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A Collective Description of Electron Interactions: IV. Electron Interaction in Metals
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The sects of the Coulomb interaction between free electrons
in an electron gas are considered for a variety of phenomena.
The analysis is based on the collective description, which describes
the long-range correlations in electronic positions (due to the
Coulomb force) in terms of the collective oscillations of the
system as a whole. It is shown that an independent elect~on model
should provide a good description of the electrons in a metal in
many cases of interest. The ground state energy of the free
electron gas is determined, and an estimate of the correlation
energy is obtained, with results in good agreement with those of
signer. The exchange energy is shown to be greatly reduced by
the long-range correlations, so that its e6ect on the level density
and the speci6c heat is comparatively slight, leading to an elec-

tronic specific heat for Na which is approximately 80 percent of
the free-electron value. The possible ferromagnetism of a free-
electron gas is investigated, and it is found that the long-range
Coulomb correlations are such that a free-electron gas will never
become ferromagnetic (no matter how low the density). The
excitation of the collective oscillations by a fast charged particle
is studied, and the semiclassical results obtained by Bohm and
Pines are verified by a quantum-mechanical calculation. The
results are applied to the experiments of Ruthermann and Lang
on the scattering of electrons by thin metallic 6lms and to experi-
ments on the stopping power of light metals for fast charged
particles, with resulting good agreement between theory and
experiment.

' 'N the preceding paper, ' a quantum-mechanical col-
~ ~ lective description of the electrons in a dense-

electron gas has been developed. In this paper we wish

to apply this collective description to the motion of the
conduction electrons in metals. In so doing, we shall
assume that the eQ'ect of the positive ions in the metal
may be represented by a smeared out uniform back-
ground of positive charge. This assumption should be
quite a good one for the alkali metals (in which the
electronic wave functions are almost plane waves), and
we may expect it to apply generally for any metallic
phenomenon in which the periodicity of the lattice
plays no important role. In assuming a uniform positive
charge, we are also neglecting the ionic charge density
fluctuations and so cannot consider the interaction of
the electrons with the lattice vibrations. Actually, a
collective description of the ionic motion is also possible
and offers a promising approach to the treatment of
problems in which the electron-lattice interaction plays
an important role. ' '

%e also assume that the only interactions of impor-
tance for the conduction electrons in a metal are those
with the other conduction electrons. If this is not true,
as might be the case if, for instance, the exchange
interaction with the core electrons is large, then the
collective description may well become inapplicable.
For the validity of the collective description requires
that the mean collision time for electron collisions which

tend to disrupt the collective motion should be large
compared to the period of a collective oscillation. This
follows from the fact that the effect of these disruptive

& D. Bohm and D. Pines, preceding paper /Phys. Rev. 92, 609
(1953)j. This paper will hereafter be referred to as Paper III.
The earlier papers in this series, hereafter referred to as I and II,
respectively, are D. Bohm and D. Pines, Phys. Rev. 82, 625
(1951) and D. Pines and D. Bohm, Phys. Rev. 85, 338 (1952).

~ D. Bohm and T. Staver, Phys. Rev. 84, 836 (1951).
'T. Staver, Ph.D. thesis, Princeton University, 1952 (unpub-

lished).
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collisions is to cause damping of the collective oscilla-
tion, and the criterion,

&con»2sr jcoo,

is just the criterion that such damping be small. ' If (1)
is not valid then the damping is large, and the whole
concept of collective oscillation loses its signi6cance in
a description of electron interaction.

The criterion (1) will be satisfied for a free-electron
gas, since as was shown in Paper III, the only collisions
which act to disrupt organized motion are via the
short-range screened Coulomb force, and for an almost
degenerate Fermi gas these lead to a collision time
considerably larger than 2w/co„. This will also be the
case for the collisions between the electrons and the
lattice vibrations in metals, since the mean free time
between such collisions is &10 " sec, which is long
compared to the period of a collective oscillation.
g hether the criterion (1) is satisfied for other disruptive
effects requires detailed investigation for the metal in
consideration, and we shall not enter on such questions
here.

We first apply the collective description to a con-
sideration of the widespread success of the independent
electron model for the motion of electrons in metals.
In this model, the motion of a given electron is assumed,
in first approximation, to be independent of the motion
of all the other electrons. The eGect of the other
electrons on this electron is then represented by a
smeared-out potential, which can be determined by
using the self-consistent field methods of Hartree and
Fock. In this one-electron approximation, the corre-
lations in the position and energy of the electrons due
to their Coulomb interactions are treated as small
perturbations, and often entirely neglected. It is rather
puzzling that such an independent electron model
should have been so successful qualitatively, and in
many cases, quantitatively, since the Coulomb inter-

' D. Bohm and E. P. Gross, Phys. Rev. 75, 1864 (1949).
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We also have a set of subsidiary conditions on our
electronic wave functions which are [Eq. (65), III'

action is a long-range interaction and might be expected
to affect profoundly the electron motion in metals,
In fact, as we have seen, it does bring about long-range
correlations in the electron positions and so leads to
organized oscillation of the electron system as a whole,
a phenomenon which cannot be described in terms of
an independent electron model.

The introduction of the collective description enables
us to investigate in some detail just what physical
phenomena are associated with the long-range aspects
of the Coulomb force. We may sum up the mathematical
results obtained in Paper III by writing down our
Hamiltonian in the collective description. If we use
Eqs. (59), (60), 'and (61) of III, we find

+=+psrt++ooll++s. r. y

where
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of these oscillations by an external fast charged particle
in Sec. V.)

