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An attempt is made to interpret recent experiments on the x-ray spectrum of p, -mesonic atoms. In
particular, an analysis is made of the 2p —1s transition energies, which are sensitive to the nuclear charge
distribution. Agreement with experiment is obtained for a uniform sphere of nuclear charge of radius
R=1.2)&10 "A& cm. Various eRects such as nuclear polarization, electric quadrupole moment, screening
by atomic electrons, and a meson-nucleon interaction of the order indicated by the charge exchange capture
reaction are considered and do not alter this radius appreciably. However, an anomalous meson-nucleus
interaction, though doubtful, could alter the estimated radius. It is shown that the small nuclear radjus is
not in disagreement with that determined by other electromagnetic measurements, including mirror nuclei
experiments.

INTRODUCTION

HE discovery by Conversi, Pancini, and Piccioni'
of the smallness of the p -nuclear interaction and

the resulting realization that the p, meson was not the
Yukawa particle, although originally a great disappoint-
ment to theoretical physicists, has led to an interesting
and useful tool with which the nucleus can be probed.

It was soon realized' ' that a relativistic p meson can
be slowed down in condensed matter, captured in bound
states about a nucleus, and can make transitions to the
lowest bound states in a time short compared to that
for meson decay or nuclear capture. Thus there seemed
to be a strong possibility that p,-mesonic atoms could be
produced. Such atoms are of great interest because an
investigation of their spectra might yield information
about the nuclear proton distribution. Furthermore, if
spectra of sufficient accuracy could be obtained, the
spin, magnetic moment, and mass of the p meson could
be determined independently of other measurements.
This was suggested by Wheeler, ' and a study of p, -
mesonic atomic spectra has been carried out by Fitch
and Rainwater. '

When 6rst captured by an atom the p meson
interacts with the atomic electrons and with the nucleus,
cascading down to the lower orbits through radiative
and electronic processes. The highest angular momen-
tum states are preferred for statistical reasons, and
there is a large probability that the meson will fall to a
2p state. This is enhanced by the absence of a meta-
stable 2s level. In the mesonic atom the 2s level is above
the 2p level because of the extension of the nucleus.
Wheeler', has shown that for Z larger than IS the
probability of radiative transitions among the lowest
orbits is overwhelmingly larger than that of electronic
(such as Auger) transitions. Thus a 2p —1s radiative
transition is expected. A transition to the 1s state is of
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particular interest because the is level is most sensitive
to the nuclear charge distribution. (The higher levels
progressively become more hydrogen-like. ) The energy

. and intensity of the x-rays emitted in the 2p —is
transition make them easiest to observe, and it is these
x-rays that Fitch and Rainwater have studied.

The use of the p, meson as a nuclear probe is possible
because the mesonic orbits are much closer to the
nucleus than the corresponding electron orbits. This is
due to the meson-to-electron-mass ratio, which is about
210. For heavy elements, the average radius of the
meson ground state may lie inside the nucleus. In the
case of lead for example, the probability of finding the
1s-state meson inside the nucleus is approximately one
half. For the heavy elements therefore, the lowest meson
energy levels and transition energies are very sensitive
to the nuclear charge distribut;ion.

The eGect of the atomic electrons on the lowest meson
energy levels can be calculated by'considering the
screening e8ect of the electroris as decreasing the e6ec-
tive nuclear charge. The p-level shift for a heavy
element such as lead is about 0.005 Mev or 0.1 percent
of the p-state energy, while for a lighter element such
as copper the corresponding shift is about 0.002 Mev
or 0.3 percent of the orbit energy. We can therefore
neglect the interaction of the meson with the atomic
electrons in calculating the expected energy of the
radiation emitted in the lowest-level transitions of the
meson, and can treat the meson and nucleus as an
isolated system.

When the experiment is carried out for an element
with several isotopes, the chief eGect to be expected
with the present resolution is a broadening of the
observed spectrum lines.

There are two distinct interactions of the meson
with a nucleus. One is the electromagnetic interaction,
which, as Wheeler has shown, 4 is predominant, while
the other —a speci6c nuclear interaction such as that
leading to the charge-exchange-capture reaction —is
much smaller.

The electromagnetic interaction itself can be divided
into static and dynamic interactions. These latter give
rise to such re6nements in the spectrum as hyper6ne
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structure, which are very small. For aluminum, with
spin 5/2, the splitting effect due to the interaction with
the nuclear magnetic moment is about TO ev.4 For
lead, Pb'0~, the corresponding number is about 3 kev.

In Sec. I it is shown that the energy levels of a
p,=mesonic atom can be obtained by considering the
meson to move in the electric potential produced by a
uniformly charged spherical nucleus. In addition, for
light nuclei, the shift of the 2p —1s transition energy
resulting from the extent of the nucleus is shown to
depend only on the second moment of the charge
distribution.

In Sec. II we consider the dependence of these energy
levels on (1) meson properties, (2) the assumed nuclear
ground-state charge distribution, (3) nuclear polari-
zation effects, and (4) anomalous meson nuclear
interactions.

In Sec. III the results of the p -meson experiment
are compared with other mesurements of the nuclear
radius. Electromagnetic radii, as measured by high-
energy electron and proton scattering and by isotope
shifts, are consistent with the present experiment. We
show that mirror nuclei radius measurements cannot
be made consistent with the above by charge-distri-
bution variations alone. However, inclusion of the
Coulomb exchange energy and angular momentum
eGects in the calculation of the energy change in mirror
nuclei transitions removes the discrepancy.

I. ENERGY LEVELS OF THE MESONIC ATOM

The entire meson-nucleus interaction can be divided
into two parts, one of which is electromagnetic in origin,
while the other is a specific nuclear interaction. Because
of the smallness of the nuclear term, it is possible to
calculate the energy levels of the meson-nucleus system
by considering only the electromagnetic interaction and
treating the nuclear interaction as a perturbation.

The Schrodinger equation for the meson-nucleus
system is then

protons H' is

(
*-x ( lr —R;I)

(2)

where R; is the position vector of the ith proton and
r is the position vector of the p meson.

The wave function for the meson-nucleus system can
be separated if we assume that the nucleus is unaffected
by the presence of the meson. Such an assumption is a
legitimate erst approximation because the meson-
nucleus interaction is small compared to the forces
which bind the nucleus. With this assumption, 0
becomes

0'(Ri R' Rz, r) =P(Ri R" Rz)C (r),

and H' can be replaced by

(3)

(H~+ V)e=.C (4b)

W is thus W=Z+», where E is the nuclear and» the
mesonic energy.

