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A method for the approximate diagonalization of certain types
of quantum field Hamiltonians is developed which is not limited
to weakly nonlinear systems. It consists in omitting the gradient
terms in zero order, and diagonalizing the resulting Hamiltonian

by replacing the field defined in a continuum space by a field

defined in a lattice space. This unperturbed system is equivalent
to a countably infinite number of uncoupled nonlinear oscillators,
which are then coupled together when the gradient terms are
included as a perturbation. The method is applied to the quan-
tization of the classical nonlinear meson theory that was intro-
duced in an earlier paper to provide a qualitative explanation of
the saturation of nuclear forces, according to which a positive ¢*
term is added to the field Hamiltonian. Although the quantized
theory is manifestly noncovariant, it is found that a single-particle

solution exists that has an approximately relativistic relation
between energy, momentum, and rest mass. It turns out to be
essential that the lattice constant be kept finite, as all computed
physical quantities become meaningless in the continuum limit
(in which the lattice constant approaches zero). It is shown that
these particles obey Einstein-Bose statistics, and that they scatter
from each other. Nucleons are introduced as classical sources for
the meson field, and calculations are made on the nucleon isobaric
state, interaction of mesons with nucleons and heavy nuclei, and
nucleon-nucleon interaction. Most of the results of the earlier
classical theory have close counterparts in the present quantized
theory. The possibility of extending the method to the quantiza-
tion of both meson and nucleon fields when they are strongly
coupled together is discussed briefly.

I. INTRODUCTION

HE quantization of non-interacting wave fields
that satisfy linear equations can be carried
through without difficulty, and energy eigenvalues can
be obtained that correspond to particles of well-defined
energy and momentum. No such simple and satisfactory
treatment exists for wave fields that satisfy nonlinear
equations, regardless of whether the nonlinearity arises
from the interaction of otherwise linear fields or from
an inherent property of the field itself. In most cases of
physical interest, the difficulty does not appear in the
formal process of quantization, which can be accom-
plished in the usual way, but rather in the diagonaliza-
tion of the field Hamiltonian. Where the nonlinear term
arises from an interaction and has a small coefficient,
perturbation techniques can be used. The application
of covariant mass and charge renormalization to
quantum electrodynamics illustrates the high degree of
success that can be achieved in this way. But where the
nonlinear term is large, as in the meson-nucleon system,
there is real doubt as to whether perturbation calcula-
tions provide even a qualitative guide to the actual
situation. In such cases, calculations have sometimes
been based on the Tamm-Dancoff method, the relia-
bility of which is difficult to evaluate.

The present paper describes a different method, not
limited to weakly nonlinear systems, for theapproximate
diagonalization of certain types of quantum field
Hamiltonians. The method is based on the observation
that for many field Hamiltonians, omission of the
gradient terms leaves a system that can be regarded as
a set of a continuously infinite number of uncoupled
nonlinear oscillators, one at each point in space. A
solution can be obtained if (1) the modified Hamiltonian

* Supported in part by the joint program of the U. S. Office of
Naval Research and the U. S. Atomic Energy Commission, and in
part by the Office of Scientific Research, Air Research and De-
velopment Command. i

can be exactly diagonalized, (2) the gradient terms can
justifiably be treated as a perturbation, and (3) a
perturbation calculation can be carried through to suf-
ficiently high order to yield physically interesting
results. Step (1) requires that the field defined in a
continuum space be replaced by a field defined in a
lattice space, so that the continuously infinite number
of oscillators is replaced by a countably infinite number,
one at each lattice point. Step (2) imposes restrictions
on the general structure of the Hamiltonian and on the
lattice constant. Step (3) depends to a large extent on
the quantity being calculated ; we shall see that various
orders of perturbation calculation are of interest in
different situations. .

B The theory outlined above is manifestly noncovariant,
because of the different treatment of space and time
derivatives. It is not even Galilean-invariant, because
of the introduction of the lattice. The second difficulty
is not serious if we deal with solutions that do not vary
appreciably from one lattice point to the next. The situ-
ation here is roughly analogous to the propagation of
sound waves in a crystal; the lattice striicture is not
significant if the wavelength is large in comparison with
the lattice constant. The first difficulty is of course a
major defect of the present work. Nevertheless, it is
possible to find solutions that have a kind of relativistic

" behavior.

The nonlinear meson theory introduced earlier!
provides a convenient example to which the present
method can be applied. In this theory, a neutral scalar
field ¢ interacts with itself through a positive term in
the Hamiltonian proportional to |¢|”, where # is
generally equal to 4, and may also interact with a clas-
sical source function which is related to the density of
nucleons. Thus the present paper contains mainly a

11.. 1. Schiff, Phys. Rev. 84, 1 (1951), referred to here as I;

W. E. Thirring, Z. Naturforsch. 7a, 63, 379 (1952); B. J. Malenka,
Phys. Rev. 86, 68 (1952) ; E. M. Henley, Phys. Rev. 87, 42 (1952).
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LATTICE-SPACE QUANTIZATION

particular kind of quantization of the classical theory
developed previously.? The method can, however, also
be applied to the quantization of certain coupled meson-
nucleon fields, provided that a ¢* term is introduced
either ad hoc or because of renormalization.? There need
then be no limitation on the strength of the meson-
couplmg This extension of the theory is discussed
briefly in Sec. VL.

The lattice space and the quantization procedure are
set up in Sec. II. The fact that solutions exist that
correspond to particles is far from obvious in a theory
in which the nonlinear term is large; it is established in
Sec. III. The interaction of two such particles in the
absence of sources (meson-meson scattering) is dis-
cussed in Sec. IV. Classical sources that correspond to
nucleons are introduced in Sec. V, and calculations are
made of the nucleon isobaric state, meson-nucleon
scattering, nucleon-nucleon interaction, saturation of
nuclear forces, and the interaction of mesons with
nuclear matter.

II. LATTICE SPACE

The continuum field Hamiltonian with which we
shall work is!

A= [T+ vort s tiesdin, @

where ¢ is a real scalar field and # is its canonical
momentum. p is the field rest mass, « is the nonlinear
parameter (a®>>0), and we choose units such that
h=c=1. The canonical commutation relation is

[¢(r; t)y W(r’y t)]=’i8(l‘— l")‘ (2)

As is well known, limitation of the volume within
which the field is defined has no essential effect on the
quantization; if this volume is assumed to be a cube of
edge length L, the limit L—e can later be taken
without difficulty.

For simplicity, the lattice space is introduced in
simple cubic form, with lattice constant /. The large
cube of volume L? is still assumed, so that the space
consists of N= (L/I)3 points. As in the continuum case,
the limit in which N and L become infinite while / is
fixed can readily be taken later.

We now assert that the field is defined only at the
lattice points, where it is characterized by quantum
mechanical operators ¢, and . Our first object is to
find a lattice field Hamiltonian and commutation rela-
tions that become Egs. (1) and (2), respectively, in
the limit /—0. It is apparent that this cannot be done
uniquely, since terms can always be included in the
lattice Hamiltonian that vanish in this limit. We shall

2 Quantum aspects have been treated from other points of view
by D. R. Yennie, Phys. Rev. 88, 527 (1952); H. B. Rosenstock,
Ph.D. thesis, University of North Carolina, 1951 (unpublished);
D. Finkelstein, Ph.D. thesis, Massachusetts Institute of Tech-
nology 1953 (unpublished).

P. T. Matthews, Phil. Mag. 42, 221 (1951).
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adopt a form that is convenient and plausible, Wthh
was first introduced by Wentzel.*
We introduce an averaging function

A ®
K
where r, is a lattice point, and write .