-The remainder of our Hamiltonian corresponds to a
collection of individual electrons interacting via a com-
paratively weak short-range force H, , These electrons
differ from the usual "free" electrons in that they
possess a slightly larger eGective mass,

and their wave functions are subject to a set of e'
restrictions, as given by the subsidiary conditions (6).
However, in the limit of small n'/3n, we may expect
that both of these changes are unimportant qualita-
tively (and in some cases quantitatively). Furthermore,
si.nce the effective electron-electron interaction is so
greatly reduced in our collective description, we should
expect that it is quite a good approximation to neglect
it for many applications. Thus we are led directly to
the independent electron model for a metal.

The use of the collective description not only enables
us to understand qualitatively the general success of
the independent electron model, but it also enables us
to clear up a number of quantitative de.culties arising
from the application of this model to problems in
which the electron-electron interaction is taken into
account. We consider these questions in Sec. III.

exp(pk X;)@=0. (6)
' to' —(k P,/nt —kk'/2np)'

The above Hamiltonian and subsidiary conditions are
accurate to order

n= (k P;/ntto)'A„

or (n'/3n) with respect to the electronic kinetic energy
and the zero-point energy of the collective oscillations.
As we shall see, this constitutes quite an accurate
approximation. We have also neglected H, p [Eq. (73),. .
IIIj since as pointed out in III, it will produce negligible
effects when compared with B..... and this latter term
itself is small.

We see from (2)—(5) that the long-range part of the
Coulomb interactions has been effectively redescribed
in terms of the collective oscillations of the system as a
whole. The frequency of these oscillations is, from
[Eq. (67), IEIj,

It may easily be seen that the energy of a quantum of
collective oscillation is so high (being greater than the
energy of an electron at the top of the Fermi distri-
bution) that these will not be excited in metals at
ordinary temperatures, and hence may not be expected
to play an important role in our description of a metal
under ordinary conditions. (We discuss the excitation

+lit'o = &ohio, (10)

where Pp and pp are the ground-state eigenfunction and
energy, respectively. We will also have a set of sub-
sidiary conditions on our wave function,

top exp(pk X;) —Po ——0 (k(k,) (11)
' poo —(k P,—M'/2nt)'

but, as was emphasized in III, for the ground state the
exact eigenfunction tirp which satisies (10) will auto-
matically satisfy (11). Thus, we may concentrate on
obtaining the best possible solution of our eigenvalue
equation (10). In doing so, we may expect that an
approximate Pp will not satisfy the subsidiary condi-
tions, but that any errors we make in determining the
energy of the lowest state will not be increased by our
failure to satisfy this subsidiary condition, since an

In this section we calculate, on the basis of the
collective description, the ground-state energy for our
free-electron gas. In so doing, we shall determine the
maximum collective oscillation wave vector k, (and

.hence the number of collective degrees of freedom n'),
by. minimizing the resultant energy with respect to
this hitherto arbitrary parameter. We then .apply
our results to a consideration of the correlation energy
correction to the calculation of the cohesive energies of
the alkali metals.

Our wave equation for the ground state is
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introducing the dimensionless parameter P, where

P= k./kp
We obtain

(13)

'e
K'

CA

o'4
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If we now evaluate pp using (14) and pp as given in (12),
we And that the ground-state energy per electron is
given by

where
pp = (ep/tl) = er+ pc&&"'+ eexog' (15)

0 25 ~ 5 ~75 pp ——Er(1—P'/6) =—,
' (k'kp'/m) (1—P'/6), (16)

FrG. 1. eq,„Ivs p for several values of r, .
re

pep. i = —(e'/~)Pkp+ (I'/I)
2 AV)

(17)

exact solution satisfies it and leads to the lowest possible
energy state.

We may obtain an approximate solution for fp by
treating the comparatively weak short-range electron-
electron interaction term II, , as a small perturbation
in our expression for H, Eq. (2). In this case, we have
as a 6rst approximation,

4'p=4'p-'Xp, (12)

where fp"' represents a product of simple harmonic
oscillator lowest-state wave functions, one for each
collective oscillation wave-vector up to k =k„and xo
is the usual Slater determinant made up of the free-
electron wave functions appropriate to the ground state
of our system. The foregoing treatment may then be
improved by taking into account the short-range corre-
lations in electronic positions brought about by H, , .
We return to this question later.

In using the wave function (12), we are describing to
a high degree of approximation the long-range corre-
lations in electronic positions brought about by the
Coulomb interactions. The great virtue of the collective
description is that these quite complex correlations
may be simply described in terms of the collective
oscillations of the electron gas, and for the ground state
of our system, are for the most part contained in fp'80.
We note that if we attempted to express (12) in terms
of our original "bare" electron coordinates (x;p;), in a
manner similar to that used in obtaining Eq. (23, III),
we 6nd that fp would be a complicated many-electron
wave function, which would bear no simple resemblance
to a determinant composed of single particle wave-
functions and would not easily lend itself to a compu-
tation of the system energy.

Before evaluating the lowest-state energy eo, we 6nd
it convenient to re-express our Hamiltonian (2) by

h = —2%8
k, k'&ko 2

Ik —k') )Pk

(18)

(or)A, =u)„(1+3nL1+(3/10)l ']). (19)

In Fig. 1 we give a plot of pc,„& (in units of r,Xryd-
bergs) ws P for several values of

r, = rp/ap (3e/4') i(me'/k')——, (2p)

the interelectron spacing measured in units of the Bohr
radius.

25 75

FIG. 2. 6 o ' (=—6p +E~+E, ,h') vs P for several values of r, .