If the nuclear ground-state charge distribution is
taken to be uniform

p(R;) = constant E;(E
p(R) =O Z,&Z,

then the potential U becomes

where f(R~ Rz) is the nuclear wave function (f» is
the ground state) and P(r) is the meson wave function.
In this case Eq. (1) becomes

(4a)
and

P% = (H"+H&+P')@=W@

where HN is the total nuclear Hamiltonian, BI' is the
free meson Hamiltonian, and II' is the electromagnetic
interaction of the meson and nucleus.

In this treatment the p, meson is taken to have a
spin' of ~ and to satisfy the Dirac equation; thus III" is

Ze
(6)

&"=~ n+Pp-

(S=e=1 is used throughout. ) n and P are the usual
Dirac matrices, and p is the meson mass.

In the electromagnetic interaction term the nucleus
is not treated as a point charge, since for heavy elements
the meson may spend a considerable portion of its
time inside nuclear matter. For a nucleus with Z

6 J. Tiomno and J. A. Wheeler, Revs. Modern Phys. 21, 144
(&94i).

where R is the nuclear radius. Equation (4b) is then
the Dirac equation for a charged particle in the po-
tential of a uniform sphere of charge Ze. This can be
expanded into large and small components because the
meson nucleus system is not very relativistic. From
Eq. (6), the minimum potential, —3Ze'/2R, is seen to
occur at the center of the nucleus and to decrease with
Z. Even for a heavy element such as lead

I Vl, is
only approximately 25 Mev, which is much smaller
than the meson rest mass of $07 Mev. The equation
for the large components may be written as

(»—V)' 1 1 1dV
EIs +|7'+ ——L S yg- »yr, , (7)

2p, 8p' 2p,' r dr
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where Be is the Schrodinger Hamiltonian, Be———Vs/2tt

+V, and the last term is the spin-orbit interaction.
%e have solved this equation, treating the relativistic
terms as perturbations on the Schrodinger solution.
This can be shown to give energies that are accurate
to better than 1 percent. The eigenvalues of the
Schrodinger equation are obtained by matching the
logarithmic derivatives of the internal and external
wave functions at the edge of the nucleus. The internal
wave function is'

g, t (internal)

~exp( —P'ps/2) (Pp)' limF(7, b, k+3/2; p'/b). (Sa)

For /=0, this can be written simply as

@ p(internal)~exp( —P'ps/2)Ãr (Pp). (Sb)

Here p= (Stte)&r, Pe=Ze'/(64tte'Rs), y=i' —(i+1),
=(3Ze'/SeR —er)/2P' ——',, l is the angular momentum
of the state of energy. e, P is the hypergeometric series, '
and 3'. is that solution to the Hermite differential
equations which is zero at the origin. The external
wave function is

@,t(external)~p 'Wh ttg~t)+;j&(p), (9)

where k=Ze'(tt/2e)'* and W is the confluent hyper-
geometric function.

The corrections to the nonrelativistic energy levels
due to the Dirac terms in Eq. (7) are of the order of
2 percent for lead and copper. The essential nonrelativ-
istic motion of the meson allows us to treat corrections
such as those arising from polarization as perturbations
on the nonrelativistic solutions.

lga
R 1.4 r (207) x IQ cm (LEAD)

--—R =1.2 x (207) & x IO cm (LFAD)
—- —R 1.3 & (63.6) & s IO '~cm (COPPER) 2 29

R R

5—
$r

4—

TAaLE I. Experimental and calculated 2p- 1s transition energies.
The meson mass is taken as 210tn, .

Element

Calcu-,
lated ro,

Experi- (R =re &) Calcu-
mental to fit lated

2p~s —isg experiment 1sy
energy ( &(10» energy

Z Mev - cm) Mev

Calcu-
lated

2pg —Isy
energy
Mev

Calcu-
lated

2py-1sy
energy
Mev

Aluminum
Silicon
Titanium
Copper
Zinc
Antimony
Mercury
Lead
Bismuth

13 0.35
14 0.41
22 0.955
29 1.55
30 1 60
51 3 50
80 5.80
82 6.02
83 6.02

R=1.3X10 '3XA~ cm

1.17
1.21

1.282 0.935 0.933
2.12 1.52 1.51

1.22 5.22 3.41 3.37

1.17 10.11 5.48 5.30

Fitch and Rainwater have solved the Dirac Eq. (4b)
without expansion into large and small components and
by other methods described in the preceding paper. For
the elements we have treated, 'our calculated energy
levels agree, with theirs to within 1 percent. Their
experimental and calculated results are repeated in
Table I below. Our nonrelativistic wave functions for
the 1s level of lead (rp ——1.4 and 1.2X10 's cm) and
copper (re= 1.3X10 "cm) are plotted in Fig. 1.

It is seen from Table I that for a meson mass of
210m, and a nuclear radius larger or equal to 1.3
X 10 "A& cm (as expected from other datap), the calcu-
lated 2p;—1sh transition energies are consistently
smaller than those observed. A radius R,=1.2X10 ted&

cm, on the other hand, is consistent with the experi-
mental data for all elements.

For light nuclei it is possible to treat the energy shifts
due to both nuclear extension and relativistic effects as
perturbations on the Schrodinger equation for a point
charge. The correction due to nuclear extension keg
is negligible for all but the 1s state. The corrections
due' to both effects may be computed as a power series
expansion in Ze and Zap', where e is the 6ne structure
constant. For an arbitrary charge distribution the
leading term in the expansion of keg is

I

I
I
I
I

I
I

I
I

I
I

I

I
I
I
I
I
I

I

S IO
rs IQ cm

Is 20
(10)

FIG. 1. Normalized, nonrelativistic is-state meson wave func-
tions for copper and lead. The nuclear charge distribution is
taken to be uniform and of radius R=rpA&.

~E. U. Condon and P. M. Morse, Quuetgni mechanics (Mc-
Graw-Hill Book Company, Inc., New York, 1929), p. 79; H.
Margenau and G. M. Murphy, The Mathematics of Chemistry and
Physics (D. Van Nostrand and Company, New York, 1943),
pp. 72, 76.' E. T. Whittaker and G. ¹ Watson, 3foderw Analysis (Mac-
Millan Company, New York, 1944), Chap. 16, especially p. 343.

where the latter equality holds if

limr'(V —V„)=0.

In Eq. (10) gp is the nonrelativistic hydrogen-like wave
function for the mesonic is level; V is dined by Eq.