—a f Fle—1)6(®)dr,
4
T,Ebff(l"— r,)mw(r)dr,

where the coefficients ¢ and b are as yet undetermined.
The summation variable k in Eq. (3) is restricted to the
points of a reciprocal lattice space which is also simple
cubic; each component of k ranges from —x/l to w/!
in steps of 27/ L, so that there are N terms in the k-sum.
The averaging function f has unit integral over the
large cube of volume L3, has its maximum value 1/5
when its argument is zero, has linear dimensions of
order /, and approaches a 8 function when /—0. Equa-
tion (3) therefore states that the lattice field is an
average of the continuum field over a distance of order
I about the lattice point, multiplied by a coefficient
a or b. In the following, we shall frequently use the
relations:

ke GrtO=Ng, >, eiEE) Te= Njyyo, (5)

- The commutation relations associated with the
lattice fields (4) are easily shown to be

(s, 7 ]=10bI=%3,s, (6)

when use is made of Egs. (2), (3), and (5). Thus for a
canonical theory, we require that eb=1F. The value
chosen for @ or for b is of no physical significance, since
it appears only as an arbitrary scale factor in ¢ or ;.
It is convenient to choose a=>5=1}. When this is done,
it is easily verified that

2 2 2 2
; Ts ;jofﬂ' dT, Za s ;:)mf‘i’ dT,
M
33 ¢f— vfdf‘df-
3 1-—’0.
There are several ways in which the gradient term
in Eq. (1) can be represented in the lattice space. With

the form (3) for the smoothing function, the most con-
venient choice consists in replacing

f (vo)idr

Zs Zt Ast¢a¢t; AxtEN_l Zk k2eik .(h—”)’ (8)
1 G. Wentzel, Helv. Phys. Acta 13, 269 (1940).
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which has the proper limit as /—0. The quantity 4,
could also be represented as a second difference, for
example, but this is less convenient for the following
development, and makes little difference so long as we
deal with solutions that do not vary appreciably from
one lattice point to the next.

The lattice Hamiltonian can now be written:

Je= 3Cot+ GC’,

aZ

O R T S ) SO
7l'2

SC,=% Z Z’ Ast¢s¢ta PEAN:N_I Z kB — ]

8 t k N—owo ]2
where the dash on the summation over ¢ means that the
term ¢=s is omitted. Because of (7) and (8), 3C ap-
proaches the H given by Eq. (1) as /—0. The unper-
turbed lattice Hamiltonian 3¢, is separable and describes
a set of uncoupled nonlinear oscillators. The perturba-
tion 3¢’ then couples these oscillators together.

It is convenient to adopt a representation in which
ms=—1(3/0¢s), which is consistent with the com-
mutation relations (6). Then the unperturbed Schro-
dinger equation may be separated as follows:

JC()‘I’=E\I/, ‘I’=Huns(¢s), E=Z €ng,

a2 o2 (10)
[—% i (P+u2>¢2+—¢4]un<¢> — cin(d).
d¢? 43

The energies ¢, are the eigenvalues for the one-dimen-
sional motion of a particle in a potential that becomes
positively infinite for large displacements from the
equilibrium point (¢=0); they therefore form a discrete
set extending from a smallest positive value to 4.
The eigenfunctions %, form a complete orfkonormal set
with parities (—1).

We can put this equation in dimensionless form by
substituting

xr= (aé/ZI/Gﬁ)d)’ Ap= (24/3l/0l%)6,,,

whence

2u, 2%
+[7\n———(7r2+p2l2)x2—x4]un=0. (11)

dx a8

This form is ‘well-adapted to a study of the situation in
which o1, since then the dominant character of the x*
term is evident (this assumes that p/ is not large in
comparison with unity). For very large a, the a? term
may be neglected, and the N’s are a well-defined set of
dimensionless numbers. Then the €’s are of order a?/l,
and all matrix elements of ¢ are of order /*/a}. Thus if
we treat 3¢’ as a perturbation on JCq, a suitable param-
eter for gauging the validity of the perturbation calcu-
lation is the ratio of a typical matrix element of 3¢’ to
the spacing of the eigenvalues of 3Co; this ratio is a
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rough measure of the extent to which other states mix
in with a particular unperturbed state. In cases of
physical interest, only a small number of terms of the
series in 3¢’ will contribute, so a typical matrix element
is of order (1/)(}/a?)?= (1/Ia?), and the above ratio
is of order 1/a*3. Thus the perturbation treatment
envisaged here is useful if « is large, regardless of the
magnitude of /.

It is of interest to see how this perturbation treatment
of 3¢’ is modified if the nonlinearity is chosen to have
the form o?|¢| ™, where # is not necessarily equal to 4.
The ratio of perturbation to eigenvalue spacing is then
of order [#(n=9/(n+2) /8l (n+2) Thus if >4 the validity
of the perturbation approach is improved if / is made
small, and if #<4 it is improved if / is made large; only
for n=4 is it independent of /. This explains why
Wentzel* was forced to assume large / for the linear field
theory (which is equivalent to z=2).

It is also interesting to note that the unperturbed
energy eigenvalues are of order o ("t?)/B(n=2/(n+2) ip
the general case. Thus only in the case n=2 (linear
field theory) do they remain finite as /—0. In this case,
the continuum field Hamiltonian has positively infinite
energy eigenvalues, but only for the trivial reason that
there is an infinite number of degrees of freedom (N—)
each of which has a finite zero-point energy. In the case
n=4, all the eigenvalues for each of the N degrees of
freedom become positively infinite as /—0. Thus so
long as the perturbation theory is valid (large «), we
can use this result as a demonstration that the con-
tinuum field Hamiltonian (1) has energy eigenvalues
that are positively infinite in a nontrivial way.? This
means that sensible results can be obtained only by some
sort of renormalization or cut-off procedure. We have
attempted various types of renormalization, without

. success; an obvious difficulty is that covariance cannot

be used as a guide. A cutoff is provided automatically
by the lattice constant /; so long as / is finite, all results
of the theory are finite and, as we shall see in the next
section, there exists a maximum momentum of order
1/1. We therefore reconcile ourselves to the idea that
the limit /=0 cannot actually be taken, and regard / as
a parameter of the theory.

III. ENERGY AND MOMENTUM OF A FREE PARTICLE
Lattice Energy

The lowest state of the unperturbed system is that
in which each lattice-point oscillator has its smallest
energy eigenvalue. This state is nondegenerate, and has
energy Nep. The first excited state of the unperturbed
system is that in which all but one lattice-point oscil-
lator has its smallest energy eigenvalue, and that one
has its second eigenvalue. This state is N-fold degener-
ate, and has energy (N—1)e+e;, or an excitation.
energy of (e1—e€) above the lowest state. If we apply

§ This supplements the similar result obtained by D. R. Yennie

(reference 2) for the case in which the nonlinear term can be
treated as a perturbation (small ).
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first-order perturbation theory, and remember that the
oscillator eigenfunctions #,(¢) of Eq. (10) have parities
(—1)», it is apparent that the lowest state is unaffected.
This state is
Wo=1T (). (12)
¢
The N-degenerate first-excited states of the unper-
turbed system are

Us()=u1(@)]" %0o(ps), s=1,---N,  (13)

t
where the dash on the product means that the term
t=s is omitted. Diagonalization of the matrix for 3¢’
computed from the functions (13) leads to the following
first-order normalized eigenfunctions and perturbation
matrix : ’

V1 (K)=N"F e -nUy(s),

(14)
3¢’ (K, K)= (K*— P)$o28 (K, K').

Here K is any one of the set of vectors k of the reciprocal
lattice space, and

b= f o (@) pu1(¢)do

—00

is a real matrix element since the #’s are taken to be
real. Thus the excitation energy through first order is

e1— €0— Ppor’+ K2po:2. (15)

The wave function ¥;(K) given by Eq. (14) is a kind
of wave of excitation running through the lattice; it is
analogous to the excitation waves in the theory of solids
or to the spin waves in the theory of ferromagnetism.

Lattice Momentum

We now consider the momentum contained in the
lattice. The continuum field momentum is

G=—1 f [r (Vo) + (Vo)rTdr, (16)

and it is natural to write for the lattice momentum

&= —Zs Zt Bst”xd’h (17)

where B;;= —B,; and B,,=0; moreover, @ is Hermitian
and approaches G as [—0. It turns out, however, that
& defined by Eq. (17) does not commute with 3¢, so
that it is not a constant of the motion. In the absence
of external forces, we expect the momentum to be a
constant, so that we cannot reasonably regard & as
the momentum of the lattice.

