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The behavior of the electrons in a dense electron gas is analyzed
quantum-mechanically by a series of canonical transformations.
The usual Hamiltonian corresponding to a system of individual
electrons with Coulomb interactions is 6rst re-expressed in such a
way that the long-range part of the Coulomb interactions be-
tween the electrons is described in terms of collective fields,
representing organized "plasma" oscillation of the system as a
whole. The Hamiltonian then describes these collective 6elds plus
a set of individual electrons which interact with the collective
6elds and with one another via short-range screened Coulomb
interactions. There is, in addition, a set of subsidiary conditions
on the system wave function which relate the field and particle
variables. The 6eld-particle interaction is eliminated to a high

degree of approximation by a further canonical transformation to
a new representation in which the Hamiltonian describes inde-
pendent collective fields, with e' degrees of freedom, plus the
system of electrons interacting via screened Coulomb forces with
a range of the order of the inter electronic distance. The new
subsidiary conditions act only on the electronic wave functions;
they strongly inhibit long wavelength electronic density Quctua-
tions and act to reduce the number of individual electronic de-
grees of freedom by e'. The general properties of this system are
discussed, and the methods and results obtained are related to the
classical density fluctuation approach and Tomonaga's one-
dimensional treatment of the degenerate Fermi gas.

' 'N this paper we wish to develop a collective descrip-
- t tion of the behavior of the electrons in a dense
electron gas which will be appropriate when a quan-
tum-mechanical treatment of the electronic motion is
required, as is the case for the electrons in a metal. Our
collective description is based on the organized be-
havior of the electrons brought about by their long-
range Coulomb interactions, which act to couple to-
gether the motion of many e1ectrons. In the 6rst paper
of this series' hereafter referred to as I, we developed a
collective description of the organized behavior in an
electron gas due to the transverse electromagnetic
interactions between the electrons. This was done by
means of a canonical transforms, tion to a set of trans-
verse collective coordinates which were appropriate for
a description of this organized behavior. Here we shall
develop an analogous canonical transformation to a set
of longitudinal collective coordinates which are appro-
priate for a description of the organization brought
about by the Coulomb interactions.

In the preceding paper' hereafter referred to as II,
we developed. a detailed physical picture of the elec-
tronic behavior (due to the Coulomb interactions).
A1though the electron gas was treated classically, we

shall see that most of the conclusions reached there are
also appropriate (with certain modifications) in the
quantum domain. Let us review briefty the physical
picture we developed in II, since we shall have occasion
to make frequent use of it in this paper.

We found that, in general, the electron gas displays
both collective and individual particle aspects. The
primary manifestations of the collective behavior are

' D. Sohm and D. Pines, Phys. Rev. S2, 625 (1951).' D. Pines and D. Bohm, Phys. Rev. 85, 338 (1952).

organized oscillatipn of the system as a whole, the so-
called "plasma" oscillation, and the screening of the
Geld of any individual electron within a Debye length
by the remainder of the electron gas. In a collectiv|;
oscillation, each individual electron suffers a small
periodic perturbation of its velocity and position due to
the combined potential of all the other particles. The
cumula'tive potential of all the electrons may be quite
large since the long range of the Coulomb interaction
permits a very large number of electrons to contribute
to the potential at a given point. The screening of the
electronic fields may be viewed as arising from the
Coulomb repulsion, which causes the electrons to stay
apart, and so leads to a de6ciency of negative .charge
in the immediate neighborhood of a given electron. The
collective behavior of the electron gas is decisive for
phenomena involving distances greater than the Debye
length, while for smaller distances the electron gas is
best considered as a collection of individual particles-
which interact weakly by means of a screened Coulomb
force.

These conclusions were reached by analyzing the
behavior of the electrons in terms of their density
Quctuations. It was found that these density Quctua-
tions could be split into two approximately independent
components, associated with collective and individual
particle aspects of the electronic motion. The collective
component is present only for wavelengths greater
than the Debye length and represents the "plasma"
oscillation. It may be regarded as including the eBects
of the long range of the Coulomb force which leads to
the simultaneous interaction of many particles. The
individual particles component is associated. with the
random thermal motion of the electrons and shows no
collective behavior; it represents a collection of in-

dividual electrons surrounded by co-moving clouds of
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charge which act to screen their fields as described
above. The individual particles component thus in-
cludes the effects of the residual short-range screened
Coulomb force, which leads only to two-body collisions.