In Eq. (15), pr represents the average Fermi energy,
diGering from the usual expression in that our electrons,
have the effective mass m*. ec,„~ represents the di6er-
ence in energy (per electron) between the zero-point
energy of the collective oscillations (e'/e)(puo)A, /2)
and the usual self-energy of the charge distribution the
oscillations here describe —ep/~pkp. It may be regarded
as arising from the reduction in the long-range density
fluctuations of the electron gas, as described, for
instance, by Eq. (77, III). (~)A„ is the average frequency
of collective oscillation, obtained by averaging our
dispersion relation over all k &k,. One finds, from
(68, III) that
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h is the exchange energy arising from B, , , the
short-range electron interaction energy. The sums over
k and k' in (18) are to be carried out for all electrons of
parallel spin in the Fermi distribution (i.e., k(ks,
k'()'ss) such that ~k' —k~ )p)4. This latter restriction
arises from the short-range character of the interaction,
as expressed by the restriction of k values in)(5) to
k)pks. We evaluate s, ,h in Appendix I, and there
show that

8

.6

~~
E

4

and

n=p'/2r„ (22)

(23)

We 6nd from (22), and Fig. 4, that a 1/16 for r, =2
and n 1/20 for r, =5, so that expansions in powers of
ts should be quite accurate. Similarly, we find (n'/3N)
is (1/48) for r, =2 and (1/17) for r, =5, so that it
constitutes an equally valid expansion parameter.

The preceding results are conveniently analyzed by
the introduction of the concept of the correlation energy
of the free-electron gas. This energy may be dered as
the diGerence between the energy calculated by means
of suitable many-electron wave functions and the
energy calculated in the Hartree-Fock one-electron
approximation. The latter energy is'

e,„,h= —(0.916/r, ) (1—(4/3)P+Ps/2 —P4/48) ry. (21)

The results of our calculation of the ground-state
energy are given in Figs. 2 and 3. In Fig. 2 we plot ~0'

(actually e =ep ''Eexcg Es Lsee Eq. (24)j as a
function of p for various values of r,. From this we may
easily obtain p;, that value of p for which the ground-
state energy is a minimum. In Fig. 3 we plot p; as a
function of r,.

On the basis of these calculations we see that for the
electronic densities encountered in metals (r, roughly
between 2 and 5), P; runs between 0.5 and 0.75. We
may now verify the validity of our perturbation theory
expansions in powers of n and (ss'/3'). In terms of P
these are given by

~ 2

where

and

FIG. 3. Pmin VS f~

Ep ——ss(A, 'kps/2m) = (2.21/r, s) ry.

E, .t, (0.916/r,——) ry.

(25)

(26)

E„„=—0.576/(r, +5.1) ry, (27)

which he estimated to be accurate to within 20 percent.

The correlation energy for the free-electron gas was
first calculated by Wigner, ' who used a perturbatiori
theory method in which the wave function of the
electron of a given spin was assumed to depend on the
positions of all the electrons of opposite spin. Wigner
extended the results of his calculation, which was only
valid for very high electronic densities (r,& 1), to lower
densities in such a way as to approach the correct value
of the correlation energy for very low densities (r,»1).
He obtained the result,

E=El +E. ,h,

Metal

(a) fg
(b) Pmin

(C) &corr '

(d) gcorr ' '

(e) &corr
kcal

(f) &corr
mole

(g) 6corr (Wigner)

Li

3.22
0.63—0.076—0.164—0.240

23.3

21.7

Na

3.96
0.68—0.086—0.183—0.269

21.1

19.7

4.87
0.73—0.100—0.206—0.308

19.5

17.9

Rb

5.18
0.75—0.106—0.213-0.319

19.1

17.4

TABLE I. Correlation energy in the free-electron
gas Inodel for the alkali metals.

Units: Rows (c), (d), and (e), r Xry;
Rows (f) and Ig), kcal/mole.

(24)

Cs

5.57
0.77—0.112—0.221—0.333

18.6

16.8

~+ 4-
K

~O

5+ 2-
hl
Cl

0
-a

C

20

-2
Fra. 4. Energy difference between ferromagnetic and nonferro-

magnetic states of free electron gas on three diGerent models:
(a) Simple theory (E=Ez); (b) Hartree-Pock theory (E=EJ
+E, ,h); (c) Hartree-Pock theory, with inclusion of long-range
correlation eKects.

~F. Seitz, The Modern Thewy of Solids (McGraw-Hill Book
Company, Inc., New York, 1940), p. 341. 6 E. P. Wigner Phys. Rev. 46, 1002 (1934).
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We shall regard the correlation energy, when calcu-
lated in the collective description, as split into two
parts, representing long-range and short-range effects.
The long-range correlation energy is associated with
the long-range correlations in the electronic positions
which are essentially described by our introduction of
the collective degrees of freedom. This is therefore
given by the difference between the ground-state energy
we calculated above and the expression (24). The
short-range correlation energy then arises from the
modification in electronic wave functions brought
about by B..... an effect we consider below.

The long-range correlation energy is thus from (24)
and (15),

e..„"= —(P'/6)&r'+eo. i+Le. ch —&s a $ (28)

The ffrst two terms in (28) are both negative and
represent the energy gain arising from the long-range
Coulombic correlations we have considered above. The
third term is positive, and represents the difference
between the effect of the exclusion principle in a gas of
ieteroctieg electrons and in a gas of free electrons. ln
Table I we give the calculated values of e„„"for
electron gases of the same density as those found in
alkali metals.