There is nevertheless a close correspondence between
the translational properties of G and .5 As is well

B.=N-1 Yy skeik: (ot

¢ The writer is indebted to F. Bloch for pointing out the proper-
ties of the displacement operator.
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known, G is the generator of displacements of the con-
tinuum field variables in that the unitary transforma-
tion Sa=exp(—ia-G) displaces ¢(r) and =(r) by an
arbitrary vector a. In the same way, the unitary trans-
formation Sa=exp(—ia-@®) displaces ¢ and =, by the
vector a, where, however, a must now be one of the
lattice vectors. In both the continuum and the lattice
cases, the fact that the field Hamiltonian is invariant
with respect to displacements means that it commutes
with the displacement operator; for a space of finite
extent, it is of course always necessary to assume that
there are periodic boundary conditions at the edges.
This commutativity can be used, in the continuum case,
to show that G itself commutes with H, by allowing the
displacement vector a to become infinitesimal. In the
lattice case, however, there is no infinitesimal lattice
vector, so that we cannot prove in this way that @ and
JC commute, and in fact they do not.

We wish to find a momentum operator that is Her-
mitian, reduces to G in the limit /—0, and is a constant
of the motion. A simple choice for the ¥ component
that meets all these requirements is

.= [exp (iI®,) — exp (—il&,) ]/ 2il= (sinl®,)/l, (18)

with corresponding expressions for the other two com-
ponents. Any energy eigenfunction, if nondegenerate,
must also be an eigenfunction of Eq. (18), and of
S=exp(—il®,), since both of these operators com-

.mute with 3C. If an energy eigenfunction is not an

eigenfunction of Y,, it must be degenerate, and linear
combinations of these degenerate energy eigenfunctions
can then be chosen that diagonalize Y., i.e., that are also
eigenfunctions of p.. The corresponding eigenvalues
can be found as follows.

Consider a wave function that is an eigenfunction of
both 3C and p. It is then also an eigenfunction of §,,,
Sw, and 8;,. If we operate on it L/I times with 8;,, we
displace it by the distance L along the positive x
direction, and hence bring it back into itself (periodic
boundary conditions). Thus the eigenvalue of §;, is
one of the (L/l)th roots of unity: exp(—2wiv.l/L),
where », is an integer; the eigenvalues for $; and §;,
have the same set of possible values. Then if we define
a vector x by putting x,=27v,/L, etc., it is one of the
vectors k of the reciprocal lattice; the eigenvalue of ;.
is exp (—ilk,), and similarly for 8;, and 8;,. The possible
eigenvalues of Eq. (18) are then (sinlk,)/!, with analo-
gous eigenvalues for p, and .. So long as x is small in
comparison with 1/I; the eigenvalue of p is very nearly
equal to x, and we shall usually assume that x is small.
It should be noted, however, that the eigenvalue of any
component of p cannot exceed 1//, and that the
maximum value occurs when the corresponding com-
ponent of « is equal to 7/2l.

The wave function (14) provides an instructive
example of the effect of operating with 8;,. We denote
by s’ the lattice point whose x coordinate is larger by
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I than the x coordinate of s. We then have
81V (K)=N-13 ¢i&-1slUy(s5")
= T—";e—sile 3 eiR HED T, (57
| = N—dgilKs Z eX w7, (s)
=e—ile\I,l(Ka), :

so that ¥;(K) is in fact an eigenfunction of 8, and
hence also of . This shows also that the momentum
associated with the state (14) is very nearly equal to
the vector K that appears in ¥, (K), so long as K is not
comparable with 1/1.

Interpretation as a Particle

We are now in a position to relate the expression (15)
for the first-order energy of the first excited state of the
lattice, to the lattice momentum K in the same state.
We first assume that the nonlinear parameter « is large
compared to unity. The term (e1—eo) in Eq. (15) is
of order a?/I, and the term P¢,,? is of order 1/ (la?), so
that the latter can be neglected for the present. We
interpret (e1—eo) as the rest mass of a particle, K2po;
as the kinetic energy of that particle, and K as its
momentum. In other words, we say that the first excited
state of the lattice, which possesses the above energy
and momentum with respect to the lowest state of the
lattice, is to be interpreted as a particle which has made
its appearance in a vacuum. This interpretation is
limited by the nonrelativistic form of Eq. (15), but this
is not surprising since the kinetic energy term in (15)
is the result of a first-order calculation, and it might be
expected that higher-order terms in 3¢’ would yield
higher-order relativistic corrections to the simple for-
mula (15). Equation (15) is at least consistent with the
present view insofar as the kinetic energy term is small
(of order «™*%) in comparison with the rest mass term.

The crucial test of Eq. (15) as a description of a
particle is the requirement that the kinetic mass
1/(2¢0:?), which is the ratio of the square of the
momentum to twice the kinetic energy, be equal to the
rest mass (e1—eo). This means that the quantity
2012 (e1— €0) should be equal to unity. If we use the
substitutions associated with Eq. (11) to put this in
dimensionless form, it becomes xo®(A\1—M\o), where
xo1= J 2% o (x)xu; (x)dx is a real matrix element since
the #’s which satisfy Eq. (11) are taken to be real. The
following sum rule is easily established:

Zn xmn2 (>\n" >\m) =1.

If we take m=0, each term in Eq. (19) is positive, and
we ‘can conclude that xe?(A1—Xo) =1. The equality
holds only if all higher matrix elements xgs, %5, etc.
are zero. This is true in the linear case, in which the x*
term does not appear in Eq. (11), since then the #’s
are harmonic oscillator wave functions; thus the present

(19)
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methods can deal with the linear field (although they
are of course unnecessarily complicated in this case).

The actual value of x0,2(A;1—2Xo) in the nonlinear case
must be found by numerical integration of Eq. (11).
For large «, where the #? term in Eq. (11) can be ne-
glected, several numerical values are collected in the
next subsection. The above quantity is equal to 0.9884,
so that the kinetic and rest masses of our particle differ
by only about one percent.” This agreement is not only
gratifying in itself, but implies, as shown below, that
the matrix elements wxg3, %05, €tc., are small in com-
parison with wxo;; as we shall see, this makes it feasible
to carry the energy calculation to higher order in 3¢’.

Numerical Values?

The first four eigenvalues of Eq. (11) with a=
are No=1.0605, A\;=3.7998, Ao =7.465, and A3=11.650.
The matrix elements of x and #? computed from the
corresponding eigenfunctions are xg;=0.6007, xi=
—0.7336, x53=0.8384, wx03=—0.0320, (x2)go=0.3618,
(x2)11=0.9016, (x2)22= 12426, (x2)33=1.5522, (9(72)02=
—0.4674, and (3?)13=—0.6943.

It would provide an enormous simplification for the
higher-order calculations if we could assume, as is true
in the harmonic oscillator case, that all matrix elements
%am can be neglected unless m=n-1. If this were a
valid assumption, the sum rule (19) and the matrix
product rule could be used to find several quantities
that would be equal to unity. These quantities, and
their numerically computed values, are

:15012/ (x2)00= 09973, (x012+x122)/ (x2) 1= 09971,

A
(x122+x232)/ (x2)22= 0.9988 5 ( )
()\1 - )\o)x012= 09884,
A2—AD)x122— (A\1—No)x0r2=0.9841, (B)
M3—A2)x252— (Aa—A1)x122=0.9692;
x01x12/(x2)02=0.9428, x12x23/ (.’XJ2)13=08859 (C)

It is interesting to note that the neglected terms in

group (A) are of second order in the small matrix

elements, and hence very small. The neglected terms

in group (B) are also of second order, but are multiplied .
by the difference of two \’s, and are therefore somewhat

larger. In group (C), the neglected terms are of first

order, so that the errors are largest in this case.