A quantum-mechanical generalization of the density
Quctuation method is quite straightforward and is
sketched brieQy in Appendix I. However, we do not
choose to adopt this point of view, because although it
is quite useful in establishing the existence of collective
oscillations and describing certain related phenomena,
it does not enable one to obtain. a satisfactory over-all
description of the electron gas. Quantum-mechanical
calculations aimed at solving for the wave functions
and the energy levels of the system are much more
conveniently done in terms of a Hamiltonian for-
malism through the use of appropriate canonical
transformations.

Our general approach in this series of papers has been
to analyze the collective oscillatory motion erst, since
this is associated with the long-range aspects of the
interaction which, in a sense, are responsible for the
major complications in the many-electron problem.
Once the collective motion is accounted for, we then
investigate the aspects of the electronic behavior which
are independent of the collective behavior, and which,
if our method is successful, should turn out to be simple.
Thus we are led to seek a canonical transformation to a
representation in which the existence of the collective
oscillations is explicitly recognized, and in which these
oscillations are independent of the individual electronic
behavior. In this representation, which we shall call
the collective representation, we do not expect that the
electron gas can be described entirely in terms of the
collective coordinates which describe the organized
oscillations, since we know that the gas also displays
individual particle behavior. We shall see that in the
collective representation, the individual electronic co-
ordinates correspond to the electrons plus their associ-
ated screening fields, and that as might be anticipated
from II, these screened electrons interact rather weakly
via a screened Coulomb force.

In this paper we shall be primarily concerned with
obtaining the canonical transformation to the collective
representation. We shall discuss the approximations
involved and, in a general way, the resultant wave
functions of our electron system in the collective repre-
sentation. Our d'evelopment of a quantum-mechanical
description of the electron assembly makes possible a
treatment of the effects of electron interaction in me-
tallic phenomena which utilizes at the outset the sim-

plicity brought about by the organized oscillatory be-
'
havior. The detailed application of the collective
description to the electrons in a metal is given in the
following paper, ' hereafter referred to as IV.

Historically, the 6rst utilization of the 'plasma' as-
pects of the electron gas in a metal is due to Kronig

' D. Pines, following paper LPhys. Rev. 92, 626 (1953lg.

and Korringa, 4 who treated the eQ'ect of electron-
electron interaction on the stopping power of a metal
for fast charged particles. However, their treatment is
open to objection, in that they describe the electron
gas as a classical Quid, with an artificially introduced
coefIicient of internal friction. A more satisfactory
treatment of electron-electron interaction in the stop-
ping power problem is due to Kr'amers4 and Bohr. 4

The quantum treatment of this problem from the view-
point of the collective description is given in Paper IV.

Tomonaga' has independently investigated the ex-
tent to which a degenerate Fermi gas can be described
in term. s of longitudinal oscillations. Tomonaga's treat-
ment is, however, con6ned to a one-dimensional system,
and as we shall see, there are certain essential difhculties
associated with its generalization to a three-dimensional
system which make the direct extension of this ap-
proach to three dimensions impossible. The relationship
between our approach and that of Tomonaga is dis-
cussed in Appendix II.

We consider an aggregate of electrons embedded in
a background of uniform positive charge, whose density
is equal to that of the electrons. The Hamiltonian for
our system may be written

1
2~ne'—g' —,

jp

A(x) = (4nc')'* Qsqj, sse'" *, (2)

4 R. Kronig and J. Korringa, Physica 10, 406 (1943). See also
H. A. Kramers, Physica 13, 401 (1947); A. Bohr, Kgl. Danske
Videnskab. Selskab, Mat. -fys. Medd. 24, No. 19 (1948); and
R. Kronig, Physica 14, 667 (1949).' S. Tomonaga, Prog. Theor. Phys. 5, 544 (1950).

