estimate of the accuracy of their
method. This leads us to believe that the present calcu-
lation is quite reliable for such intermediate coupling
strengths.

We should like to thank Professors J. Bardeen, M.
Gell-Mann, and F. Low for pleasant discussions on
these and related matters.

APPENDIX I

In this appends we should like to establish some
elementary theorems concerning the use of Tomonaga-
type wave functions. For simplicity we con6ne our
attention to a trial function which corresponds to
allowing Geld quantum emission into one of two pos-
sible states, whichare described by any two orthonormal

functions f(k) and g(k). Thus

((n m) —Im!& ~

(k, "k„Ie&=C. , „I
n! )
&& &[II f(k~) II g(k') 7,

g=n~+1

where 8 is the symmetrization operator with respect
to all quanta. The system wave function 0' may then
be expressed in terms of the vacuum state as

00 fb 1
@=+g C„

[(n—m)!m!7&

X (2 f(k),*)"-"(2g (k),*)-
I 0&,

where IO) denotes the vacuum state. Consider now a
reduced space wave vector defined by

oo n 1c=p+D „„ ( *)"-(P*)"IO),
n om=o=[(n m)! (mt)7k

where n~ and P* are two independent creation opera-
tors which are not related to k. C and + will be con-
sidered to describe equivalent physical situations if and
only if D„, =C„

Theorem 1:If 4~4 and 4'~& ' then (O'
I 4)= (C

'
I
C &.

Proof:

(+'I+&= Z 2 (C'—,-)*(C—.-)
n=o ~o

is by definition the same as (O'I 4).
Theorem 2: If 4'&—&C, then n%i'~[ fn( )k+P(g)k74

Proof: The coefFicient of the term (Zif(k)ni, )" ~

y (Zi,g(k)ni*)~IO& in ni% is

[C„~i, (n —m+1)lf(k)+C„,~i(m+1)~g(k)7

X-
7

[(n—m)!m!7&

which is the same as the corresponding coeKcient of
the term ( )"-"(P*)"IO) in [ f(k)+Pg(k)74. We
remark that n&~%' is by no means equivalent to [n*f(k)
+p*g(k)7C

Theorem 3: If 0'+-+C, and +'~l', then
N M

(+'I II n~'* lI n~
I +)

=(~ IrI[-*f*(k;)+P*g*(k;»II[-f(k;)+Pg(k;)7I~).
i=1

Proof: From Theorem 2, one has
M M

II-;~-rr [-f(k)+Pg(k;)7~

rr .+' II[f(k')+pg(k')7+'.
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Thus on using Theorem 1, one sees that Theorem 3
follows immediately.

These theorems can obviously be generalized to trial
functions which allow quantum emission into one of
any number of possible states.

On minimizing (Ai) with respect to c, one finds

(A3)

Using these relationships, and minimizing with respect
to x and b, one finds, after considerable simplification,

APPENDIX II

For the case of the polaron for which ~ is a constant,
our general trial functions, (20) and (21), may be
written as

EiVi,*(k'+a')
f(k) =

(k2 $2)2+ c2k2

f2= 1+I 1+(4/3)x67:,

g6P ]k2—1 q4
x'=

2(1+t2)& L2f6—1)

The corresponding value for the energy, (A1), is

(A4)

(A5)

g(k) =
(k2 g2)2+ c2k2

where a, b, c are numerical constants to be determined.
On substituting these expressions into (Sa)—(8d), to-
gether with our expression (22) for Vi, we find, on
changing the summation over k to an integral, and
carrying out the indicated integrations,

c2+ (1.+a2/$2) 2/2

G)i= G7 1+
(1+a'/b')'+ a4c'/k6

666
——66 (1+b')

&'I:1+(a'/&')'7
3f=—

3 (1+n'/b')'+a4c'/f 6

V'= 6Mc66/b'

In obtaining these expressions, we have introduced
dimensionless variables, in that all momenta (k, a, fi, c)
are measured in units of (2m&6) &. We then find that our
general expression for E, (11) may be written as

- (1+a2/$2) 2+a4c2/$6+ c2-

L1+b'7x'
$2 (1+a2/g2) 2

2gI (1+0') (2c)7lx
+l (1+~')

X{L1+(4x'/3)7" —1} (A1)

where we have found it convenient to introduce '

b'(1+ a'/b') 'u'

(1+jy) L (1+a2/jy) ~y a4c2/$67

(1+ f ') (5b' —2)x'
+-,'(1—b') (b' —2). (A6)

b'(b' —1)

Equations (A4) and (AS) may then be solved nu-
merically to obtain the optimum values of b and x,
which on substitution into (A6) yield the minimum
value of the ground state energy Eo. The results for
three values of the coupling constant are given in
Table I.