9 J. M. Blatt and V. E. Weisskopf, Theoretical Egcleur Physics
(John Wiley and Sons, Inc., New York, 1952), pp. 14-15.
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(3), V„ is the interaction energy of a point nucleus with
the p meson, V„= Ze—'/r, and p is the charge density
corresponding to V, p= —V'V. For light nuclei, there-
fore, it is essentially only the second moment of the
charge distribution which is determined by the x-ray
transitions observed by Fitch and Rainwater. It is of
interest to note that the integral in Eq. (10) determines
the change in the cross section for the scattering by
nuclei of high-energy electrons (less than 40 Mev)
when the nucleus is an extended source rather than a
point charge, as was shown by Feshbach. "

For a uniform charge distribution Eq. (10) gives

5eii ————',ti (Zn)'(Zo tiE) '.

The dependence of the leading term in 2 e~ on Z and E,
as given by Eq. (11) is quite general. This can be seen
from Eq. (10), since J'pr'dr is proportional to ZE.'.
Hence Ae& is proportional to Z'E.', and it is only the
coefficient (52 in Eq. (11)jwhich depends on the nuclear
charge distribution.

2. Amass

In the calculations reported in Table I the mass of
the p, meson was taken to be 210ns„ in agreement with
the best measurements of this mass, ""as well as a
good fit of all the Fitch and Rainwater data. For a
point nucleus, the hydrogen-like meson energy levels
(and transition energies) are directly proportional to
the mass of the meson. For a uniformly charged nucleus,
however, the potential inside the nucleus is harmonic

I see Eq. (6)]. Thus the meson spends some time in a
potential for which the transition energies are inversely
proportional to the square root of the mass. " The
calculated 2p —is transition energies then are not
directly proportional to the meson mass. In particular,
for heavy nuclei (A 200), where the probability of
the meson being inside the nucleus is about one-half,
the energy levels are quite insensitive to small variations
in mass.

A perturbation procedure allows 'us to estimate the
dependence of the energy levels on the meson mass as

t

II. CORRECTIONS TO ENERGY LEVELS
(~~ Vi—)~pl p—, (12)

It is now necessary to consider the detailed depend-
ence of the results of Sec. I on the assumptions- that
have been made.

A. Meson Properties

1. Spic and Magnetic 3foment

The p, meson has been assumed to have a spin of
one half. For a point particle spins of one or larger, or
a large anomalous magnetic moment are inconsistent
with cosmic-ray burst data. " "An anomalous magnetic
moment of about eight times the normal Dirac moment
would be necessary to increase the 2P;—is1 transition
energy by 0.5 Mev in lead. (Such an energy shift would

lead to a radius of 1.3)(10 "3& cm from the experi-
mental data. ) The 2p; —2p; level splitting would then
be 1.44 Mev and should have been observed. (Experi-
mentally a 0.2-Mev splitting is believed to have been
observed, corresponding to the normal Dirac moment. )

Spin zero is inconsistent with the decays of the pi
meson and the mu meson, if the neutral decay products
are assumed to be neutrinos. Even if the meson spin is
assumed to be zero, however, the energy levels obtained
in Sec. I remain substantially unaltered. The reason
for this is that the spin interaction is small, its largest
eGect being to produce a fine structure in various
orbital angular momentum states. The absence of the
2p fine structure would decrease the maximum calcu-
lated 2p —is transition energy by a small amount.

' H. Feshbach, Phys. Rev, 84, 1206 (1951).' R. F. Christy and S. Kusaka, Phys. Rev. 59' 414 (1941).
'~ R. E. Lapp, Phys. Rev. 64, 255 (1943); 69, 312 (1946)."F. E. Driggers, Phys. Rev. 87, 1080 (1952), Additional

references are given here.

where eI, is the energy for a meson of mass 210m,
in the state specified by the quantum number k,
Vq ——Q&q~ V~Pq), and hy, is the change in meson mass.
The term in parentheses in Eq. (12) represents the
average kinetic energy of the meson in the state k.

For lead, with a nuclear radius E.= 1.4A')&10 "cm,
a 5 percent increase in mass increases the 2p —is
transition energy by about 0.2 percent, or 8.0 kev. This
small change in energy means that the average kinetic
energies in the 2p and is states are almost equal; exact
equality would lead to no change in the transition
energy for a small variation in mass. For a radius of
1.3A&X10 " cm, the increase in energy is approxi-
mately 14 kev. For a lighter nucleus, such as copper,
on the other hand, a mass increase of only 0.7 percent
increases the 2p —is transition energy by a much as
10 kev. In this case, then, to fit the experimental
transition energy with a radius, ro= 1.3)& 10 " cm, the
meson mass required would be 215—216m, . A similar
result is obtained for titanium, as shown in the accom-
panying paper by Fitch and Rainwater.

B. The Nuclear Ground State

In Part I the nuclear ground state proton charge
distribution has been considered to be uniform and
spherically symmetric.

1. Discreteness of Charge Distribgtiom

In the above calculations the protons were replaced
by a continuous distribution. This assumes implicitly

'I

Lederman, .Booth, By6eld, and Kessler, Phys. Rev. 83, 685
(1951).

"W. H. Barkas, University of California Radiation Laboratory
Report UCRL-1285 (unpublished)."L. I. Schiff, Quuetgm Mechanics (Mcoraw-Hill Book Com-
pany, Inc. , New York, 1949), p. 61,
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that the meson wavelength is much larger than the
average wavelength of the nucleons. For heavy atoms,
however, the wavelength of a meson in the 1s state is
of the order of magnitude of nuclear dimensions. An
estimate of the e8ect of a discrete nuclear charge
distribution can be obtained by calculating the inter-
action of a meson with a static nucleon lattice. The
protons are arranged symmetrically on spherical shells,
the number of protons on a shell and the spacing of the
shells being so chosen that the radial variation of the
potential produced gives no energy level shifts from
the uniform distribution. The shifts in energy levels
can then be calculated for a single shell by perturbation
theory to second order. (The 6rst order is zero. ) These
are negligible for light nuclei because of the large
average distance of the meson from the nucleus. Even
for a heavy nucleus such as lead, the deviation from
the energy levels calculated in Part I is less than
0.1 percent (10 kev) for the 1s state.

2. VariatiorIs irI, the GrourId-State RadiaL
Charge Distribution

We consider next variations in the radial distribution
of the nuclear charge. Since the observed maximum

2p —1s transition energy determines only one param-
eter, it is not possible to specify completely the nuclear
charge distribution from this data. For comparison
with other experiments it was convenient to use as this
parameter the radius of the uniform charge distribution
which fits the observations, This defines an "effective
electromagnetic radius, " which we saw to be 1.2A&

)&10 "cm.
For a given maximum charge density it is the uniform

charge distribution which binds the 1s state meson
most closely, and therefore gives the largest 2p; —1sl
transition energy. This is so because the absolute value
of the potential produced by a nonuniform charge
distribution, with a 6xed maximum density, is, from
Gauss' law, always smaller than that of a uniform
distribution with this maximum density. Thus any
nuclear 'tail' or surface eGect, without an increase in
the maximum charge density, will decrease the 2p —1s
transition energies.