For finite @ in Eq. (11), the eigenvalues and matrix
elements approach more closely those of the harmonic
oscillator, for which all x,, with m %41 are zero. We

7 The writer is indebted to D. Saxon of the National Bureau of
Standards, Institute for Numerical Analysis, for arranging for
these precise numerical computations, which provided a very
important stimulus to the present work, and also to E. Osborne
and P. Kaus who carried them out.

8 Values of Ao and \; were first computed by W. E. Milne, Phys.
Rev. 35; 863 (1930). The other N’s and all the #’s were computed
at the Institute for Numerical Analysis (reference 7). The matrix

elements were computed from the #’s by connecting on the
asymptotic form beyond the range of the numerical computations.
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expect, therefore, that the neglect of such matrix
elements in the nonlinear case is an even better ap-
proximation for finite & than is indicated by the above
numerical results for infinite a.

Higher-Order Terms in the Energy of a Particle

In everything that follows, we assume that all
matrix elements %nm O ¢nm Wwith m==ni1 can be
neglected. This is expected to introduce errors of the
general order of magnitude of one to ten percent. The
perturbation treatment of 3¢’ has been carried to
third order; this is feasible because the sums over
intermediate states are severely limited in scope by the
assumed structure of the matrix elements.

For the lowest (vacuum) state of the lattice, the
zero-order energy is Ney, and the first-order energy is
zero, as stated earlier. The second-order energy is

¢014 ZZ,A 2 N(Q Pz)
— st = — - 3y
4(e;—ep) & ¢ 4(e3— €)
(20)
0=N-15 194 19
= /N —_———
k Now {5 4 15
The fhird-order vacuum energy is
¢ ’ n
ZZ Z A std 1l gs
4(61— 60)2
016
—-——-————N(R 30P+2P%), (21)
4(e1— €0)?
583
=N-1 Z B —— P8,
N—®0 315

The dashes on the summations over ¢ in Egs. (20) and
(21) mean that the terms ¢{=s are omitted, and the
double dash on the summation over g in (21) means
that the terms g=¢ and ¢=s are omitted.

The zero- and first-order energy of the first excited
state of the lattice was obtained earlier: (N—1)epte;
+ (K2—P)¢o?, and corresponds to the first-order per-
turbed eigenfunction (14). The second-order energy of
this state is

dor*
- (K*—2K?P—20+3P?)
2(e1— o)
dor’P1s? dor*
- Q@—P)———N(Q—P?. (22
€— € €1— €)

Up to this point, all of the summations over s, ¢, etc.
have been reducible to the form (5); that is, there have
never been more than two k vectors in a single ex-
ponent. In the calculation of the third-order energy of
the excited state, however, there appear summations of
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the form
3, ik 4K) 1o,

(23)
The summation (23) is zero unless the sum of the four
k vectors in the exponent is equal to zero or to one of
the 26 other vectors with Cartesian coordinates 0,
=2/l in which case it is equal to N. These 26 other
vectors, which can be reached by the sum of four k
vectors, cannot be reached by the sum of two k vectors
as in (5), since each k vector is confined to the interior
of a cube whose edges are at =x/I; that the edges and
surfaces of the reciprocal lattice cube are not accessible
to the individual k vectors is most easily seen by con-
sidering the case in which L/l is an odd number, when
each component of a k vector can have values 0, +2=/L,
+4r/L, - - -=+[ (x/1)— (x/L)]. In similar fashion, there
are no contributions to (23) from k-sum vectors with
components =4/l since these cannot be reached by
the sum of four k vectors.

All terms that contain summations of the form (23),
with four k vectors in a single exponent, can be reduced
to

Z=N— Z Z Z DD & & R R e SO DY
k, k/l
To evaluate Z, we first perform the summations over s
and ¢, to give

Z=N"? Z > BRI (kK + K+ K—x,)— P,
P2

where the vectors «; are the 26 referred to above, and the
8 symbol is unity if its argument is zero and is zero
otherwise. Next we sum over k” for fixed values of k,
k’, and K, and note that any x; can only be reached
with k” by starting from a value of y=k-+k’+K that
lies within the cube of edge length 27/l whose center is
at that ;. Thus all possible combinations of k, k’ and
K contribute, each just once, and to various x’s. We
thus get

Z+P=N"23 3 Bk (vi—k—Kk'—K)?2,
k k/

where now x; is a discontinuous function of v.

We now take the limit N—o by replacing the k
summations by integrations: N7!X W[ J—(/2r)
X SL  Jdi, where the integral is over a cube of edge
positions z=n/l. When the integrand is squared out,

“we obtain

Z+ Pi=K2P*20P+W,
24

W= (/2x)¢ f f BE Y w2 —2x- (k+k'+K) Jdridry,

where the subscript has been dropped from x;. The
vector « is a discontinuous function of y(=k+k'+K);
the relation between x components of x and ¥ is
ke=2m/l for v,>w/l, k,=0 for —x/l<v.<w/l, k.=
—2x/l for v,<—m/l, with corresponding relations for
the other components. The evaluation of W is rather
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tedious; it can be done either by breaking up the
domain of integration according to the value of x, or
by representing the components of x as discontinuous
integrals. Both methods were used in order to have
a check available; the result is

11 83 997
W=—K°—-K*P——K?P*——P*,
630

= 23)
3 6 30

The third-order energy of the excited state may now
be calculated; it exceeds the third-order vacuum
energy (21) by the amount

dor®

— (K- 3K*P+6K2P?— 3K2Q
2(61— 60)2

—3R+12Q0P—10P3+-22)

bor’p1s?
[2(K*~P)(Q—P?)
(él— éo) (62_ Eo)
—2Z+R—3QP+2P%]

dor'p1s’

)2

[ (K=P)(Q—P)+R

(62“ €0
dorprst
€2 €)

where Z may be obtained from Eqs. (24) and (25). In
order to obtain the particle energy through third order,
we must add to this the energy through second order,
which is the sum of (15) and (22) minus (20):

—30P+2P%]+ Z, (26)

ot
(e1— €0)+ o2 (K*— P)———
(a—e0)
15
X (K*—2K*P—2Q+3P%) — ©—Py. (@7
€2 €9

Approximate Relativistic Relation Between
Particle Energy and Momentum

The energy of the particle, through third order in 3¢/,
is given by the sum of Egs. (26) and (27), within the
limits of the approximation that matrix elements ¢um
with m##n41 are neglected. The momentum of this
particle is K, provided K is small in comparison with
1/1. The relation between K and the momentum is not
affected by the higher-order corrections to Eq. (14);
this is because p commutes with 3C, and 3¢’ separately,
so that only unperturbed energy eigenfunctions that are
eigenfunctions of p with the same value of K as Eq. (14)
can mix in with it. .

Before considering the relation between the energy
and momentum of this particle, it is instructive to see
what this relation is in the linear case (a=0). The
solutions of Eq. (10) are the harmonic oscillator wave
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functions; the eigenvalues and matrix elements are
en= (n1%) (P+u?)},
¢n, nt1= (P+l-‘2)—%[% (%+ 1)]%’

with other matrix elements equal to zero. With these
substitutions, the sum of Egs. (26) and (27) becomes

dor
(e1— €0)+ o (K2— P) — ———(K?—P)?
€1— €o)
i ¢’ (Ki— P)ie (Pi)h (K?*—P)
2(ey—€g)? - g 2(P+p?)?
(&—pp  (K*—P)

- 1 . (28
sEra 6@t

The right side of Eq. (28) will immediately be recog-
nized as the first four terms in the power series expan-
sion of

[(P+w)+ (K= P)J= (24K,

which is the relativistic expression for the energy of a
particle of rest mass p and momentum K. This is
hardly a surprising result, since the quantization of
Eq. (1) with @=0 is easily carried through exactly by
using expansions of the field variables in plane waves,
both in the continuum and lattice cases. The energy of
a single particle is known to be given by Eq. (29), and
the foregoing derivation of Eq. (28) might well be
regarded as unnecessarily complicated.