We may understand the origin of the terms con-
tributing to e„„"in the following way. In the col-
lective description we consider ab initio the correlations
brought about by the Coulomb interactions. We find
that the electrons tend to stay out of one another's way,
and that in fact these long-range Coulomb correlations
are such that the effective electron interaction is given
by 11, , The energy gain from such Coulombic corre-
lations is ec, ~

—(P'/6)Er. We then put in the exclusion
principle in the usual way and 6nd an additional energy
gain coming from the "accidental" correlations due to
the exclusion principle in our gas of interacting electrons,
which is e, ,h, On the other hand, E, ,h represents the
exchange energy for a gas of free electrons, in which
Coulombic effects are otherwise neglected. The use of
this term represents an overestimate of the role of the
exclusion principle, since the long-range Coulomb forces
tend to keep the electrons apart, and would do so even
if the electrons had integral spin. In consequence the
exclusion principle should properly play no role in such
long-range correlations, and we see that this is properly
accounted for by our correction to the exchange energy
(esxgh Eaxoh). Other effects associated with the differ-
ent role of the exclusion principle in a gas of interacting
electrons are considered in the following section.

The short-range electron-electron interaction term,
B,., may be consistently treated as a perturbation in
the Hamiltonian (2), since it is of such a short-range
and weak strength that it does not aGect the individual
electronic motion appreciably. The short-range corre-
lation energy may then be calculated according to
perturbation-theoretic techniques. When this is done
one Gnds that the short-range correlation energy is

associated almost entirely with correlations between
electrons of antiparallel spin, and it is this latter energy
which we list in Table I, The details of this calculation,
together with a more extensive investigation of corre-
lation phenomena, will be published in the near future.

We have summarized the results of our correlation-
energy calculations in Table I, where, we give those
values corresponding to the electron densities encoun-
tered in the alkali metals. It may be seen that our
results are in quite close agreement with those of
Wigner, an agreement which is well within the accuracy
of the two methods. The major source of error in our
calculation lies in our perturbation theoretic estimate
of the effects of H, , , and a rough estimate indicates
that the use of perturbation theory, together with
certain other approximations, may be responsible for
errors of as much as 20 percent in e„„".Our expansion
parameters n and (e'/3n) are both quite small, so that
the errors introduced by our neglect of higher-order
terms in these parameters will be less than 10 percent
of e„„'.'. An order of magnitude estimate of the
exchange energy associated with H, .~ (a term w.e
neglected in comparison to H, , ) shows that this is
less than (0 01/r, ) .ry. for Xa, so that the neglect of
this term is justified within the accuracy of the present
treatment. If we combine the above estimates, we are
led to estimate the over-all accuracy of our calculated
correlation energy as approximately i5 percent.

W,, ,= —4 em/)1, —1,~'. (29)

For a given electron, the total energy of interaction

7 E. P. signer, Trans. Faraday Soc. 34, 678 (1938).

In this section -we consider brieQy the result of
including electron-electron interactions in a description
of certain metallic phenomena. In general, the most
simple form of the theory of metals, in which the
electron-electron interactions are entirely neglected, has
led to qualitative, and in many cases, quantitative
agreement with experiment. If the electron-electron
interactions are then included in the one-electron pic-
ture, the corrections to the simple theory arise from the
exchange energy contributions to the phenomenon
under consideration. These corrections, far from im-
proving the agreement with experiment, tend to worsen
it, both qualitatively and quantitatively. Wigner sug-
gested that correlations brought about by the Coulomb
interactions may counteract the difhculties arising from
these exchange contributions. We here wish to show
that the long-range correlations we have considered in
the collective description have just this property.

In the one-electron approximation, the exchange
energy contribution to the Coulomb interaction energy
of two electrons of wave vectors k~ and k2 is
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with all the other electrons is then

e'kp
t

kp' ko—k+kp)
(

2+ ln — (, (30)
2m E kpk k —kp&

if we assume the electrons form a completely degenerate
gas. As a consequence of (30) the E versus k curve for a
given electron becomes very steep as k approaches kp,
so that the density-in-energy of electron levels at low
temperatures will be greatly reduced. Bardeen and
Wohlfarth' calculated the modification in the specific
heat of a free-electron gas due to the inclusion of the
exchange energy (30) and found that at low tempera-
tures the specific heat should vary as T/InT. This result
is in contradiction with the experimental results, which
show a linear dependence on T—a result that follows
from theory if exchange effects are entirely ignored.
This large reduction in the density of electron energy
levels might also be expected to affect profoundly other
metallic phenomena which are sensitive to its magni-
tude, such as paramagnetism, conductivity, and the
optical properties of metals; such an effect on these
phenomena has also not been found experimentally. '

The origin of these diN. culties lies in the long-range
of the Coulomb interaction which leads to a very large
exchange energy for electrons of nearly equal momen-
tum; this, in turn, is responsible for the undesirable
behavior of (30). If we have, instead, an effective
short-range, screened Coulomb interaction between the
electrons, these large exchange energy contributions
are greatly reduced, and the energy term corresponding
to (30) takes a more satisfactory form.

Actually, a screened Coulomb interaction between
electrons was proposed empirically by Landsberg, "who
found it necessary to introduce such an effective inter-
action in order to obtain agreement between theory and
experiment for the width of the tail of the soft x-ray
emission spectrum of sodium. Wohlfarth' then showed
that the effect of the exchange energy on the speci6c
heat of the electron gas is greatly reduced, provided the
electron-electron interaction potential is empirically
taken as (e'/r;;) exp[ —(r;;/X)], with a screening radius
X of the order of 10 ' cm, the value introduced by
Landsberg.

In the collective description, the exchange energy
contribution to the Coulomb interaction energy of two
electrons of wave vectors k~ and k2 arises from B.., .
and is given by

the other electrons is

~'ko ko' —k' t'k+ ko)
1+

2m kkp ( Pkp )
3k' —kp'

2kkp

when (kp —k,) &k&kp, and

P'kp—2P+, (32a)
2k

(33)

where (dN/do). =zp is the density of electronic levels at
the top of the Fermi distribution, and E is Boltzmann's
constant. We may write

so that

dn k' 3m'
dk=

e x' kp'

3k2 de

kp' (do/dk)
(34)

e'kp kpo —k' (krak, )2+»~ I
—4P, (32b)

2m kkp (kp —k) l

when k&(ko —k,). It may easily be verified that the
Z versus k curve given by (32) no longer displays
singular behavior as k approaches kp.