Also the model with the proton density increased
towards the edge of the nucleus as a result of Coulomb
repulsion'7 will decrease the electromagnetic potential
inside the nucleus and thus decrease the binding of the
1s state.

The deviations from a uniform charge distribution
considered above, all decrease the calculated transition
energy. The latter can be increased only by increasing
the proton charge density at the center of the nucleus.
Some evidence for such a distribution has recently been
obtained by Hofstadter, " and analyzed by Schiff,"

' E. Feenberg, Phys. Rev. 59, 593 (1941).' Hofstadter, Fechter, and McIntyre, Phys. Rev. 91, 439
(1953);also an article to be published.

's L. I. Schiff, Phys. Rev. (to be published).

who 6nds a distribution compatible with p(r) =Ze
exp( —r/a)/2a'. The potential V of such a distri-
bution is Lsee Eq. (3)1

Ze (
e
—r/e 11+

r E 2a)

At the origin this potential is V, n(r=0) = —Ze'/2a,
whereas a uniform charge distribution gives V„;r(r=0)
= —3Ze'/2R. Therefore, unless J|!/u) 3, the exponential
distribution will decrease the calculated 2p —is transi-
tion energies. " V„„;&and V, ~ are compared in Fig. 2
for R/a= 3 and E/a= 4.

Uexp= (13)

VR
2e~

2,0-.

', (c)
l6—

o) V unif.

b) V expon. , Rlo =5

c) V expon. , R/o 4

l.4

l.2

I.O

4—

I I I I I I I

0 .2 4 .6 .8 1,0 I.2 I.4 I.6 I.8 20
r/R

Fto. 2. Comparison of potentials produced by a uniform charge
distribution of radius R and by an exponential charge distribution,
p exp( —r/o) for R/a=3 and 4.

3. QNadrlpole Mometst

There remains the possibility of asymmetries in the
nuclear ground-state distribution. For nuclei with spins
larger than one-half, such asymmetries generally give
rise to quadrupole or higher moments. A nuclear
quadrupole moment splits the 2pf state into several
levels. The magnitude of this level splitting has been
calculated by Wheeler" in an adjoining paper by
assuming the quadrupole to arise from a nucleus dis-
torted into the shape of a prolate or oblate ellipsoid.
For a uniformly distributed charge inside such a
nucleus, Wheeler 6nds the potential energy V to be

2'A nonrelativistic perturbation calculation on the 1s-state
energy level shows that for lead a must be of the order of 1.8X10 '3

cm to correspond to a uniform charge radius of 1.2A&0&10 '3 cm.
R/u is then approximately 3.9.

s' J. A. Wheeler (following paper), Phys. Rev. 92, 812 (1953).
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(assuming the distortion from sphericity to be small): where for /=0

Ze' 1 Qe'
V (r) = — ——(3 cos'//, r 1—)

r 2
" 2r3'

r&R;
fp(r, R;)=1/R;+V/Zeo, r&~R;

=1/r+V/Ze', R;&~r&~R

=0, R&~r;
Ze' p3 1 r' ) 1 Qe'r'

V(r) = —
I

———
I
——(3 cos'g„r —1) &

r&~R.
R E2 2R') 2 2R'

C. Nuclear Polarization

In calculating the energy levels of the mesonic atom
we assumed the nucleus to be unaGected by the presence
of the meson. The electromagnetic term II' was there-
fore averaged over the nuclear ground state, to compute
a potential in which the meson was taken to move.
We now include induced nuclear effects (polarization)
on the meson level structure by treating JI'=H'
—Q'olH'lgo) as a perturbation on the meson-nucleus

Hamiltonian, H~+&s.
The 6rst-order correction, 8'('&, to the total energy

of the meson-nucleus system, W= Z+ p, is zero for any
meson state. It is in the second-order correction, 8'"&,
that nuclear polarization eGects appear. For a meson
in the state k,

(A4pIII'l0'~4 )(0'~& I&'IA&p)
(14)

(&o+pp —&x—p )
H/ (2)—

N, m
N =0 with m =k

excluded

where X and nz refer to the entire set of quantum
numbers for a given state and X=O and m=0 are
those for the ground state. B'=H' —V can be expanded
in spherical harmonics,

&'= —e' g II~' ———e' g g fq(r, R;)E~(cos8;), (15)

The quadrupole moment Q is Q=2(c' —a')/5, where c
and u are the major and minor axes of the ellipsoid,
respectively; these axes are related to the spherical
radius R by R'= a2c. The interaction term which arises
from the quadrupole moment decreases rapidly inside
the nucleus, so that the splitting is smaller than on the
basis of a point-charge interaction. A simple estimate
of the quadrupole splitting of the 2p; level is obtained
by Wheeler on the assumption of a nonrelativistic
(hydrogen-like) point nucleus wave funct:ion.

In general, the quadrupole splitting is much smaller
than the fine structure splitting. Exceptions to this
rule occur for intermediate and heavy nuclei, where
large quadrupole moments cause the splitting of the 2p,*
level to be of the same order of magnitude as that from
spin orbit coupling. In principle, the splitting can be
made use of to measure the quadrupole moment, or if
the latter is known, to obtain further information about
the nuclear charge distribution.

and for l)0
f (r R.)=r'/R'+' r&R.

=R ~/r~+~ r& R

Here 0; is the angle between the meson and ith nucleon
position vectors, and I'I, are the Legendre polynomials.

The orthogonality of Legendre polynomials with
different values of / allows us to rewrite Eq. (14) as

where

W'P'=e4 Q W)&'&,
Z=O

for a k-state meson.
The polarization eGects are largest for a is-state

meson, for which they increase the binding energy.
For a 2p state, where the average distance of the meson
from the nucleus is much larger, the polarization eGects
are expected to be much smaller and may increase or
decrease the binding energy.

Wo(') can be interpreted as the system energy change
resulting from a symmetric nuclear compression. In
this term there are matrix elements which involve only
changes in nuclear levels without any accompanying
changes in meson levels (i.e. NNO, m=k). In all
higher-order terms (induced dipole, /= 1; induced
quadrupole, /=2; etc.) the nuclear transitions are
always accompanied by meson transitions. In evalu-
ating W~(2& we perform closure over nuclear states;
that is, the sum over nuclear states is performed. by
replacing the variable energy Eo—E~ by an average
excitation energy.

