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Beginning with the isotropic form of the thermoelectric equations of Onsager's irreversible thermodynamics
as treated by Callen and deGroot, a direct transcription is made to the case of inhomogeneous and anisotropic
media. The "emf" of Kelvin, Bridgman, Ehrenfest, and Rutgers is the gradient of the electrochemical
potential and a general formula is given for this gradient in anisotropic media. Both the energy density vector
and the electrochemical potential gradient are expressed in terms of a "transport entropy matrix" S;;.*The
theory leads in a natural and straightforward way to the postulated expression of Ehrenfest and Rutgers. The
formulation is in a form easily adaptable to given experimental boundary conditions and, therefore, brings
out the limited validity of the Kelvin symmetry relations, as 6rst pointed out clearly by Kohler. Finally, the
theory includes the irreversible e6ects of heat conduction and Joulean heating, as well as the reversible
thermoelectric phenomena and is, therefore, more realistic and complete than the theory of Khrenfest and
Rutgers.

INTRODUCTION

HE Onsager theory of irreversible processes has
recently been applied by Callen' to thermoelectric

eGects in isotropic media, and a more detailed discussion
has been given by deGroot. ' Ehrenfest and Rutgers'
have given a brief treatment for anisotropic and. inhomo-
geneous media, based on a postulated formulation which
is simply a generalization of the basic equations found

by Voigt. 4 Voigt, in turn, had attempted to generalize
the theory of Kelvin, ' but Voigt's theory has been
shown to be incapable of predicting the "internal
Peltier eBect" discovered by Bridgman. ' More recently
other writers, notably Kohler and Meixner, ~ have
treated thermoelectric anisotropy from the point of
view of quantum kinetic theory. However, there has
been no treatment of the problem of thermoelectric
anisotropy on the basis of irreversible thermodynamics.
Ehrenfest and Rutgers left out of account the irre-
versible thermal conduction and Joulean heat-genera-
tion sects. The treatment given, here not only leads in

a natural way to the postulated relations of Ehrenfest
and Rutgers, but also includes these irreversible con-
duction and Joulean effects and thereby represents a
more realistic and complete theory.

*This work supported by Squier Signal Laboratory, Fort
Monmouth, New Jersey.' H. B. Callen, Phys. Rev. 73, 1349 (1948).' S. R. deGroot, Thermodynamics of Irreversible Processes
(Interscience Publishers, New York, (1951),Chap. 8.' P. Ehrenfest and A. J. Rutgers, Proc. Acad. Sci. Amsterdam
32, 698, 883 (1929).

W. Voigt, Kristul/Physik (Teubner, Leipzig, 1928).
' W. Thomson, Trans. Roy. Soc. (Edinburgh) 21, 133 (1857).
~ P. Bridgman, Proc. Am. Acad. Art. Sci. 61, 101 (1926); and

Thermodynamics of Electrical Phenomena in Metals (Macmillan
and Company, Inc. , New York, 1934), Chap. 6.

7 M. Kohler, Ann. Physik 40, 196 (1941); 27, 201 (1936); %,
Meissner, IIandbuch der Experimentalphysik (Akademische Ver-
lagsgesellschaft, Leipzig, 1935),Vol. 11,pt. 2. E.A. Uehling, Phys.
Rev. 39, 821 (1932);J. Meixner, Ann. Physik BS, 701 (1939);40,
165 (1941).
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J'= L„vp L„p—'T, —
J'= L„vp L,„—vT, —

W= Q+pJ', Q=TJ',

(1)

(2)

(3)

in which the so-called phenomenological coefficients I.„,
I.„,I.„depend only on the temperature in the case of a
homogeneous chemical phase and are related to phys-
ically measureable parameters by the expressions

L„=1/(e'p), (T/L„) (L„L„L,,s) = z, —

L /L S* eS.b.

Here p is the isothermal electrical resistivity, x is the
heat conductivity with no electrical current, and S' ' is
the absolute thermoelectric power. S* is the "transport
entropy per particle" and plays a prominent role in the
theory of irreversible thermodynamics. Throughout this
paper we consider the charge carrier to be the electron,
charge —e.

Substitution of Eqs. (4) into (1), (2), and (3) leads to
the three fundamental relations:

J'=S*J'—(a/T)V T

W= (TS*+p) J' zV T, —

p' p = —e'pP —S*v'T.