With the aid of (32), we may now obtain an estimate
of the exchange-energy contributions to the electronic
specilc heat in metals. We are limited in the accuracy
of our estimate, because in considering the specific heat
we should properly take into account the effect of our
subsidiary conditions (6) on the excited states of the
electron gas. As was pointed out in Paper. III, this
effect is in the direction of reducing the eGective number
of degrees of freedom of the electron gas from 3e to
3N —e'. Since, as we have seen, (I'/3e)&(1 for electrons
in metals, we might expect that the neglect of the
subsidiary conditions should be a reasonably good
approximation, and it is this approximation we adopt
in what follows.

We may obtain the inhuence of the exchange energy
on the specific heat of the electron gas by considering
its effect on the density of levels at the top of the
Fermi distribution. Lidiard" has shown by the use of a
variational Fermi-Dirac distribution function,

'

that
provided the free energy may be sensibly expanded in
powers of (ET/Eo) near T=O according to the method
of Sommerfeld and Bethe, " the specific heat per
electron may be written as

W~, p ———%re/~k~ —ko~, (~k~—kp))k, );
W„,=O, (i k,—k, i &k.).

''
(31)

7r'E2T

ko (Bo/Bk)k=kp
(35)

In Appendix I, we show that for a given electron of
wave vector k, the total energy of interaction with all

J. Bardeen, Phys. Rev. 50, 1098 (1936).
K. P. Wohlfarth, Phil. Mag. 41, 534 (1950).

' P. T. Landsberg, Proc. Phys. Soc. (London) A162, 49 (1949).

Now, from (32) we find that near the top of the Fermi

"A. B. Lidiard, Phil. Mag. 42, 1325 (1951) and private com-
munication. Ke should like to thank Dr. Lidiard for communi-
cating his results to us.

"A. Sommerfeld and H. Bethe, IIendbuch der Ehysik (J.
Springer, Berlin, 1934), Vol. 24, p. 12.
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distribution (k) k.),
k'ko' e'k k '—k' ( k+koi

2m 2~, kkp ( Pko j
3 (k' —kp')

and hence

Ce=
m'E'T

P'kp
2P—+, (36)

2t

(37)
2EO

1+
2+5'kp

(2i
EP)

Thus the ratio of the above electronic specific heat to
the usual electronic specific heat Cp= (x'E'T/2Ep) is

Cs rs 2
(38)

Cp 12 P 2

For Na, for which r, =4 and P=0.65, we find

C,/Cp ——1/1.22 =0.82. (39)

Thus the eGect of taking the exchange energy into
account is to reduce the electronic specie. c heat to
about 80 percent of its free electron value for Na. We
note from (38) that our calculated reduction in the
density of energy levels at the top of the Fermi distri-
bution is now comparatively small, so that the influence
of the exchange eGects on other metallic phenomena
may be expected to be correspondingly small. The
experimental accuracy in the determination of electronic
specific heats does not at present appear to be suK-
ciently great to check the validity of the above formulas.

There is probably a slight further reduction in the
electronic specific heat arising from the effect of the
subsidiary conditions in reducing the number of indi-
vidual electronic degrees of freedom. In addition, we
may expect the short-range correlations produced by
II, , to affect the density of energy levels and the
electronic specific heats. This effect will be considered
in a later paper.

We may also use our results on the long-range corre-
lation energy to investigate the possible ferromagnetism
of a free electron gas. If the energy of an electron in
the gas in the nonmagnetic state is given by the
expression (24)

E=+Ep+E, ,i,=2.21/rP —0.916/r„

then it is clear that for suKciently large r„ the electron
gas should become ferromagnetic. For the cost in
kinetic energy which results from lining the spins up
(an increase in kp to kpg2) will eventually be more than
compensated by the gain in the exchange energy.
Thus the energy for the magnetic state is given by

E=3.52/r '—1.156/r„

and one 6nds that electron gases for which r,)5.47
should be ferromagnetic. This is not the case (e.g., Cs),

and the reason that it is not lies in the Coulomb corre-
lation energy, as Wigner' has pointed out. We will
now show that the long-range correlation energy is
actually sufhcient to prevent the free-electron gas from
becoming ferromagnetic.

Qualitatively it is easy to understand why this is so.
We have seen that the Coulomb interaction keeps the
electrons suKciently far apart so that the exchange-
energy attraction which acts to line up the electron
spins is greatly reduced, even for r, 4. Then as we go
to higher r, and lower electronic density, the screening
cloud around each electron due to long-range corre-
lations becomes even more efficient (corresponding to a
higher value of P), so that the exchange energy is, in
fact, further reduced, rather than having its relative
strength increase. In Fig. 4 we give r, times the energy
difference between the ferromagnetic and nonferro-
magnetic states using our energy expression (15). This
result has been obtained by calculating eo' as a function
of P for both the nonmagnetic and ferromagnetic states,
and choosing an optimum value of P (for which pp' is
a minimum) in each case. For comparison we have
plotted this energy diGerence as calculated using the
simple theory, E=Ep, and using the Hartree-Fock
approximation, E=Er+E,„,i,. A result similar to this
has been obtained by Wigner' on the basis of a some-
what different model for the free-electron gas.