It is nevertheless important to observe that Eq. (28)
was derived by using a perturbation method that in the
linear case can only be justified for large ! (see the next
to the last paragraph of Sec. II). In spite of this re-
striction, we presumably could, by continuing the
development in powers of 3C’, sum the series to obtain
Eq. (29), which we would then be willing to accept
regardless of whether or not / is large. We therefore
argue that it is possible in this way to obtain a result
that is valid even when the perturbation expansion from
which it was derived cannot justifiably be used. We
further argue that results like Eq. (29) that have a
kind of relativistic character can be obtained in this
way from a manifestly non-covariant theory.

We now proceed with the nonlinear case, and see
how closely the sum of Egs. (26) and (27) agrees with
the left side of Eq. (28), when allowance is made in the
latter for altered values of (e1—e) and ¢o;. It is ap-
parent that the zero- and first-order parts of both are
the same. The second-order part of Eq. (27) exceeds
the second-order part of Eq. (28) by

(29)

[ dor* _¢012 122 (30)

|-

€1— € €2 €

The third-order energy (26) exceeds the third-order
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part of (28) by

[ 3po1® 2¢or'p1s? bor'P1a? ]
2e—e) (a— €) (e2—€) (e2—€)?
3po1® bor'P1s?

><(K2—P)(Q—P2)+[— l
2 (61—" 60)2 (61_‘ 50) (62—“ 60)

Por'e1e® o1t
] (R—3QP+ 2P3)+[ :
(e2— €0)? (e1—€0)?
2¢porip1® dor’Pra?
— -+ ]Z . (31
(e1—eo) (e2—€0) (e2—€0)?

In estimating the errors implied by Egs. (30) and
(31), we shall use for the ¢’s and matrix elements the
numerical values given previously for the case a= .
Since the individual square brackets in Egs. (30) and
(31) all vanish in the linear case («=0), this procedure
is likely to overestimate the errors. We then find for
the errors in the coefficients of K% K2, and K° in the
second-order part, 0, 0, and 19.4 percent, respectively.
In similar fashion, we find for the errors in the coef-
ficients of K¢ K* K2 and K° in the third-order part,
0.9, 1.5, 24.5, and 19.3 percent, respectively. Thus of
the ten coefficients that can be compared with the left
side of Eq. (28), five are in agreement, two show about
one percent errors, and three show about twenty percent
errors; these are believed to overestimate the errors
that would be obtained with finite «.?

This encourages us to regard the series on the left
side of Eq. (28) as a sufficiently accurate representation
of the energy of the particle. If we also equate
2¢01%(e1— €0) to unity (the error here is 1.2 percent when
a= ), then these are the first four terms in the power
series expansion of

[(er— e+ (K= P)J = I+ K,

M= [(61— Eo)Z—P]%.
We therefore interpret the quantity M in Eq. (32) as
the rest mass of the particle. Moreover, following the

lead provided by the discussion of the linear case above,
we assume that Eq. (32) is valid for all @, and not only

(32)

for large a where the perturbation calculation is justified.

Comparison of Egs. (32) and (10) shows that M is
a well-defined function of the three parameters of the
theory: u, o, and . We have already observed that if
a=0, M=y regardless of the value of / [see Eq. (29)].
We can now see from the structure of Eq. (10) that
the addition of any positive fourth-power potential to
the harmonic potential increases the spacing of the
energy levels, so that (e;— €o) is larger for finite o than
it is for @=0. It is also apparent that for any fixed
finite @, the importance of the fourth-power potential

9 This agreement could be improved upon by altering the
definition of M in Eq. (32) to compensate for the errors in the

higher-order terms. This added complicated hardly seems worth-
while at the present time.
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increases as ! decreases, and we have already seen (Sec.
II) that the energy levels become infinite like 1/1 as
I—0. We therefore conclude that so long as a0, M is
larger than p, and by an amount that becomes infinite
as [—0. This is a physically satisfactory conclusion,
since we expect the nonlinearity, which corresponds to
an internal self-repulsion of the field, to increase the
self-energy of any particle that is described by the field.
It is also not surprising that this self-energy should
become infinite as /—0, since this makes the particles
more nearly like points.

Quantitative results can be expressed in terms of Eq.
(11). We put B=2}(z>+u2?) /a*/® and 3(B) =\1(B) — Ao (8).
For small values of 8, z(8) may be found by perturbing
the solutions already obtained with 3=0:

2(8)=2N1(0) —No(0)+BL (3 11— (4% 00 ]
=2.7393+0.53983.

For large values of 3, 2(8) may be found by perturbing
the harmonic oscillator solutions which are valid for
ﬂ: 0

5(8) 2281+ 36-1— 9852,
For three intermediate values of 3(=3, 6, 9), numerical

integrations of Eq. (11) were performed.® It is then
convenient to define two new variables:

2—48 P o
y= 2813 _;;(M M ),
33
2t a (33)

g (/e

A curve of y against # is plotted in Fig. 1; from this,
the value of M that corresponds to any combination of
values of u, o, and ! is readily found.

1.6 8
L
1.4 7
A Yo
1.2 e =6
(y vs. X / /‘

0
0 2 4 6 8 10 12 14 16 18 20

XOR a

F1G. 1. Plots of quantities related to the rest mass of a free particle;
see Eq. (33) et seq.

10 The writer is indebted to D. L. Judd of the Radiation
Laboratory, University of California, for arranging for these
numerical computations, and also to J. Killeen and the differential
analyzer group who carried them out.
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Since for finite « the field rest mass u must always be
less then the particle rest mass M, it might be argued
that u does not fulfill any useful purpose in the present
theory. Then one free parameter can be eliminated by
setting u=0, which means that the entire rest mass of
the particle arises from the nonlinearity. From Egs.
(33), we see that for u=0, x=q, and IM =aly}, so that
it is possible to plot M against « directly; this is also
done in Fig. 1. If, for example, we choose I=1/M, so
that 7 is equal to the reduced Compton wavelength of
the particle, Fig. 1 shows that a=<1.6.

Higher Energy Eigenvalues

We have interpreted the first two eigenvalues of Eq.
(10) in terms of the particle rest mass, through Eq.
(32). A question then arises as to the role played by the
higher energy eigenvalues. It might at first be thought
that they correspond to particles of higher rest mass. To
investigate this idea, consider the analog of Eq. (15)
for the excitation energy through first order of the
N-fold degenerate state in which a single lattice-point
oscillator has the eigenvalue e,: e,— €9— Ppon>+ K?pos>.
We have already seen that all matrix elements ¢, are
very small unless »=1, so that there is a wide dis-
crepancy between the approximate rest mass e,— e and
the approximate kinetic mass 1/ (2¢.%) ; the momentum
is of course still given by K. It is not reasonable, there-
fore, to interpret the higher energy eigenvalues in terms
of particles of higher rest mass. ‘

A clue as to the part they play in the theory can be
obtained by comparison with the linear case. Here the
energy levels are equally spaced, so that there is de-
generacy between any higher eigenvalue and multiply
excited lower eigenvalues; for example, the eigenvalue
€. i1s degenerate with excitation of » lattice points to
the eigenvalue ;. Now #n-fold excitation to ¢ corre-
sponds physically to the presence of # particles, so that
all the other modes of excitation that are degenerate
with this must be thought of as part of the description
of the n-particle system, at least in the case of large /,
where the perturbation theory may be used in the
linear case.

We believe that a similar interpretation of the higher
eigenvalues is required in the nonlinear case as well,
even though the system is no longer degenerate. We
shall see in the next section that such states form part
of the description of the scattering of one particle by
another, and are essential if the result is to have the
proper behavior when =0 (linear case).