(5)

(6)

(&)

Equation (6) states that at a point in an inhomogeneous

7

GENERAL EQUATIONS FOR INHOMOGENEOUS
ISOTROPIC MEDIA

Let J', J', W, and Q be, respectively, the particle cur-
rent density, the entropy current density, the total
energy current density, and the heat current density,
and let p be the electrochemical potential (joules/par-
ticle) of an electron of charge —e in the isotropic medium
at a point which has absolute temperature T.It is known
from the theory of irreversible thermodynamics' ' that
these quantities are related as follows.
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isotropic medium at which there is electrical (particle)
current Bow as well as a temperature gradient, the total
energy current density (watts per unit area) consists of
three terms, iis. , an "entropy transport" term TS*J',
an electrochemical potential term pJ', and a thermal
conduction term —~VT. Equation (7) may be called the
"generalized Ohm's Law. " The electrochemical po-
tential p may be separated" into a chemical part and an
electrical part, p=ti —&. Thus, in an isothermal region
of a chemically homogeneous phase with VT= 0, Eq. (7)
gives the ordinary Ohm's Law, since the gradient V'p of
the chemical potential vanishes in this case. On the
other hand, if no current flows, J'=0, Eq. (7) gives the
"thermoelectric electrochemical potential gradient"
v'p = —S*v'T.

in which the quantities S;;*are the "transport entropy
matrix" and the ~;; are the "heat conductivity matrix. "
We emphasize the fact that relations (8) are postulates,
reasonable extensions of the isotropic formula (5). It
follows from (8), (5), and (3) that the component W, of
the total energy current density can be written

W;= TS;,*J)'+pJ,' ~,,BT/Bx). — (9)

Next we require the anisotropic formulation of the
relation (7) between electrochemical potential gradient,
particle current density and temperature gradient.
Equation (7) derives from the same basic relations (1)
and (2) as do (5) and (6), and it is therefore clear that
the required anisotropic form of (7) must be consistent
with (8) and (9). It is seen that the only uncertainty in
the direct transcription of (7) into anisotropic form lies
in the order of subscripts in the transport entropy

The presence of two identical subscripts in a term indicates a
summation.

GENERAL EQUATIONS FOR INHOMOGENEOUS
ANISOTROPIC MEDIA

In setting up the general equations me make the
assgmption that each component of the entropy clrrent
density J is a i&near fgnction of the components J,' of
particle clrrent density and of the components V; T of the
temperature gradient, with i, j= 1, 2, 3. The temperature
T and the electrochemical potential p are considered as
continuous and differentiable functions of position
(xi, x2, x3) within each separate phase. If an electrical
current Rows across a boundary between two media,
there will be cases in which the electrochemical potential
cannot be defined withers the junction. In such cases,
however, the finite jlmp in p across the junction can be
defined, and one needs only to use the appropriate
boundary conditions for p; otherwise such cases intro-
duce no particular difficulties. The relation (5) is thus
replaced by the three equations:

~ij ~T'
J,'=S,-*J'—— (', j=1,2, 3)

T Bxj

Bp BT Kij BT BT
Tf (s)= —J,' S,,*J,'—

~xi ~xi ~ ~xj ~xi

/Bp BT) z;, BT BT
+S;;* I+-

&ax; ax, & T ax; ax;

The terms in I~:;; are the contribution of the irreversible
heat conduction to the entropy source. strength, and the
terms in J represent the contribution of the irreversible
Joule heating. The quantity f (s) is required by the
Onsager theory to be positive, though not every indi-
vidual term in |(s) need be positive. Now the entropy of
the material contained within a given volume hV is a
constant in the steady state, since this entropy is a
single-valued function of characteristic parameters of
the material in AV such as the internal energy AU,
number of particle ~, and the volume AV. The
internal entropy production f (s) resulting from irre-
versible processes within AV is carried out by the vector
J' at a rate, div J', just sufficient (in the steady state) to
balance out f(s) so as to maintain a constant entropy
within AV.

The Joule contribution to Ti (s) can also be written

p,,3;Jj=epij 3& Jj (12)

where J;=—eJ and p,,=p, ; is the resistivity matrix of
the crystal at temperature T. If we equate (12) to the
Joule contribution in (11), we have

t'Bp BT)—J;) +S;,*
~

—=e't;;J'J'
E ax; axt)

= —J'(—e't * J') (13)

and since the particle (electrical) current density com-

Reference 4, p. 345; reference 2, chap. 4. It has not yet been
shown that for arbitrary crystal symmetry the matrix S;;* is
symmetric. On the contrary, the work of Kohler results in
quantum-mechanical expressions for a matrix p;;, related to our
Si;*,which are nonsymmetrical in the general case.

matrix 5;; . The matrices of electrical resistivity p;; and
of thermal conductivity a;; are:already known to be
symmetric. ' In order to deduce the correct form of the
anisotropic transcription of Eq. (7), we make use of the
conjugation of the "Quxes" J,' and J,' and "forces"
Bp/Bx, and BT/Bx; as expressed by the invariance of the
sum:

Tt (s) =J,'( Bp—/Bx;)+ J,'( BT—/Bx;) . (10)

According to the Onsager theory, the quantity l (s) is
the time rate of itstermal entropy production per unit
volume caused by irreversible processes, which in the
present problem result from Joulean heat generation
and heat conduction. Only the steady state need be
considered for our purposes, so that the sum (10) is
time independent as well as invariant with respect to
transformations of the "ffuxes" and "forces." If (8) is
substituted into (10), one finds
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ponents are independently variable, (13) leads to

Bp/Bx, = e—'p,;J,' S—;,*BT/Bx; (14)

It is interesting to notice that the Joule heat is not
correctly given in general by E,J;, with E;= —B$/Bx;.
In fact, we can show that this is so even in an isotropic
homogeneous phase, as follows. The correct Joule heat
expression is, using (12) and (14),

Equation (19) is a general expression for the production
of heat in an inhomogeneous, anisotropic medium,
crystalline or otherwise.

In general the components S,;* of the transport
entropy matrix depend on temperature and on position
in an inhomogeneous medium, so that the derivatives of
S;;*in (19) must include spatial as well as temperature
variations. Thus, since in general S„*=S~*(x,, T), we
must write

1 (Bp BT) 1 t'Bti Bg BT)
pJ J=

I

—+-s*
I
J=-I —e—+s*

e (Bx Bx) e (Bx Bx Bx)
BS,,* t BS,,'q PBS;;*~ BT

) +I
Bx, &Bx;)r E BT)*, Bx,

(20)

1(Bti i BT
+s*

I
J+E J,

e(BT ) Bx

B ( BT)
e'p J'J,'—+T"

Bx;E Bx)

B(S;;*J,')
(18)

or, set J,'= —(1/e) J,, where J; is the electrical current
density,

B ( BT) 1 B(sg*J;)

Bx; 0 Bx;) e Bx;
I An example of the latter kind of medium is a non-uniformly

strained body in which the strains give rise to a crystalline-like
anisotropy.

where we have written Bp/Bx= (BIJ/BT)(BT/Bx) and
E= —Bp/Bx Thus, we have pJ'=E J only for a phase
at uniform temperature, when BT/Bx=0.

VOLUME AND SURFACE HEATING EFFECTS

The vector W; in (9) gives the total energy current
density at any point in the crystalline medium. In the
steady state there can be no accumulation of energy
within any infinitesimal volume element and the vector
8"; must be divergenceless. Thus,

BW, B(S;;*J ) BT—=0= T +S@*J
Bxi

BJ Bp B ( BT)
+p +J,' —

I
~;, I. (16)

Bx; Bx; Bx; E Bx;)

This relation and the following are thus valid for non-
homogeneous crystalline or crystalline-like media. "The
third group of terms on the right-hand side of (16)
vanish, since the particle current is divergenceless.
Substitution of (14) into the fourth term on the right-
hand side of (16) gives

J 'Bp/Bx, = e'J,'p J—' J'S",,*B—T/Bx;

e'p J'J' S *J'BT—/Bx"— .

the last term here cancelling the second on the right-
hand side of (16). If we solve for the derivative
B(g;,BT/Bx;)/Bx;, we find from (16):

and the last group of terms in (19) breaks down into the
three groups:

T B(Sv*J~) T (Bs" )
e LBx;)ve 8@i

T t'Bsg ) BT T BJ;——s;;* . (21)
e & BT).;Bx, e Bx;

Relation (21) is the starting point of the Ehrenfest-
Rutgers theory. We shall use the following notation for
the four separate groups of terms in (19) and (21):

QJ = —p'JJ'J~ (22)Joule:

1 (Bsg*)
Peltier: Qi = TJ;I—— (23)

e E Bx;)r
1 (Bs ~ BT,(V l ouem

Thomson: Q
—= ——TJ,

I

"
I

eGects) (24)
e ( BT )*,Bx;

1 BJj
Bridgman: Qe= Ts;,*——

e Bxi
(25)

Each of the Q's represents a heat absorbed per unit
volume per unit time. Our sign convention agrees with
that of Bridgman, absorbed heat being taken as posi-
tive. Khrenfest and Rutgers use the opposite conven-
tion. Equation (22) gives the Joule heat evolved and is
therefore negative. If the medium is not homogeneous,
there is a volume Peltier heating effect Q& given by (23).
Whether the medium is homogeneous or not, there is a
Thomson heating effect given by (24). The last terms
(25) describe an effect first predicted by Bridgman. '