The above results are subject to corrections arising
from the effect of the subsidiary conditions (6) on our
lowest-state wave function, since the lowest-state wave
function is no longer nondegenerate and hence will no
longer satisfy the subsidiary conditions automatically.
However this should not alter our results appreciably,
since the relative number of subsidiary conditions is
small even for very low densities (n'/3n 15 percent for
r, 10), and. since the subsidiary conditions involve
only long-wavelength density fluctuations (k(k, ) while
the exchange energy depends primarily on short-wave-
length density fluctuations (k) k,). Further corrections,
which are in the direction of making ferromagnetism
even less likely, will come from the short-range corre-
lation energy. This follows from the fact that our energy
e„-„"will be absent in the magnetized state. We have
not included these corrections here, because in the
region of possible ferromagnetism (r,)5.47), our pertur-
bation theoretic estimates are beginning to become
unreliable.

In the preceding sections we have considered the low-

lying states of electrons in metals in the collective
description. We have seen that at ordinary temperatures
we should not expect the collective oscillations to be
excited, since Lr„ lies several electron volts higher than
EJ for all metals, so that no electron in the metal will

have sufhcient energy to excite a collective oscillation.
(Temperature excitation is clearly out of the question. )
Thus, the only way that collective oscillations can be
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excited in a metal is by bombardment of the metal
with charged particles of su@.cient energy to excite the
oscillations. In this section, we will apply our canonical
transformation to the investigation of the interaction
of a charged particle with the electron gas.

This problem was treated classically in II by the
density Quctuation method. There it was shown that a
fast charged particle would excite collective oscillation,
and the results for this excitation, together with some
semiclassical arguments, were applied to the experi-
ments of Ruthemann" and Lang" on the scattering of
kilovolt electrons by thin metallic films. By so doing,
excellent agreement was obtained between theory and
experiment. The density fluctuation method has also
been applied to a determination of the contribution of
the conduction electrons in a metal to its stopping
power for a fast charged particle. "In this section, we
shall obtain the appropriate quantum-mechanical re-
sults and verify the validity of the results obtained by
the semiclassical application of the density fluctuation
method. "

Let us consider a charged particle of mass M, charge
Ze, position and momentum (ro, Po). We can describe
its motion and interaction with our electron gas by
adding the following terms to the original Hamiltonian
of Paper III, Eq. (43, III):

'P02

+—4s-Ze' P
2M ik

&sk (xs—rp)

(40)

I

The effect of the canonical transformation to the col-
lective description on these terms may then be obtained
by using Eq. (51, III) and applying the random phase
approximation and the dispersion relation LEq. (57,
III)) to the resulting terms. We find that the above
terms then become

Q.= ()s/2~)'(As —As*),
Ps ——i(4o/2)'*(A „*+A „). (43)

In terms of these variables, the collective interaction
term in (4) becomes

the interaction between the individual electrons B..,
LEq. (5)j. The second term describes the interaction
between the charged particle and the collective oscil-
lations of the system and may lead to the excitation of
collective oscillations by the particle. The last term in
B «@rill be the only term affected by the subsidiary
conditions on our system wave function. %e see that
when (6) is applied, this term reduces to

(k P /m) —(lsks/2tN)'—4s.Ze' Q
s&s. oos —(k P;/m —kks/2m)s

&(expr ik (X;—ro)$, (42)

which may be neglected in the approximation of small
(k.P;/duo).

Thus, we see that the use of our canonical transfor-
mation to the collective description provides us with a
simple, natural splitup of the interaction between a
charged particle and the electron gas into two parts: a
short-range interaction with the individual electrons,
and the interaction with the collective oscillations of
the system as a whole (which has its origin in the
long-range electron-electron and electron-particle inter-
actions). This splitup is analogous to the splitup of
the density Ructuations into individual particle and
collective components, which was carried out in II.

Let us now consider the interaction between the
charged particle and the collective oscillations. For this
purpose, it is convenient to introduce the canonical
collective variables, Po and Qs, defined by

exp[ik (X;—ro)j
H,«———4~Ze' g

is&s. gg'se' )p and

iZe P (4s./k') iPse-'"'s
k&kc

(44)

P022s.bool 1
—Z P i i (A +A*) —'"'+

s&s. & P & 2tts

exp[ik (X;—ro)]—4s.Zes g . . (41)

"G. Ruthemann, Ann. Phys. 2, 113 (1948).
'4-W. Lang, Optik 3, 233 {1948).
'~ D. Pines, Phys. Rev. 85, 931 {1952).For earlier work on this

subject, see references 18-21.
"D. Gabor LPhil. Nag. (to be published)g, has obtained

results in substantial agreement with ours by the use of a some-
what diferent method. We should like to thank Dr. Gabor for
communicating his results to us prior. to publication.

The 6rst term in B,gq describes a short-range
screened Coulomb interaction between the charged
particle and the individual electrons in our electron gas.
This interaction is of the same form as that found for

The equations of motion of our charged particle and
the collective field are then given by

Mrs=Ps= —Zeg (4s.)tesPoe ' 'o
&&It:c

I

Ps+ oisPs =+ Zeitos (4n/ks) le+'".

(45)

(46)

Equation (46) describes forced harmonic oscillation of
the collective fields and is directly analogous to Eq. (47)
of II.Because of the similarity between these equations,
and because the latter equation was analyzed in some
detail in II, we will merely quote the results of our
solutions for (46) here.