IV. SCATTERING OF ONE FREE PARTICLE
BY ANOTHER

We have seen that a single free particle of momentum
K can be described to first order by the wave function
(14). We therefore expect that two particles with
momenta K; and K, can be described, at least approxi-
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mately, by the wave function
‘I’II(KI, K2)=N—1 Z Z, ei(Kl"8+K2"‘)U11(S, t),
8 t

(34)
Un(s, )=ur(da)ur($)11" 20 (¢a) ;

the dash on the second summation means that the
terms {=s is omitted, and the double dash on the
product means that the terms g=¢ and ¢=s are omitted.
Note that since the states ¥y, (Kl, Kz) and ‘I’n(Kz, K])
are identical and the state K;=K; is permitted, the
particles obey Einstein-Bose statistics.

An important difference between Egs. (14) and (34)
is that (14) diagonalizes the perturbation 3¢’ to first
order while (34) does not. This is because there is first-
order interaction with all the states ¥y (K/(, Ky') for
which Ki/+Ky=K;+K.;, and also with the state

Vo (K Ko) = N1 3 ei®tKa) wslJy (s),

(35)
Us(s)=u; (¢3)ItI’ wo(ds).

Because of the commutativity of p and 3¢/, the total
K vector must be the same for all combining states.!!
We now proceed to make a first-order diagonalization
of 3C, using an arbitrary linear combination of the
above states:

V= Z B (K)‘I/n (K, K— K)+A\I’2 (K). (36)
\ ®

If the wave function (36) were an exact eigenfunction
of 3¢, we would have (3C—E)¥=0, where E is the total
first-order energy of the initial collision state with
momenta x; and K—x,:

E= (N— 2)60+2€1+ [K02+ (K"" Ko)2— 2P]¢012.
Since it is not a solution, the best we can do is require
that when (3¢—E)¥ is analyzed into states that cor-
respond to the excitation of 1, 2, --- lattice points by
various amounts, the coefficients of ¥y; and ¥, are
zero. This means that

f ... f V1* (!, K— 1) (50— E)¥depy - - -dpyy=0,

37)
[ [ @ (o= Eyedss:--dow=o,
where ¥’ is arbitrary. The first of Egs. (37) gives
[B()+BK— )T (K— )=
— (K—=x%0)"]po>—2¢02N 1 3_ B(x)
K
X[+ (K—«")? 42+ (K—x)2—«o?
— (K—x0)2— 2P+ Apoip1aN 3
X[+ (K—«)*—2P]=0, (38)

11 There would also be interaction with the vacuum state (12)
if Ki+ K. were exactly zero, that is, if the lattice were at rest in
the center-of-mass coordinate system. The extra term introduced
does not seem physically plausible, so we avoid it by assuming
that K;+K.5<0.
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and the second gives

Af{ et e0— 2e1— (ko2 + (K— 1q)?— 2P]¢o12}

+¢01p12N Y, B(x)[i2+ (K—x)2—2P]=0. (39)

Elimination of 4 between Egs. (38) and (39) yields a
set of simultaneous algebraic equations for the quan-
tities B(x’) with all possible values for «’:

[B(x)+B(K—«) J[«*+ (K— «)*—k¢’— (K—x0)"]
=2N"' 3 B({[«*+ (K— )+ £+ (K—x)*

— k= (K—xo)?— 2P~ (2AE)~
X 2[4 (K—«'yi— 2P [+ (K—w)?— 2P},
AE=[ke+ (K—%0)?—2PJpos*+2e1— (e2+€0).

Equation (40) is a Tamm-Dancoff-type approxima-
tion to the field equation, in which only the states cor-
responding to two singly excited lattice points and to
one doubly excited lattice point are included. We do
not solve Eq. (40) exactly, but rather find the first
Born approximation to the solution, by putting

B(x)=08x,x+b0(x), b(x)K1,

-and neglecting 5(x) in comparison with unity. Sub-
stitution of Eq. (41) into Eq. (40) gives, for «’ different
from 19 and K—xo:

(40)

G

2[x"*+ (K—«')2—2P]
NK*+ (K= /)= ket— (K—x0)*]
[ko?+ (K—%0)2— 2P o1
B N

b(x)+bo(K—v)=

(42)

The two-particle part of ¥ may now be found by re-
writing the first term on' the right side of Eq. (36) as

3 ZEB (¥)+ B (K— 1) 11 (x, K— K)

and substituting from Egs. (41) and (42)

e K yrge e (Row—2P]
11(x0, K—1%0) -7 %: [+ (K— u)’—- xo?— (K—1x0)?]
2 —1x9)2— 01
3 Lro*+ (K—x0)*— 2P Jgor® U (x, K—x). (43)

2AE

The physical significance of Eq. (43) can be seen by
substituting for ¥;; from Eq. (34), and interpreting
the coefficient of Uy(s, ) as the probability amplitude
for finding the two partlcles at r; and r;. We take the
limit N— by replacing the summation over x by an
integral, as in Sec. III:

N4EL T2y fr 3.
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As with the usual Born approximation, the requirement
that the scattered wave be outgoing means that the
path of integration must pass below the singularity in
the integrand when the integral over the magnitude «
of the momentum is carried out. The square of the
amplitude of the outgoing wave gives the differential
scattering cross section. Since the summand in Eq. (43)
is independent of the directions of the momenta in the
center-of-mass coordinate system, the scattering is
spherically symmetric in this coordinate system. The
total cross section, when allowance is made for the
identity of the two partlcles in the normahzatlon of the
incident plane wave, is

16 . (K02+%K2__ P)¢122 2

o=—(Kd+1K— P 1 :
T AE

(st €0),

A (44)
AE=2(K@+1K2— P)dol+2e;—

where Ky=1K—x, is the momentum of one of the
particles with respect to the center of mass.!?

We note first that for the linear case, which is included
in the present calculation because all of the degenerate
states are retained, 2e;=ext € and ¢122=2¢0,%, so that
the scattering cross section is zero. This is as it should
be in a theory that admits of a superposition principle.

In the nonlinear case, the two terms in the curly
bracket of Eq. (44) do not cancel. The first term can be
shown to arise from the fact that there is no term
U(s, s) is the summation of Eq. (34); the product of
plane waves is not quite complete, and the “hole” when
s and ¢ are equal results in scattering. The second term
arises from the second-order transition through the
state ¥, (K), as is evident from the fact that it contains
¢12 and €. Since this calculation makes use of the
perturbation theory, it is only valid when o>>1. Then
the second term is smaller than the first term by a
factor of order 1/a?/. A further analysis shows that the
first term corresponds to a repulsive and the second to
an attractive interaction. The second term can in
principle give rise to a resonance when AE=Z(, that is,
when the total energy of the colliding particles equals
that of the state ¥,(K). This resonance is masked by
the P term in the kinetic energy of the colliding par-
ticles, which cannot be treated correctly by a calculation
of this order (see Sec. ITI).

Since ‘the total momentum K of the two colliding
particles appears in the cross section, the result is not
Galilean-invariant.®* However, as might be expected,
the lack of Galilean invariance appears only when the
wavelengths of the particles are comparable with the
lattice constant, and then the interpretation in terms
of momentum breaks down. For long wave lengths, K¢?
and K2 can be neglected in comparison with P, and

2 Equation (44) in the case K=0 was first derived by D. R.
Yennie, who kindly informed the writer of this calculation.

13 A further lack of Galilean invariance is present in that the
case K=0 is exceptional (see reference 11).
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the total cross section for large « is
o= P? /e =m%2. (45)

The spherical symmetry of the scattering implies
that the interaction is of very short range, and the pro-
portionality of Eq. (45) with 2 is consistent with this
since the smallest length that can occur in the theory
is 1. This appearance of an essentially point repulsion
between particles is in agreement with the interpreta-
tion of the ¢* term in the continuum field Hamiltonian
as a point-contact repulsion.!

V. INTERACTION WITH NUCLEONS
Nucleons as Classical Sources

Nucleons may be introduced into the theory as clas-
sical sources for the quantized field.! We assume that
the source-field (nucleon-meson) coupling is linear,'s and
add to the continuum Hamiltonian (1) the interaction

Hi=— f ¢(¥)gdr, (46)

where g(r) is proportional to the density of nucleons.
Neutrons and protons are coupled to mesons in the
same way in the present treatment, and their distribu-
tion is assumed to be constant in time. In analogy with
Eq. (4), we define the lattice source density

=t [ fe—r)g(o)ir
where the coefficient has been chosen so that
% .= [swar.