We consider next the phenomena taking place when
an electrical current crosses a boundary between two
anisotropic media. The generalization to the anisotropic
case follows directly from the formula (9) for total
energy Row H/';. Consider a composite system consisting
of two different anisotropic and inhomogeneous media
X and R electrically and thermally jointed along some
arbitrary surface AB, as shown in Fig. 1. The reference
axes are x&, x2, x3, and the principal crystallographic
axes (or other characteristic axes) of each medium X
and R may be oriented in any way whatever relative to
these reference axes. As in the case of isotropic media,



CHARLES A. DOM EN I CALI

FIG. 1. The curve
AB represents a junc-
tion between two
anisotropic, inhomo-
geneous media X
and E.

the joint or contact AB between X and 2 will, in
general, be a very complex transition region of some
6nite thickness d. This thickness is, of course, somewhat
indefinite, varying from place to place along the bound-
ary and will depend upon the method used for joining
the two media. Often the main bulk of the junction may
consist primarily of some third material, for example,
when two diferent crystals are cemented together with
ood's metal or with soft solder. In such cases the
junction layer of solder may be several thousandths of
an inch thick in many places. On the other hand, if the
joining is done by electrical fusing of the two single
crystals, the transition layer or sheath will probably be
a physical mixture of polycrystals of X and R together
with some alloy crystals, and so on. In almost all cases
in which quantitative measurements are to be made on
arbitrarily-oriented. single crystals, the boundary AB
will be a simple butt joint; in such cases some quanti-
tative estimate can be made of the "contact resistance"
or "sheath resistance" R„provided the resistance
matrices p„x and p;;" for the two crystals X and E. are
known. The procedure for determining E., in the case of
two crystals is essentially the same as that for isotropic
phases, except for the added complications resulting
from the crystalline nature of X and E. However, since
these complications can be handled in a straightforward
way having little to do with thermoelectricity, we shall
not discuss the details.

If we return to formula (9) and the figure, we see that
since in the steady state energy and charge cannot
accumulate in the boundary region AB, the boundary
conditions on total energy current density and electrical
current density are

(26)

(27)

in which n; are the three components of the unit normal
vector which we agree always to point outward from
medium X. The superscripts X and E. refer to the
medium in which the. current Qows. If we apply condi-
tion (27) to (9) and collect similar terms for the two
media, we find

e
—1T(S,PxJ,xn, S.PRJ,Rn, )

+e—l(pXJ Xn pRJ Rn )
+( «,;x(BTl8g )xn; «, B(aT/ag;)Rn, —]=0.

The bracketted groups of terms represent the energy
flowing out of the boundary region (per unit area of the
sheath) by ordinary heat conduction through media X
and E. The middle group of terms give the Joule
dissipation in the resistance E, of the sheath; this can be
seen as follows. If we write J,= —eJ,' in (14), we have

(ap/ax;)n;= ep 1J; n; S„~—(BT/Bx;)n;.

Now we assume the resistive sheath to be isotropic, so
that p;, =0 for iQ j, p;, =—p„and if we further assume
that the second term on the right-hand side of this last
equation is negligible compared with the first, we find in
crossing the boundary

Ap= pR p—x= (—Bp/Bx;)n, d
= (Bp/Bs)d —ep, (j,~;)d, (29)

where s is distance along the normal e and d is the
thickness of the resistive sheath. Because of (26), it
makes no difference which current components, J,x or
J;R, are used in the last parentheses in (29), and we
choose J ~.

e
—1(pXJ Xn pBJ Rn.) e—1(pX pR)J Bn

= e 1(—ep, j;Rn d)J Rn.= —.
p d. (J Rn.)2 (3O)

We can now rewrite (28):

(&T/ctg ) n «,r (BT/B—g )Rn ] pd(.jRn )—'.
+e—lT(S.Pxj.xn. S.PBjRn, ) O.(31)

Expression (31) describes the heat generation and
transport at the boundary region between inhomogene-
ous, anisotropic media X and R and is the surface
analog of the "volume" Eq. (19).We name the second
and third sets of terms as follows:

Joule: qz—=—p,d (J,n;)',
] (S f (32)

Peltier:qB =—e '(S"*xJxn —S"*BJRn) I
" ) (33)

Each of the "q" represents a heat absorbed per unit area
per unit time.