We can obtain a straightforward solution of (46)
provided the velocity of the charged particle Vo= Po/M'
may be taken as constant. (This will be a good approxi-
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2m''e4(dT)
i dX),.it M Vp'

P'kp'(Vps —(V')p,)
ln

(V')A,
+ —p'ko'(Vo' —(V') A ) (48)

Vo

where (V')A„ is the mean-square velocity of the electrons
in the metal, and we have used k, =Pkp. This result
diGers slightly in two respects from that obtained in II
t Eq. (59a, II)$. The logarithmic term is slightly altered
because in obtaining (48) we have chosen as the maxi-

mum value of the collective oscillation wave vector
perpendicular to Vo a more accurate value than that
used in II, vis [p'kps(1 —. (V')A~/Up') —&pp'/Vp'$». The
appearance of the second term in the brackets (multi-

plying 2rrNZse'/MVps) is due to the fact that in (48)
we have co~ as a factor on the right-hand side of the
equation, as compared to the factor co„' appearing in
the similar position in the analogous equation of II.
Both of these differences become negligible in the limit
of Vp'»(V')A. .

As pointed out in II, our picture of collective oscil-
lations of the'electrons in a metal and the excitation of
collective oscillations by a fast charged particle Ands

experimental confirmation in the experiments of Ruthe-
mann" and Lang" on the scattering of kilovolt electrons

by thin metallic films. They found that for Be and Al

the electrons lose energy in integral multiples of a

mation as long as the change in velocity of, the charged
particle during the period of oscillation is small com-
pared to Vo, which will be true for all applications of
interest to us here. ) Then if it Vp is not equal to &p,

Eq. (46) has the steady-state solution

(4s- )» Zeipp'

(k') aP —(k Pp)'

This solution corresponds to the particle moving

through the electron gas accompanied by a co-moving
cloud of collective oscillation. This co-moving cloud
leads only to a somewhat larger effective mass for the
charged particle, which may be calculated by substi-
tuting (47) into (44).

The more physically interesting case occurs when

ir Vs=re. In this case the steady-state solution (47) is

no longer appropriate, and the correct solution corre-

sponds to resonant excitation of the collective oscilla-
tion. This oscillation, which was discussed in some detail
in'II, will take the form of a wake of collective oscilla-
tion trailing behind the particle, a phenomenon which

resembles c;losely the Cerenkov radiation produced by
fast electrons in passing through dielectric materials.
Vfe calculate the energy loss per unit length to the
collective oscillations by obtaining the force due to the
wake at the position of the particle, under the boundary
condition that the energy loss occurs behind the charged
particle. %e find

well-defined basic quantum. Theoretically we should
expect this quantum to be very nearly Lr~, since as we
saw in II, the long-wavelength quanta play a major
role in the stopping power if Vo is considerably greater
the mean velocity of the metallic electrons, as is the
case in these experiments. The experimental values of
this quantum of energy -loss are 14.7 ev for Al and
19.0 ev for Be, and these agree very well with our
calculated A&o~ (under the assumption that all the
valence electrons are free) of 15.9 ev for Al and 18.8 ev
for Be,

We may also calculate the mean free path for the
emission of a quantum of collective oscillation. In the
limit of Vps»(Vs). „, this is

Atp~ Vp'

(d7'/dx) „u 4 NZ'e' ln(pk, V,/ )

From the data given by Lang on the thickness of his Al
films, one may obtain an experimental estimate for P.
This turns out to be somewhat less than 185A, The
theoretical value of X is, from (49), 160A (for the
7.6-kev electrons used by Lang) and is in good agree-
ment with the above experimental estimate.

Lang and Ruthemann did not find a similar set of
discrete energy losses in Ag, Cu, and Ni. This is prob-
ably due to the fact that the valence electrons in these,
metals are not suKciently free (in the sense of Sec. IV)
to take part in undamped collective motion. In the
cases of Cu and Ag there is some evidence for a large
exchange interaction with the core electrons, which is
probably responsible for the damping of the collective
oscillation. "Experiments have not yet been performed
on the alkali metals, where we should expect to 6nd
collective oscillation and the appearance of discrete
energy losses.

The interaction between the charged particle and the
individual electrons in our electron gas, which is
described by the term

—4rrZe' P (1/k') exp[ik (X;—rp)j&
i'&kc

in our Hamiltonian (41), provides an alternate mecha-
nism for the energy loss of the particle in traversing
the gas. This term is not appreciably aGected by our
subsidiary condition (6), since the latter involves only
long-wavelength density fluctuations (k(k,). Thus the
energy loss per unit length due to these individual
electron collisions may be obtained by the usual
methods of collision theory and is, in the nonrelativistic
limit,

p dTy 4s.eZ'e'
f 1

(5O)
E Ch);.p. MVp' t.bPkp)

"See reference 5. Recently P. Wolff LBull. Am. Phys. Soc.
28, Ne. 2, 35 (1953)g has used the Hartree aPProximation to
investigate the eftect of the binding of the electrons in the lattice
on collective oscillation. He Gnds that this may account for the
single line of rather considerable width found in these metals.
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for collisions involving impact parameters greater than
b. The appropriate choice of a minimum impact pa-
rameter depends on the details of the collision con-
sidered (through Z, 3f, and Vp), but in general the
energy loss to the individual electrons is roughly com-
parable to that given up to the collective oscillations.
The total energy loss per unit path length of the
charged particle is the sum of (48) and (50) and is

dT 47rnZ'e4 ( Vp (V')Av 1)
Iln 1—

dr M Vp' & pp, b Vp' )

P'I p'«')"
& (V')"~

1
I

. (51)
24ps ( Vps ] I

We see that, in the limit of Vp'»(V')A„, this expression
essentially is independent of our choice of screening
parameter P.