We then write for the lattice interaction Hamiltonian

3= —l—‘; Z gs¢sy (47)
which approaches H; as [—0.

Since 3C; is a sum of terms each of which involves a
single lattice point, it can be included with 3C, as part
of the unperturbed Hamiltonian. This means that
arbitrarily strong couplings can be included within the
framework of the present theory. Equation (10) then
becomes

1 &
[—~—+ (P+12)es 2+—¢4 —¢s]um(¢s)

2 d¢s?
= €snUsn (¢a)1

14 See I; the scattering predicted by the usual quantization of
Eq. (1), treatmg the ¢ term as a perturbation (a<1), is a]so
spherically symmetric and the total cross section is 9at/16mwu? for
low-energy particles.

15 Other possibilities are discussed. by L. I. Schiff, Phys. Rev.
84, 10 (1951); 86, 856 (1952) Berger, Foldy, and Osborn, Phys.
Rev. 87, 1061 (1952)

8) .

SCHIFF

where the subscript s must be retained in case g, in
Eq. (47) is not the same for all lattice points. It is
apparent that the energy eigenvalues of Eq. (48) form
a discrete set extendlng from a smallest value (which
is negative if |g,| is sufficiently large) to 0. The
eigenfunctions u,, with given s form a complete ortho-
normal set, but do not have definite parities if g, 0.

Nucleon Isobaric State

Suppose that a single nucleon is present at the point
1o, so that go=g, and g,=0 for s 0. We assume that «
is large so that 3¢’ can be treated as a perturbation.
Then the vacuum state is that in which all lattice
points are in their lowest states, and has the zero-order
energy (N—1)e(0)+eo(g), where €,(g) is the (n+1)th
energy level of Eq. (48) when g,=g. The first excited
state has a zero-order energy that exceeds the vacuum
energy by e (g)—e(g) or e1(0)— €(0), according as the
nucleon lattice point is or is not the one that is excited.
As discussed in Sec. III, the latter excitation energy is
related to the rest mass of a free particle; it is then
natural to interpret the former excitation energy in
terms of an isobaric state of the nucleon. If € (g)— e (g)
is larger than €(0)—e(0), as is actually the case, the
isobaric state will be degenerate with the state of a
nucleon plus a free meson with an appropriate amount
of kinetic energy. Then since these two states are
coupled together by 3¢’, the isobaric state will be short-
lived and manifest itself mainly as a resonance in the
meson-nucleon scattering, as is discussed in the next
subsection.

If we apply to Eq. (48) the change of variables that
takes Eq. (10) into Eq. (11), we get

du,

P + A n—Bx*— 2 yx) 1, =0,
£%

. (49)
B=24(n"+p’P) /o, y=23g/a.

For a large compared to unity but not necessarily large

compared to g, the 8+? term can be neglected, and the

effect of the yx term by itself can be investigated. A

combination of perturbation and variational methods
can be used to show that, for small v,

A=21.0605—0.1318~2,
M=23.7998—0.0152+2,

For large v, the “potential” x*—vx can be approximated
by a parabola, and a WKB calculation shows that

M= —=3(v/4)* 6 (v/4)},
M= —3(v/4) P+ (34 (/D1

For three intermediate values of y(=1, 2, 3), numerical
calculations were carried out at Berkeley 10 Figure 2 is
a plot of [A1(v)—Ao(¥)]—[A1(0)—2o(0)] against v for
B=0, which shows that the isobaric state is in fact
unstable in this case.

(50)

(1)
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and the abscissa to the nucleon source strength.
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Meson-Nucleon Scattering

The cross section for meson-nucleon scattering can be
calculated in exact analogy with the meson-meson scat-
tering calculation of Sec. IV. In place of Eq. (36) we
adopt the following Tamm-Dancoff-type wave func-
tion:

‘I’=Z B(K)\I’II (KH‘A Ul(o)y
k

where ¥,'(K) is given by Eq (14) except that the
nucleon lattice point (s=0) is excluded from the sum-
mation. Note that because of the presence of the
nucleon, K is no longer a strict constant of the motion,
so that states with different total K vectors can mix
together. In solving the resulting equations by the Born
approximation, we put B(K)=0k &+b(K), where
b(K)<«1 and K, is the incident meson momentum.

The scattering is spherically symmetric, and the
total cross section is

lﬁ (K 2__P)¢0 2,2
o= —(Kg—Pp1— 0
4 AE

AE= (K¢*— P)¢oi’*+ (e1— €0) — (&1 — &0).

The primes in Eq. (52) refer to quantities calculated at
the nucleon lattice point. We note first that for the
linear case, the energy levels and matrix elements are
not affected by the presence of the nucleon, so that the
two terms in the curly bracket cancel. Such a vanishing
cross section is to be expected since, as is well known,
the presence of a fixed source does not affect the quan-
tization of a real linear field.!® The same cancellation
occurs, as it must, in the nonlinear case when g is set
equal to zero.

In the nonlinear case with g0, the two terms in the
curly bracket of Eq. (52) do not cancel. In analogy
with the meson-meson scattering calculation (Sec. IV),
the first term arises from the “hole” in the normal
structure of the lattice at the point ro, while the second
term comes from the second-order transition through

(52)

16 See for example G. Wentzel, Quantum Theory of Fields (Inter-
science Publishers, Inc., New York, 1949), p. 47.
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the state U;(0). Again the first term corresponds to a
repulsive and the second to an attractive interaction.
The second term should give rise to a resonance when
AE=20, that is, when the total energy of the incident
meson equals that of the isobaric state U;(0); however,
the resonance is masked by the P term in the kinetic
energy of the incident meson, which requires a higher-
order calculation for its correct treatment. When the
perturbation theory is taken seriously (e>>1), the
second term is small in comparison with the first term,
and the total cross section for scattering of a slow meson
by a nucleon is :
o=2I8P?/An=71/4. (53)

The spherical symmetry of the scattering and the pro-
portionality of Eq. (53) with 2 imply an essentially
point interaction. ’

Interaction Between Two Ndcleons

The zero-order vacuum energy of the lattice with
two nucleons present is (V—2)e(0)+2e0(g), regardless
of where the nucleons are located provided that they
do not occupy the same lattice point. There is a first-
order change in the energy since the parity is not a
good quantum number for the nucleon lattice points,
and also a second-order change in the energy which

.arises from states in which one or another lattice point

is excited. Both of these are position-dependent, but are
small if the perturbation treatment of 3¢ is justified.

There still remains a zero-order point interaction
between the two nucleons, since the vacuum energy is
altered when the two nucleons occupy the same lattice
point. This interaction may be theught of as having a
range of order / and a value

Leo(2¢)+€(0) 1—2e0(g),
which is negative. With the notation of Eq. (49), the
quantity 2Xo(y)—[Ao(0)4+No(2v)] is proportional to the
negative of the interaction energy. It is plotted against
v for 8=0 in Fig. 3, which shows that the interaction is
attractive in this case.

Saturation of Nuclear Forces

Thus far in this section we have considered situations
in which one or two nucleons are introduced as classical
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nucleon-nucleon interaction, and the abscissa to the nucleon source
strength. :
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sources localized at as many lattice points. In con-
sidering many nucleons assembled to form a nucleus,
we could continue in this way, or we could spread the
sources out over more lattice points than there are
nucleons. It seems more reasonable to follow the former
course, according to which an assembly of #y nucleons
has a zero-order energy which is proportional to
(N—nx)Ao(0)+naho(y), regardless of how they are
located ‘so long as they are not crowded together onto
fewer lattice points than there are nucleons.

If now the nucleon density is increased, so that the
nx nucleons are crowded into 7, lattice points (7; Zny),
the energy will be proportional to

(N—=n)No(0)+nMo (), 4

The potential energy per nucleon is proportional to the
difference between Eq. (54) and the value of Eq. (54)
with ¢=1, divided by nx:

fEﬂN/nl.