%e next set down the definitions:

IIg=—+—TS,;*=II 1.(T; gl, x2, xa),
e

(34)

rg= e T(8S;—1*/—BT-)~;=r;; (T; xl, xm, x3); —(35)

we call II;; the I'eltier coegcient matrix and r,; the
Thomson coegcient matrix for a given inhomogeneous,
anisotropic medium at temperature T and at point
xj, x2, x3 within the medium, when referred to rect-
angular coordinate axes xl, x~, x~. Relations (22)
through (25) for the volume heating effects become,
with ~, j=1,2, 3,

Joule: Qs =——p;;J;J;, (36)

Peltier: QB—= —(cjlI;;/8g, )J;, (3&).(Volume efFects)
Thomson: Q&= r;;J;BT/Bx;, (38)

Blldglllall: QB=—II;&8J&/ctgt; (39)
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and (32) and (33) for the surface heating efFects become

Joule: ps=——p.d (J,os;)',

Peltier: qs
=——(II snJP —II,sxJ;x)rs;.

(Surface (
effects)

DISCUSSION

Starting with the isotropic theory of thermoelectricity
we have postulated the fundamental relations (8) and
from these have deduced without further assumptions
the Ehrenfest-Rutgers equations (21). In addition, the
irreversible efFects of heat conduction and Joulean heat
generation are included in the present theory in a
natural way. Using our equations it is an easy matter to
set down various boundary conditions appropriate to a

given experimental arrangement, and thus one can
easily derive the ordinary Kelvin symmetry relations
which, as first shown clearly by Kohler, ~ are correct only
for isothermal boundary conditions. If one applies
adiabatic boundary conditions, he can derive more
general relations which have been found by Kohler to
give better agreement with experiment.

The author wishes to thank Mr. Ei'ik Klokholm and
Dr. D. P. Detwiler for several helpful discussions in
connection with this work. Also, he wishes to express his
appreciation for the encouragement as well as financial
support he has received from the Squier Signal Labo-
ratories. Finally, he thanks Dr. F. C. Nix for his con-
tinued interest and encouragement in the author' s
work.
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Change of Electrical Conductivity of Sodium Chloride upon Bombardment
with High-Energy Protons*
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(Received July 15, 1953)

The conductivity of NaCl in the region 125'C to 400'C is considerably decreased by bombardment at
room temperature with 10I5 protons/cm2:of energy 350 Mev. There are several temperatures where part
of the effect anneals. A small decrease in conductivity still remains after heating to as high as 470'C. No
satisfactory explanation for the results is evident.

A new method of measuring conductivity is described.

HE generally accepted picture of electrical con-
ductivity of alkali halides is a motion of ions

associated with the presence of lattice defects. Since
nuclear radiation is known to produce lattice defects,
it is of interest to study the conductivity of irradiated
crystals and the annealing of the changes at various
temperatures.

Single crystals of sodium chloride (obtained from the
Harshaw Chemical Company) were bombarded with
350-Mev protons in the Carnegie Institute of Tech-
nology synchrocyclotron. Crystals of the order of a
millimeter thick and a few square centimeters area
were placed inside the cyclotron's vacuum chamber in
the direct path of the circulating proton beam. Alumi-
num foil mounted alongside the crystals was used to
measure the amount of irradiation by means of the
reaction Ai2'(p, 3pn)Na'4. ' It is estimated that the tem-

. perature of the crystals probably did not get higher
than about 50'C during irradiation. Most crystals had
been annealed in a helium atmosphere at 650'C after
cleaving and before irradiation.

*This work is supported by the U. S. Atomic Energy Com-
mission. The results reported here were brieRy described by the
author at the meeting of the American Physical Society in
Durham, North Carolina, March 28, 1953 I Phys. Rev. 91, 244
(1953)g.' L. Marquez, Phys. Rev. 86, 405 (1952).

The conductivity measuring apparatus is shown in
Fig. 1. This circuit compares the resistance of the
crystal with the input resistance of the oscilloscope.
This particular arrangement allows one to observe any
polarization eGects and to eliminate trouble with dc
amplifier drift, or the capacitance of the crystals. The
conductivity was measured over the temperature range
from about 125' to 470'C, the lower limit being deter-
mined by the sensitivity of the apparatus, and the
upper limit by failure of the electrodes on the crystal.
The crystal holder holds two specimens at the same
temperature so that a bombarded crystal can be directly
compared with a "control" crystal (cut from the same
large crystal as the bombarded one) which has not been
bombarded. This gives one confidence about the repro-
ducibility of the data. The maximum resistance de-
tectable with the apparatus as shown is 2)&10" ohms.
Electrodes were either graphite ("Dag") or silver con-
ducting paint (Dupont 4817).

RESULTS

Figure 2 shows typical results, expressed as the ratio
of the conductivity of a control crystal to that of an
irradiated crystal. The arrows indicate time, the se-
quence starting from top left. The figure shows that
there are several ranges of temperature where healing