It is of some interest to compare our description of
the energy loss of a charged particle traversing a free-
electron gas with those due to Kramers" and Bohr."
Both Kramers and Bohr take into account the eAects
of electron-electron interaction in determining this
energy loss, and although their methods are rather
diferent from ours, as we shall see their results are
essentially equivalent to (51). Kramers" used a macro-
scopic description in which the electrons were treated
as a continuum characterized by an eGective dielectric
constant. His method of treating the polarization effects
associated with electron interaction is closely related
to that used by Fermi in treating the analogous polar-
ization effects for very fast particles interacting with
bound electrons (the "density effect").Bohr" has given
a very interesting microscopic description of the colli-
sions between the charged particle and the individual
electrons (both free and bound) in which the influence
of the electron-electron interactions is taken into
account explicitly. Bohr has shown that the energy loss
of a fast charged particle to a system of bound electrons
may be considered to take place in two different modes.
One mode corresponds to the Cerenkov radiation, which

may be regarded as corresponding to the organized
behavior of the system brought about by the electron-
electron interaction. The other essentially corresponds
to the interaction of the particle with the individual

electrons, and displays no collective aspec't. This micro-
scopic separation of the mechanisms of energy loss of
the charged particle to the bound electrons is directly
analogous to that we have given above for the free-
electron gas. %e might add that, as is the case with
the Cerenkov radiation for bound electrons, the energy
given up by the particle to the collective oscillations

'4 H. A. Kramers, Physica 13, 401 (194'/).
"A. Bohr, Kgl. Danske Videnskab. Selskab, Mat. -fys. Medd.

24, No. 19 (1948).

does not constitute an additional source of energy loss
from a microscopic viewpoint; for a collective oscilla-
tion is due to the cumulative contributions arising from
the displacement of the individual electrons by the
charged particle and represents the organized motion
associated with these displacements.

A somewhat different method of treating this prob-
lem, which is in some respects similar to that used in
the collective description, is due to Kronig and Kor-
ringa. "They have given a treatment by the methods
of classical hydrodynamics in which the eNects of
electron-electron interactions are described in part in
terms of an artificially introduced internal friction of
the conduction electron Quid. Kronig" has suggested
that this theory bears a relationship to that of Kramers
which is similar to that obtaining between hydro-
dynamics and a kinetic theory of Quids.

For the free electron gas, both Kramers and Bohr
find, in the nonrelativistic limit,

dT 4rrrAZ'e4 t' Vp q
n

dx M Vp' &4p„'J
(42)

Our expression (41) divers from (42) due to the fact
that we have taken into account the dependence of the
frequency of organized oscillation on the electron
kinetic energy. This correction is rather small and
may be neglected in the limit of high particle velocity
vp'»(v'). ,

The total stopping power of a metal for a fast
chargedparticle is the sum of that due to the conduction
electrons and to the core electrons. Thus, in order to
obtain experimental verification of our expression (41)
as applied to the conduction electrons, we must consider
metals in which the number of core and valence elec-
trons is roughly comparable, e.g., Li and Be. Bohr has
used the expression (42) together with the appropriate
theoretical expression for the core electrons to obtain a
theoretical average excitation potential of 45 ev for Li
and 60 ev for Be. (The corresponding excitation po-
tentials using (41) are 44 ev and 57 ev, respectively. )
These values are in good agreement with the experi-
mental values of Bakker and Segre, who found excita-
tion potentials of 34 ev for Li and 60 ev for Be, when

one considers the fact that an experimental uncertainty
of ~10 percent in the stopping power for Li corre-

sponds to an uncertainty in the Li excitation potential
of 50 percent. "

The author wishes to thank Professor D. Bohm, Pro-
fessor J. Bardeen, Professor J. Blatt, Professor F. Low,
and Dr. A. B.Lidiard for stimulating discussions of sub-

jects related to this paper. He would like to acknowledge
the partial support of the OfFice of Ordnance Research,
U. S. Army, during this work.

"R.Kronig and J. Korringa, Physica 10, 406 (1943).
2' R. Kronig, Physica 15, 667 (1949).
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FIG. 5. Allowed regions for k' integration.

Oexeh= 22M Z 7

k, k'&kp
(A1)

where the sum is to be carried out for all electrons of
parallel spin in the Fermi distribution, such that

~

k' —k
~
&k„ this latter restriction arising from the

short-range character of the interaction H, , . Let us
6rst obtain the exchange energy of interaction with"all
the other electrons for a given electron of wave vector
k. This is, on changing our sum over k' to an integral,

4me'
t

1
W;= —,

~

dk'
(22r)o~ Jk' —k f2

(A2)

where the integration must be carried out in such a
way as to exclude the shaded portion of the k0 sphere
(corresponding to ~k'-k~ &k,) as illustrated in Fig. 5.

It is convenient to introduce for our k' coordinate
system, cylindrical coordinates (p, y, q&) centered at k,
as shown in Fig. 5, for we then And that

(k' —k)'= p2+y2.

APPENDIX I
In this appendix we wish to evaluate e, ,h which

may be written, according to (18), as

k& (kp —k.)
2kkp

e'kp ko' —k' (k+koq
I
—4p .

2' & k()—k)

2k

We may then evaluate o,„,h by summing over all k
within the Fermi distribution (and dividing by two
so that no interactions are counted twice). We find

oexeh= 2 Q II i= dkW;
(22r)'~

3e'k pn 4 P' P4
1 p+ +--—

4m 3 2 48

where P= k,/ko. The exchange energy per electron may
then be written as

eke ~ [kpP —(y+k) P]& ~2m

+ dy
~ -k. ~ fkeP-y2)& 00

pkp —k p Lkp2 —(y+k)&1& ~2m'

dylj ~d~ ' d
0 J0

The integrations for 5"; are quite straightforward
and yield for k0—k, &k&k0

e'k, k,'—k' (k+ko)
1+ ln(

22r kkp E Pkp J
3k' —ko' p'ko

+ —2P+

The requirement that ~k' —k~ be greater than k, then
leads to the following regions of integration for our k'
integration:

Gexch

0.916 4 p2 p4
1——P+———ry.

3 2 48