For a is state meson, after the angular integrations
have been performed, 5'~('& becomes

Z oo

R;, I roar ' r"dr'lyo('
2/+1 weJ Jp

XRo*(r)R„&(r)Rp(r')R„)*(r')f)(R;, r)

Xfg(R;, r') (1/)
jy )y„—,)'

where R & is the meson radial function, m is now only
the principal quantum number, and / is the orbital
angular momentum quantum number.

The evaluation of 8'~(" can be further simplified if
we perform closure over the meson as well as nucleon

(Po4pl+t I4'&~ )Q'~~ I+t IA~~)
W((P)— (16)

~ m (Rp+ pp Rar —pm)—
N =0 with m =k

excluded
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states. Then, for the meson 1s state,

Z
P,(2)—

2l+ 1 (Ep—E~+ ep e„)—

TABLE III. Maximum polarization effects for lead. Here
(E)mi =n(Eo E—v+ep e~—);, where e is the energy of the
lowest meson excited state with angular momentum l and ~0 is
the 1s state energy for rp —1—4X. 10 " cm. (Ep E~)—has been
taken as 0.565 Mev for Pb" and 2.62 Mev for Pb" LM H L
Pryce, Proc. Phys. Soc. (London) A65, 773 (1952)7. Parity
considerations would increase the estimate for (Ep E~).—

For the light elements the leading terms in an expansion
of Zo. and Zap' are

Z3~4~22
P,&2)— (ZnpR),

35 (Ep—E~+ ep —e„)

Z'0,4@2 j.
~i&0 =6 (ZnyR)

(Ep—E~+ ep —e ) (2l+3) (2l+1)

(19)

From Eq. (19) it can be seen that for the light nuclei
the s-state polarization eGects increase with Z and R
as Z'R. For these nuclei the p-state effects are negligible
in the approximation used. The ratio of the polarization
to the 2p —1s transition energies therefore increase as
Z2R. For heavy elements the variation with Z and R
of the polarization eGects is not so simple, but the
ratio of polarization to 2p —1s transition energy in-
creases slowly with. Z, and is largest when the maximum
of @p*@pr' lies approximately at the edge of the nucleus.

Equation (18) has been evaluated numerically for
lead (rp ——1.4X10 " cm) and copper (rp ——1.3&&10 "
cm) for a uniformly charged nucleus. These results,
along with those for aluminum, are listed in Table II.
In this table the average nuclear energy denominator
(E, E~) is set e—qual to the mean nuclear excitation
energy, as calculated from the statistical model (about
13 Mev). The average meson energy denominator,
(ep —e ), is taken as somewhat above the minimum
energy (the 2p —1s transition energy)
P: The closure approximation has the disadvantage of a
great uncertainty in the choice of the proper energy

Lead Copper
lwl =

M l&E)l M/&E) M l&E)l M/&E)
(Mev)2 (Mev) (Mev) (Mev)2 (Mev) (Mev)

Aluminum

Iwl =
l&E&l M/&E&

(Mev)' (Mev) (Mev)

w, (»
W1(»
w2(»
Wg(»
w4(2)
W0(»
W0(»

7-oo(»

0.086
0.466
0.188
0.099
0.063
0.042
0.030
0.190

w(»

20. 0.0043
20. 0.0233
20. 0.0094
20. 0.0049
20. 0.0032
20. 0.002 1
20. 0.0015
20. 0.0095

= z w/(»
0

-0.058 Mev

0.007 14. 0.0005
0.085 14. 0.0061
0.032 14. 0.0023
0.015 14. 0.0011
0.010 14. 0.0007
0.007 14. 0.0001
0.005 14. 0.0000
0.033 14. 0.0023

w(» = g wi(»
0

= -0.013 Mev

0.00081 13. 0.00006
0.00574 13. 0.00044
0.00243 13. 0.00019
0.00138 .13. 0.00011
0.00086 13. 0.00007
0.00060 13, 0.00005
0.00044 13. 0.00003
0.00307 13, 0.00023

w(»= z wi(»
i-0

= —0.0012

WJ(» = i. i%%uo

W2p -Wta
W(2) =0.86'Fo

Wgp —W1a

W(»
w -w ='33%%u'
W2p —W1a

TABLE II. Average polarization eGects. The polarization energy

p'(»= Z 9'&(» is computed for the is state meson by closure.

(E)= (Ep E~+op e) is the—average —energy denominator. M is
the matrix element computed from Kq. (18).

Lead 207 208
lwl = lwl =

M l &E)lmin M/&E)min . ) &E&lmin M/&E&min
(Mev) ~ (Mev) (Mev) (Mev) (Mev)

woo(')
pro(2) —+00(2)
~~(&)
gr, (2)

W (2)

w, (»
~ 5)
fige(&)

w, „(»

0.010 0.57
0.076 4.97
0.466 4.97
0.188 7.99
0.099 8.92
0.063 9.35
0.042 9.58
0.030 9.72
0.190 9.82

0.018
0.015
0.094
0.024
0.011
0.007
0.004
0.003
0.009

2.62 0.004
7.02 0.011
7.02 0.066

10.04 0.018
10.97 0.009
11;40 0.006
11.63 0.004
11.77 0.002
11.87 0.016

S",x(') = Z Wi(,„)(')
Z 0

= —0.185 Mev
= —0.136 Mev

=3.7
8"2„-WI, 8'2„—WI,

=2.7

denominator-. 'However, it is possible to place an upper
bound on the is state polarization eGects for the heavy
elements by using the minimum energy denominators
consistent with the selection rules for the multipole
considered. Since 8'0") contains a term in which the
meson makes no transition, Woo(', and the minimum
energy denominator in this case can be quite small,
this term is evaluated separately (see Appendix A).
The maximum polarization. results for lead (Pb"' and
Pb"s) are listed in Table III.

It is seen from Table II that for lead a reasonable
estimate of the Is state polarization eGect is about
0.06 Mev ( 1 percent of the 2p —1s transition energy).
The maximum polarization energy shift is only about
3 percent (see Table III), and even this is not large
enough to change the "effective electromagnetic radius"
appreciably (less than 3st percent) from its calculated
value of 1.2A&)&10 " cm. For the lighter elements
Table II shows that the expected polarization eQ'ects
are less than 1 percent of the 2p —1s transition energy.
However, this produces a relatively larger change in
the calculated radius, since for lighter nuclei the shift
in the energy levels due to the total nuclear extension
is itself quite small (about 2 percent for aluminum).