1
ED\O V)= (0) I=[ro(r) =2 (0) 1. (55)

For small values of {y, Eq. (50) shows that this poten-
tial energy per nucleon is negative (attractive) and a
linear function of the nucleon density {. For large
values of {v, Eq. (51) shows that Eq. (55) is a linear
function of —¢*. Figure 4 is a plot of —[Ao(v)—Ao(0)]
against v, that can be used to evaluate Eq. (55) in the
general case.

The stability of nuclear matter and the saturation
of nuclear forces can now be discussed qualitatively, as
was done earlier with the help of classical field theory.”
For lack of a more consistent mode of description, we
say that the kinetic energy per nucleon is proportional
to the 2 power of the density or of {; this regards the
nucleons as described by wave functions in a con-
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Fi6. 4. Curve from which Eq. (55), which is related to the satura-
tion of nuclear forces, can be computed.

17 See I, Sec. 11.
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tinuum, not a lattice space. Then stability is attained
only when the density becomes so great that the
3-power law for the potential energy dominates. This
evidently occurs only for nucleon densities somewhat
greater than 1/P. In this domain, the lattice-space
quantization and the classical theory” give similar
results for any power of nonlinearity (not only for the
fourth power considered above), since the derivation of
the leading terms in Eq. (51) is based on the WKB
method and hence is essentially classical.

It is also worth noting that a qualitatively similar
result would have been obtained if we had permitted
each nucleon to be spread out initially over several
lattice points. Collapse would again occur down to a
density somewhat greater than 1/,

In the classical theory, the interaction between two
nucleons embedded in nuclear matter was found to be
weaker than that in empty space.® The quantity
plotted in Fig. 3, which is proportional to the negative
of the interaction energy in empty space, must be
replaced in nuclear matter by 2X\o(sv+7v)—[No(ty)
~+Xo(¢y+2v)]. This quantity decreases as the curvature
of a plot of —Xo({y) against {y decreases, that is, as {
increases, since the curve in Fig. 4 straightens out as
the abscissa increases. Thus, as in the classical theory,
the two-nucleon interaction decreases as the density of
nucleons increases. -

Interaction of Mesons with Nuclear Matter

In the last subsection, the ground-state energy of a
distribution of classical sources was considered. A study
of the first excited state of this system yields informa-
tion on the interaction of mesons with nuclear matter,
and provides an extension of the meson-nucleon scat-
tering calculation that was given earlier in this section.

It is apparent that for an arbitrary distribution of
sources, K is not even approximately a constant of the
motion, so that it is disadvantageous to use wave func-
tions of the type (14). Instead, we take for our Tamm-
Dancoff-type wave function

¥=2",b(s)U1(s),
and require that

f--~fU1*(t)(SC—E)\I/d¢1---d¢N=0

for all £. This leads to the following equation:

{(en—e€w)—P(p)o’+[ (@) 11— (@e)oo]
XZ, Asl((ﬁs)oo‘EO}b(t)

F (@01 2 Asi(@e)od(s)=0, (56)

EOEE‘—Z €g _% Z Z, Asq(d’s)oo(‘i’q)ﬁf);
s s g

18 See I, Sec. IX.
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E, is the amount by which the energy E of the first
excited state under consideration exceeds the first-order
ground-state energy.

If the source strength g, is different from zero at
several lattice points, Eq. (56) will be very difficult to
solve. However, if g, changes little between neighboring
lattice points, we can assume that there exist solutions
for which b(s) is also slowly varying. It is then con-
venient to define a function x (r;)= (¢,)0d (s), and make
use of the easily established relation

2 Aax (1) = —[Vx() Jr=r.. (87

p 10
This does not mean that we actually take the limit
I—0, but rather that we assume that x(r;) varies suf-
ficiently slowly from one lattice point to the next so
that we can regard it as a continuous function of the
lattice-point coordinates. We are thus led to the ap-
proximate wave equation

— (6o V2x (1) +V (r)x (r) = Eox (r4),

V(r)= (esi— €x0)— P(pe)o®
F[ (@) 11— (@)ool Ase(ds)oo.

(58)

A simple example of Eq. (58) is that in which all g,
are zero (single free meson). Then (¢¢) 1= (d:)0o=0,
and V(r;)=e1— eg— Popo®=constant. There are plane
wave solutions x(r;)=C exp ¢(K-r;), where

E0= €1— €o+ (Kz__P)quz’

in agreement with Eqgs. (14) and (15). The point at
which the limiting procedure (57) shows up as an
approximation is that in- the present analysis K can be
any vector, whereas for a correct solution K must be
one of the reciprocal lattice vectors. So long as K is
small in comparison with 1/J, x is actually slowly
varying as assumed in Eq. (57), and it makes little
difference whether or not Kjis precisely a reciprocal
lattice vector.

Suppose now that g, is different from zero only within
a restricted region of space, which corresponds to a
nucleus. Then outside the nucleus, x may be built up
out of solutions of the free-particle wave equation with
definite values for the energy and the magnitude K of
the propagation vector. Inside the nucleus, Eq. (58) is
the nonrelativistic Schrodinger equation for the motion
of a particle with potential energy V(r,), position-
dependent rest mass % (¢:)0:2Zey— €10, and total energy
E,. For large o, the dominant part of V(r;) is ex— €0,
which is larger inside the nucleus than it is outside (see
Fig. 2). Thus the nucleus acts as a repulsive potential
for mesons incident from without. This confirms the
result obtained earlier from classical field theory.?® As
pointed out there, a consequence of this result is that
production of mesons in heavy nuclei should be pri-

1 See I, Sec. XI.
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marily a surface effect, since the wave function of the
created meson does not penetrate far into the nucleus.

VI. CONCLUDING REMARKS

The method of quantization employed in this paper
is a natural one to use whenever the gradient terms in
the field Hamiltonian can be treated as a perturbation
and there is no immediate requirement of covariance.
Then the continuum solutions are expected to be limit-
ing cases of the lattice solutions as /—0, and the fact
that solutions cease to exist in this limit must be re-
garded as a strong indication that they do not exist at
all for the continuum field Hamiltonian. This has
indeed been the presumption that underlies most of
the recent work in quantum field theory; meaningful
results can be obtained only by a renormalization
procedure, using covariance as a guide. In the present
case, covariance cannot be used in this way; neverthe-
less, a quasi-relativistic solution for the motion of a
single free particle has been obtained.

It is tempting to regard the introduction of the
lattice constant / as analogous to the renormalization
procedure, in that it enables one to extract finite results
from an otherwise divergent theory. It would then
follow that [ is a physically real quantity, and not just
a mathematical artifice that is to be eliminated at as
early a stage as possible. Unfortunately for this point
of view, Fig. 1 shows that for p=0 and M equal to the
rest mass of a meson, either / must be larger than is
physically reasonable or a must be so small that the
perturbation theory cannot be employed. This last may
not be an obstacle if the results of Secs. IV and V can
be given the quasi-relativistic form of the results of
Sec IIL.

It is possible in principle to apply lattice-space quan-
tization to coupled meson-nucleon fields. The gradient
term in the Dirac Hamiltonian for the nucleon field is
then included as part of the perturbation, and the
nucleon rest mass and coupling term (when the latter
is of point type) are included in the unperturbed Hamil-
tonian. The neutral scalar nonlinear meson theory with
scalar coupling differs in only minor respects from the
classical source theory considered in Sec. V. The prin-
cipal difference is that g, is limited to an integer mul-
tiple 7 of some basic value, where m ranges from —4
to -+-4; the number 4 appears because there are two
kinds of Dirac particles (neutrons and protons) each
with two spin states. For pseudoscalar particles with
pseudoscalar coupling, the calculation is far more
complicated because the different components of the
Dirac fields are coupled together. It is then necessary
to solve a set of simultaneous. differential equations at
each lattice point. Some aspects of this situation are
being explored.
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illuminating conversations.