6 We shall drop this prime in the remainder of this paper since
we have no further occasion to make explicit use of the fact that
the term with k=0 is excluded.

where the 6rst term corresponds to the kinetic energy
of the electrons, the second to their Coulomb interaction
and the third to a subtraction of their self energy. The
prime in the summations over k denotes a sum in which
k=o is excluded, and this takes into account the uni-
form background of positive charge, and hence the
over-all charge neutral, 'lity of our system. ' In obtaining
(1) we have used the fact that the Coulomb interaction
between the ith and jth electrons may be expanded as
a Fourier series in a box of unit volume, and is
(e'/~ x;—x, ~) =47re'PI, (1/k')e'" i" '~ & nis 'th. e total
number of electrons and is numerically equal to the
mean density (since we are working in a box of unit
volume).

Instead of working directly with the Hamiltonian
of Eq. (1), we shall find it convenient to introduce an
equivalent Hamiltonian which is expressed in terms of
the longitudinal vector potential of the electromagnetic
field, A(x), where A(x) may be Fourier-analyzed as
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E(x)= —(4s.)& Psqsage+'" *

= (4tr)& PsP sepe'"'*.

To ensure that A(x) and E(x) are real, we take

(3)

and es denotes a unit vector in the k direction. The
electric field intensity, E(x) is 2 &ik (xi—x~)

z
H-+&=S 'HS=Q +2z.e' Q—

i 21n v k2

psp-s f4rr'e 't ' .„(1)—s Pl [ p,e '"-*'—2ztte'P( —I.
st E p ) s Eks)

qs= —
q—a, Ps= —P-s ~

Our equivalent Hamiltonian is then given by

(4)
The subsidiary condition (8) becomes

p sf=0 (for all k).

H =P y;+-A(x;)
C

2m+ "LE'(x)/Sz.)dx

1.—2ztte' Q —, (5)

which using (2) and (3) may be shown to become

e
H=P +—(4r)i g es (y —t'tk/2)q„e. ~ xt

2' m

+ (2we'/m) Q as etqsqte'&a+i&'*' —gsrsp&p &

—2zmes Ps1/k'. (6)

This Hamiltonian, when used in conjunction with a
set of subsidiary conditions acting on the wave function
of our system,

where
QsC =0 (for all k), (7)

With this transformation, we Gnd

p.~S 'pP= p,—(&e') & Qsqsese'" *'

ps +S 'psS= ps+s(4-tre'/It') & Q;e'" *',

r This may be contrasted with the customary gauge /corre-
sponding to divA= (1/e)sv/Btg, in which the commutator of the
subsidiary condition with H is proportional to the subsidiary
condition itself, and is therefore zero only when the subsidiary
condition is satis6ed.' See G. Wentzel, Quoeturje Theory of Wuoe Fields (Interscience
Publishers, New York, 1949), p. 131.

will lead to the correct electron equations of motion.
QI, is proportional to the kth fourier component of
divE(x) —4trp(x), and hence these subsidiary condi-
tions guarantee that Maxwell's equations are satisGed.
It may easily be veriGed that the subsidiary condition
operator Qs commutes with the Hamiltonian (6), so
that if the subsidiary condition (7) is satisfted at some
initial time, it will be true at all subsequent times.

The equivalence of our Hamiltonian (6) with the
Hamiltonian expressed by (1) may be seen by applying
the unitary transformations C =Sf, where,

If we choose a f which is independent of q&, we may
satisfy the new subsidiary condition identically, the
terms involving ps in the Hamiltonian will drop out,
and K is seen to be equivalent to (1).We note that the
term —2ztte'Qs(1/k') was included in (6) so that this
Hamiltonian might be numerically equivalent to (1),
as well as leading to equivalent equations of motion,
since this term is just what is needed to cancel the terms
withi= j in the Coulomb energy.