For the 2p-state meson the polarization effects are
much smaller than for the is-state meson, and may be
in the opposite direction (decrease the transition
energy). These conclusions hold in the absence of reso-
nances which could appear (for the 2p level) due to an
excited nuclear state with energy of the order of the
2p —1s transition energy. However, any resonance
eGect is made extremely unlikely by the similarity of
the observed transition energies for mercury, lead, and
bismuth (see Table I).
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D. Specific Nuclear Interactions

Interactions between the p, meson and nucleus of
non-electromagnetic origin so far have been neglected.
One such reaction is the charge-exchange capture inter-
action p+tt=+rt+o. The strength of this interaction
can be estimated from the coupling constant, 'which
has been calculated to be of the order of that for
p decay ' " (i.e., 3X10 4s erg-cm'). This is equivalent
to a potential of less than 100 ev for any nucleus, and
has a negligible eGect on the computed energy levels.

Another possible meson-nucleon interaction is one
that does not contribute to the charge-exchange reaction
but causes scattering. This might be a pair interaction
term, H= gJ'/*&*@/dr, which causes potential like
scattering and meson pair creation and annihilation.
If such an anomalous eGective interaction potential is
small ( 1 Mev) and has a range ro, then it will be
dificult to distinguish its scattering from the Coulomb
scattering due to the nuclear charge. The reason for
this is that such an anomalous potential has approxi-
mately the same eGect as a small change in the nuclear
charge distribution. If the form of the interaction is
that indicated above, however, it might be observed
by direct pair creation experiments.

Thus, one possible explanation of the small radius
obtained by Fitch and Rainwater is to postulate an
attractive anomalous meson-nucleus interaction. The
depth of an eGective potential of radius R would have
to be approximately 1 Mev for lead, to increase the
calculated mesonic x-ray radius to 1.3)(10 "3' cm.
(The energy shift for any meson level is proportional
to the depth of the potential and to the probability of
ending the meson inside the nucleus; this probability
is about one-half for the meson 1s state of lead. ) There
is presently little evidence for the anomalous interaction
postulated above. The high-energy p-meson anomalous
scattering data of Amaldi" can be used to derive, in
the Born approximation, "an equivalent potential. The
data for lead and iron give an upper limit to the cross
section per nucleon" of 4.5)(10 " cm'. For lead and

copper this gives a maximum potential of 0.8 and 0.4
Mev over the volume of the nuclei, and consequent

2p —1s transition energy shifts of about 0.4 and 0.03
Mev, respectively. However, the above limitations

apply. Furthermore, Amaldi assumes spherically sym-
metric scattering to derive his maximum cross section.
For lead, he observes only 13 large-angle scattering
out of 73 000 total events, which suggests that a small

proton contamination would be sufficient to materially
alter the results. Thus, it is believed that such data
cannot really be regarded as evidence for the existance
of an anomalous scattering interaction.

~ J. M. Kennedy, Phys. Rev. 87, 953 (1952)."E.Amaldi and G. Fidecaro, Phys. Rev. 81, 339 (1951).
s4N. F. Mott and H. S. W. Massey, The Theory of Atomic

Collisions {Oxford University Press, London, 1949), p. 120.

III. CONSISTENCY OF SMALL ELECTROMAGNETIC
RADIUS

This section considers whether the effective electro-
magnetic radius determined by the p -meson x-ray
experiments is consistent with other measurements of
the nuclear radius. These measurements can conveni-
ently be separated into two groups. The first of these
is sensitive to the nuclear charge distribution and
consists chieAy of electron and proton scattering, isotope
shifts of electron hyperfine structure, electron x-rays
from heavy elements, and P-decay measurements. The
second group depends upon a "nuclear force radius"
and consists chieAy of neutron scattering, o.-decay
lifetime, and charged particle initiated nuclear reaction
yield measurements.

A. Comparison with Experiments

1. E/ectromagnetic Radius

Measurements of both high-energy electron" and
proton scattering" probe the nuclear proton distribution
and have indicated an electromagnetic radius of the
same order of magnitude as that determined by Fitch
and Rainwater.

Isotope shifts of the electron hyper6ne structure
measure the change in proton charge distribution upon
the addition of a neutron to the nucleus. The observed
values of these shifts are approximately one-half those
calculated on the basis of a constant nuclear density
throughout a sphere of radius 8=1.5&(10 "3& cm."
A possible explanation of this effect is an electro-
magnetic radius R =1.2)&10 "A' cm, '~ although other
explanations have also been proposed. ' "

Electron x-rays from heavy elements have been
investigated by Schawlow and Townes" to deduce a
nuclear charge distribution radius R=1.5X10 "3s cm.
It is possible, however, that changes in the nuclear
charge distribution may make this experiment agree
with the p-meson results.

P-decay data for mirror nuclei have been used to
obtain an electromagnetic radius R= 1.4—1.5)&10 "3&
cm." It will be shown in part B, however, that cor-
rections to the usual calculations tend to reduce this
estimate considerably.

2. nuclear Force Radius

Fast neutron scattering experiments" have been
analyzed on an optical model to give a nuclear radius

25 I.yman, Hanson, and Scott, Phys. Rev. 84, 626 (1951).
"Richardson, Ball, Leith, and Moyer, Phys. Rev. 83, 859

(1951); K. M. Gatha and R. D. Riddell, Jr., Phys. Rev. 86,
1035 (1952).

~'M. F. Crawford and A. L. Schawlow, Phys. Rev. 76, 1311
(1949).' Wilets, Hill, and Ford, Phys. Rev. 91, 1488 (1953)."A. L. Schawlow and C. H. Townes, Science 115, 284 (1952)."J.M. Blatt and V. F. Weisskopf {see reference 9, Chap. VII,
especially Sec. 2).

"Cook, Macmillan, Peterson, and Sewell, Phys. Rev. 75. 7
(1949).
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B. Mirror Nuclei

The maximum P-decay energies for mirror nuclei,
which specifically depend on the proton charge distri-
bution, seem to require an electromagnetic radius
R=1.4—1.5&10 "A: cm.

Since the mirror nuclei measurements are for Z & 21,
and the other electromagnetic experiments are more
accurate for heavier elements, it might be argued that
no real discrepancy exists, and that the electromagnetic
radius increases for light elements. However, the fol-
lowing considerations indicate that such an assumption
need not be made, and that a radius R=1.2)(10 "A'
cm can be made consistent with mirror nuclei experi-
ments.