APPENDIX III

As we have remarked, it is necessary to adopt a
somewhat more general trial function than (3) for the
case of PAO. This may be done by introducing an
arbitrary function F(k) in place of the "s"wave func-
tion f(k). F(k) is normalized and orthogonal to the
g;(k). For small F, we may expand F(k) as

F(k) =f(k)+d(k,V3/k)k(k)F+O(F')+

where k(k) is symmetric. This form of F(k) is just that
adopted by LLP in the simple Tomonaga case. Thus
we may regard our trial function in this case, just as
was true for I'= 0, as a generalization of the LLP treat-
ment in that we have simply added three "p" waves
to take the correlation between quanta into account.
One may then proceed to calculate the dependence of
8 on I'2 in a completely analogous manner to our I'= 0
calculation, with the diRerence that the energy should
now be varied with regard to d and the functional
form of k(k) in addition to the other indicated varia-
tions. One finds that

F.= (66i—3M)u2+ 2g Vu+ r'66&I (1+4Mu6/666) ~—17

[(M/iu) lu,'~4ud 2(2M/) &u6d76-
j72

',662+ 2Mu'-

iV = (Z,Pgk)'/6~,
~6= Xi, Ik I'(66+0'/2m),

666 ——Zi, k*g ((v+ k'/2m).

(A2)g2 $4

' The upper limit of integration may be taken as 00 to a good
degree of approximation as long as g2&15,

as a new independent variable in place of u'. Thus our + (4/u'+666) u'd' —2 (21V/m) 4Pd, (A7)
minimum value problem is reduced to minimizing (A1)
with respect to the four parameters a, b, c, and x. where M, a&i, 666, and V are defined in (Sa)—(8d) and

On varying (A1) with respect to a, one finds the ~, ~ are, co3, cd ale
simple result:
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By inspection, we note that the optimum values for
f(k), g(k), and I will differ from those obtained for
P=O only to order P'. Consequently, this diGerence
will contribute a change in the energy of order P4

which may be neglected in our approximation of small
P. Thus the determination of the effective mass re-
duces to finding that form of d and k(k) which mini-
mize (A7). This problem can, however, be simplified
further by introducing an equivalent variational prob-
lem. This equivalent problem is obtained by regarding
the operator P, as a numerical constant. It may be
readily verified that although this replacement yields a
diferent value for Eo, the P' coeScient in the energy
is unchanged, and it is this latter value which we seek
to determine. Thus we write for our equivalent problem

ni,—+n[f (k)+qP y (k) (k,/k)v3 j
+ (P.k.+P,k„)%3g(k)/k, (A8)

where

3E' = [Zi, p*(k)f(k)k)'/6m,

'=Z ( +k'/2m)
~ q (k) ~'.

Upon minimizing (A9) with respect to g, we find

P2
jVz-

2m 1+4M'u'/co'
(A10)

f(k)k
y(k) =X3

k'+ 2nuu (k)
(A11)

The variation with respect to q (k) is elementary and
gives

instead of where Ã3 is a normalization constant. It is of interest
to note that the corresponding best form of k(k) isz

nk +nF (k—)+P P,k,U3g (k)/k.

k(k) =&4{p(k) —L~~p(k) g'(k) 3g(k) }.
In (A8), q is an arbitrary parameter and p(k) is a
symmetric function which may be regarded as a linear-
combination of g(k) and k(k). Using (A8), we find that fective mass,
the P' terms in the energy may be written as

(1 (M
z, (P)=P

~
+„~~-y~

I
~+m'I, ), (A9)

I 2m & 2m)

meff if(k)( k
= 1+I'(4/3)p

m (k'+2nuo(k))