The difference in Coulomb energy of parent and
daughter nuclei is calculated usually by assuming that
a nucleon initially distributed uniformly over the
nuclear sphere makes the transition. The Coulomb
energy change, AE„ for the reaction A +'~~A is then

hE, = (6/5) (Ze'/R). (20)

In this, the nucleus is assumed to have the same initial
and final radius. A simple calculation that allows for
the proton sphere to change in the P-decay transition,
due to the diBerence in Coulomb energy between the
mirror nuclei, does not alter the above materially.

It will be shown below that it is impossible to make
mirror nuclei and mesonic atom experiments consistent
by merely changing the charge distribution, if it;

assumed that all protons have the same distribution and
that the nuclear charge density is positive definite. (If
a negative meson cloud existed which made the charge
distribution vary in sign, then the two experiments
could be made consistent with a charge distribution
variation. ) However, it will then be demonstrated that
relaxation of the first condition above (all protons

~ Fernbach, Serber, and Taylor, Phys. Rev. 75, 1352 (1949).
'3 D. L. Hill and J. A. Wheeler, Phys. Rev. 89, 1102 (1953).

R=1.3—1.4&10 "A' cm." It is essential to note that
these measurements determine a "nuclear force radius"
rather than a proton distribution radius. The sensitivity
of the calculated radius to variations in the distribution
of nuclear matter has not been investigated in detail.

'

Both n-decay lifetimes and the yield of charged
particle initiated nuclear reactions indicate nuclear
radii' R=1.35—1.6&10 "A: cm. These experiments
measure chiefly the transparency of the Coulomb
barrier which is superimposed on the nuclear force
potential. They thus depend on the radius at which the
repulsive Coulomb force becomes larger than the
nuclear force but are uncertain because of the unknown-
size of the escaping or entering particles. It has been
shown by Wheeler" that, on the basis of a strong
coupling nuclear collective model, the O.-decay radius is
expected to be la, rger than that of the charge distri-
bution because of the nuclear deformation.

having the same charge distribution), together with
angular momentum considerations, as well as the
antisymmetrization of the nuclear-proton ground state
wavefunction can make the two experiments agree.

For an arbitrary charge distribution, it is the di6'er-

ence of the electrostatic energy

t pI(r) U(r)dr (21)

that is determined. by both high-energy electron scat-
tering (less than 40 Mev) and by the tt -meson
experiments for low Z. For a uniform charge distribu-
tion, where a radius R= 1.2& 10 "A & cm is needed to
fit the mesonic x-ray data, the integral (21) is too large
to fit the observed Coulomb energy change in P decay.

To determine if a charge distribution exists which
decreases this discrepancy, the integral (21) was mini-
mized, keeping Eq. (22) and the total charge constant.
If dV/dr is continuous, a partial integration of (21),
gives

(1/Z) ~ (V'U)'dr.

The usual variation calculation then leads to a sta-
tionary value for

V'U = constant. f
This corresponds to a uniform charge distribution. The
resultant potential has been shown explicitly to give a
smaller value for (21), under the auxiliary conditions,
than a shell of charge or a charge distribution p =A —Br.

Thus the integral (21) is a minimum for a uniform
charge distribution. This means that, under the assump-
tions made (including p positive definite) any non-
uniform charge distribution increases the discrepancy
between the meson-transition and P-decay results.

However, it is possible to construct nuclear models
which, with the inclusion of (a) Coulomb exchange

/Pote added t'n proof Asimilar resu1.t—was obtained inde-
pendently by Bitter and Feshbach (private communication).
The restriction to positive de6nite p was not included explicitly
in either proof so that the cuto6 of p at r =R had to be introduced
cd-hoc. The restriction to positive p can be included explicitly by
varying s= (p)&, i.e., s=sp+bs. The variational calculation then
gives

spbsr (Vp+y+) r')dr =0.
Thus Vp+y+'Ar =0 only if sp (or pp) &0. It can then easily be
shown that

pp= constant
pp=0

is the minimum value.

for r&R
for r&R

between the nuclei Z and Z&1 that is determined by
P-decay experiments. Here U(r) is the potential deter-
mined by the charge distribution p= Zp& and is related
to the previous U by V= —eU. As stated previously,
it is the integral

(22)
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energy and (b) angular momentum effects, reduce the
above estimate of mirror nuclei radii. The difference in
Coulomb energies for these nuclei is calculated below
for a statistical model and a shell model.

In the Hartree approximation the Coulomb energy
of a nucleus with Z protons is, after summing over spin
coordinates,

g2

E,=-', P g [f;(Rt) ['($;(Rs) [' dRgdR,
s=l j=l& R12

i=1 j=l al

l ' 2

g2

Xf;*(Rs) — dRgd Rs, (23)
Rl2

where P; are the equivalent central potential proton
wave functions. The first term in Eq. (23) is the direct
Coulomb energy, while the second term is a Coulomb
exchange energy arising from the antisymmetrization
of the ground-state proton wavefunctions. "

Equation (23) is evaluated erst for a nuclear sta-
tistical model. This yields a uniform charge distribution
for the protons, so that the direct term gives the usual
nuclear electrostatic energy. We obtain (if 3= 2Z)

3 Z(Z —1)e' Z' 'e'
E,(Z) = —0.4—6

5 R R
(24)

This result has been derived previously by Bethe and
Bacher," and Weizsacker. 36 The exchange term is

significant for small values of Z, where mirror nuclei
measurements are made. If the effective nuclear radius
found from Eq. (24) is R=r&&, then

rp ——rp'(1 —0.51Z-&),

where ro' is the radius calculated from the direct term
alone. ro is smaller than ro' and varies slowly with Z;
for Z= 15, ro is about 9 percent smaller than ro'. Thus,
the inclusion of the exchange term alone, reduces the
radius of the uniform charge distribution deduced from

P decay from an average of 1.45X 10 "A& cm to about
1.3X10-l3A & cm.

Equation (23) was also evaluated for a nuclear shell

structure. For simplicity, an infinite square well po-
tential was chosen. Here the protons are not distributed
uniformly throughout the nucleus, and the nucleon
which undergoes p decay will have a different charge
distribution than the average of the other protons. The
proton distribution therefore need not remain un-

changed in the transition. In fact, for a nuclear shell

model, as assumed here, the P-decay nucleon is usually

34K. Feenberg and G. Goertzel, Phys. Rev. 70, 597 (1946)
(additional references are Hated here).

'~ H. A. Bethe and R. F. Bacher, Revs. Modern Phys. S, 162
(1936).

PP C. F. von Weizsacker, Z. Physik 96, 431 (1935).

in a higher angular momentum state than the other
protons. The change in Coulomb energy for such a
transition is less than is expected for a uniformly
distributed particle, because the radial distribution of
higher angular momentum states is weighted more
heavily towards the periphery of the nuclear sphere,
where the potential of the nuclear charge distribution
is smallest in magnitude. An extreme of this model was
considered by Bethe,"who assumed the extra nucleon
to be free.

The radius of the square well R„is chosen so that the
resulting proton charge distribution produces an electric
potential which satisfies the meson experiment; that is,
the integral (22) gives the same value for this potential
as when evaluated for a uniform charge distribution
of radius 8=1.2X10 "A' cm. The well parameter is
assumed to remain constant in the reaction, since this
parameter is determined by the nuclear forces which
are assumed to be charge symmetric. The Coulomb

TABLE IV. Shell model calculation for mirror nuclei radii.
R=rpA&&(10 '3 cm. Rg =rpgA~&10 '3 cm is the radius of the
infinite well such that the charge distribution produced by this
well makes the integral Jp" (V—V„)rsdr fit the a=meson experi-
ment with an e6'ective meson radius R~=rp~A&)&10 " cm;
ro&n~ and ro&n+s& are those rp which, when substituted in Eq. (20),
give the AE, calculated on the infinite well model for the removal
of a single proton above the closed shells. rp(D) includes only the
direct term of Eq. (23) while rp&n+@& includes both direct and
exchange terms. rp„ is the usual mirror nucleus radius adjusted
so that Eq. (20) gives the observed maximum P-decay energy.

Z

3~+ 2
9~~8

19~~$8
21~~20
35~34

roW

1.78
1.69
1.55
1.59
1.38

Effective
meson
radius
rp~

1.2
1.2
1.2
1.2
1,2

r0(D)

1.29
1.36
1.20
1.36

Calculated
effective

mirror
nuclei

radius r(t(D+g)

1.53
1.53
1.25
1.54

Observed
effective

mirror
nuclei

radius r0~

~ ~ ~

1.39
1.47
1.50
~ e ~

energy change due to the addition of a proton to the
above charge distribution is then calculated, and con-
sists of two terms. The first, the direct term, will diGer
from that in Eq. (20) for the reasons discussed above,
while the second term is the exchange energy. This was
evaluated as in Condon and Shortley. '8 Calculations
were performed for closed shell nuclei because a coupling
scheme does not have to be speci6ed here. Numerical
results are presented in Table IV.

For a nonclosed shell nucleus the same qualitative
result is obtained, as shown by the following simple
considerations. The Coulomb interaction of the single
proton, which is involved in the transition, with the
closed shells is of the same order of magnitude as calcu-
lated above for the gingle nucleon above a closed shell.
The Coulomb interaction of this proton with other
protons in the same shell is more dificult to estimate,

"H. A. Bethe, Phys. Rev. 54, 436 (1938).
38K. U. Condon and G. H. Shortley, The Theory of A(omic

Spectra (Macmillan Company, New York, 1935), Chap. VL
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since this depends upon specilc coupling assumptions.
If we assume no coupling between single particle wave
functions, then the exchange interaction becomes very
large because the radial wave functions are identical,
and this reduces the Coulomb energy considerably.

From Table IV and the qualitative discussion above,
we see that, except for the 2s state, the inclusion of the
Coulomb exchange term and angular momentum con-
siderations are su%.cient to explain the mirror nuclei
data with a radius as small as that required by Pitch
and Rainwater. This conclusion depends upon the
nuclear model chosen; it is possible, of course, to
construct models which minimize the above eBects.

CONCLUSION

Experimental evidence obtained from the study of
mesonic x-rays indicates a larger nuclear proton density
than has heretofore been accepted. For a constant
nuclear charge density, the measured 2p —is transition
energies can be understood in terms of a nuclear
electromagnetic radius of about R= 1.2&10 "A& cm.

With the usual nuclear radius (1.35—1.5X10 rsA'

cm) the experimental transition energies cannot be
explained by nuclear polarization and other eGects
discussed, except for an anomalous meson-nucleus
interaction; however, there is presently little evidence
for such an interaction.

Comparison of the present results with previous
electromagnetic radius measurements show general
agreement, except for electron x-ray measurements.
This agreement-holds for mirror nuclei experiments,
when calculations take into account Coulomb exchange
energies and angular momentum considerations.

%e wish to thank above all Professor R. Serber for
many valuable discussions and Professor J. Rainwater
and Dr. V. I . Fitch for communicating and discussing
their results prior to publication. %e also wish to thank
Professor C. H. Townes and Dr. M. A. Ruderman for
helpful discussion and Professor J. A. Wheeler for
making available his calculations prior to publication. f

$ ftfote added sn Proof. The authors are gratefu—l to Professors
L. L. Foldy and N. Kroll for pointing out to them that electro-
dynamic effects are not negligible. In particular, to lowest order
in Z, the dominant term is caused by the polarization of the
vacuum due to electron pairs. This gives a contribution /see for
example R. Karplus and N. Kroll, Phys. Rev. 77, 540 (1950)j
in particular D~(2) which increases the potential t/' by

—nV(r) Pln(f/mQ) —5/6g.
2
3x

There is presently no method for evaluating higher order Z cor-
rections. The above increase in potential of somewhat less than

The term in lVo(2) which involves no meson transi-
tions Woo( ) ls

EIp =g fp(r R )Pp(cosH' )

according to Eq. (15), gives

2 S
~„(2)— dRr dR; dR; ~ dRz

(Ep—Esr) *-»=r J

fs 00 pCO

r"dr' r'dr[go]'[Rop(r') ]')Rop(r) (
Jo Jo

I'(r) l'(")
X T(R,r) T(R,r')+.

g2g4

where

(A2)

T(R,r) = 1/R; for r&R;, = 1/r for R;&r.

In Eq. (A2) there are Z(Z —1) terms with i&j, which
are zero because the two expressions inside the brace
cancel. For the remaining Z terms we obtain (for a
uniform nuclea, r density to R)

gazoo(2)

Z ; 3 )8 ~B
R"dR' ~

( Roo(r) ['r'dr
(Ep—E~) R' o &p

X ( Roe(r')
~

'r"dr'T(R;r) T(R r')
0

3
JIB

~R
R dR ~' ~Roo(r) ) T(Rr)r dr . (A3)

E'~o ~o

This equation has been integrated numerically to give
the result reported in Table III.
~ percent for lead increases the 2p —1s transition energy by ap-
proximately 1 percent, which in turn leads to a 1 percent larger
radius, R, for this element.

Q.(r)e.(")
(Eo—E~)

X ((lf o) &o'(r)&o'(r') [fo) )po(r)@s(r')), (A1)

where closure over nucleon states has already been
performed. The substitution