The introduction of the longitudinal decrees of free-
dom, q&, and the subsidiary conditions (7) provides a
convenient means of introducing the concept of inde-
pendent collective oscillation within the framework of
the Hamiltonian formalism. The utility of this repre-
sentation lies in the fact that (7) introduces in a simple
way a relationship between the fourier components of
the electronic density, p&=P;e '~'*', and a set of field
variables p&. We shall see that there is, in consequence,
a very close parallel between the behavior of the p~,
as analyzed in II, and the behavior of our Geld co-
ordinates. In this representation we Gnd that the Geld
variables (just as did the p&) oscillate with a frequency
equal to the plasma frequency, provided we neglect a

. small coupling between the collective motion and the
individual electronic behavior (characterized by their
random thermal motion). Furthermore, just as we
found it-possible in II to Gnd a purely oscillatory com-
ponent of the density Quctuations, which is approxi-
mately independent of the individual electronic be-
havior, so we shall here be able to carry out a canonical
transformation to a new set of Geld variables, which
describe pure collective behavior and do not interact
with the individual electrons to a good degree of ap-
proximation. In this section we shall analyze the ap-
proximate oscillatory behavior of the (qs, ps), while in
the next section we carry out the canonical transforma-
tion to the pure collective coordinates.

Before beginning our analysis, we find it desirable
to modify somewhat our Hamiltonian (6). We found
in Paper II that in the classical theory there is a mini-
mum wavelength X, (which classically is the Debye
length), and hence a maximum wave vector k„beyond
which organized oscillation is not possible. We may
anticipate that in the quantum theory a similar (but
not identical) limit arises, so that there is a corre-
sponding limit on the extent to which we can introduce
collective coordinates to describe the electron gas.
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4n. k,' k,'
e ——

3 (2n)~ 6s'
(10)

One might expect that there is a natural upper limit to
e', vis. , the total number of longitudinal degrees of
freedom n (for a system of ii electrons), since at most
e independent longitudinal degrees of freedom may be
introduced. In practice we And that e' is considerably
less than this theoretical maximum.

The modification of (6) to include only terms involv-
ing (p&, q&) with k(k, may be conveniently carried out
by applying a unitary transformation similar to (9),
but involving only qk for which k&k, . Thus we take
C =Sf where,

S=exp(—(1/k) g (%re'/k') &qze'~'*'j, (9a)
i,k&kc

and where f is chosen to be independent of all qz,. with
wave numbers greater than k,. We then obtain for our
Hamiltonian

Since this is the case, rather than introduce the full
spectrum of longitudinal field coordinates (and associ-
ated subsidiary conditions) as we do in (6), we might
as well confine our attention to only as many p& and
qk as we expect to display collective behavior, i.e.,
(pz, , qz) for k(k, . The number of collective coordinates,
n', mill then correspond to the number of k values lying
between k=0 and k= k„and so will be given by

by 0' where,

2&e
sz siqz:qie""+" '*'

m ik &kc
l &kc

t& —k

&-.=-5 E (p~p z,+~,'q~q ~)
k&kc

(16)

the Hamiltonian appropriate to a set of harmonic
oscillators, representing collective fields, with a fre-
quency ra~. The first term in (11) represents the kinetic
energy of the electrons, while the second term,

e ( Ilk)
Hz=(4')&—P si,

~ p;——~qze'" *',
~ ik(ko ( 2

(17)

represents a simple interaction between the electrons
and the collective fields, which is linear in the 6eld
variables. The 6fth term,

U is much smaller than (13), for it always depends on
the electron coordinates, and since these are distributed
over a wide variety of positions, there is a strong ten-
dency for the various terms entering into U to cancel.
Let us for the time being neglect U, a procedure which
we have called the random phase approximation in our
earlier papers, and which we shall presently justify.

With this approximation we see that the third and
fourth terms in our Hamiltonian (11) reduce to

p.2 e
H= P + (4nr)&—P ez,. (p; hk/2)q—z,.e'" *i

i 218 ~ ik&k.
k2

eik (xi—x&)

H, ., =2se' g-
k &kci'

(18)

pkp-k
+ (21re'/Nz) P Rz, Rzqz,.qze'& "+'& *'—g

ik &k. k&kc 2
l &kc

represents the short-range part of the Coulomb inter-
action between the electrons. If we carry out the indi-
cated summation, we Gnd

eik (zi—xg)

+2m.e' g
k &kc k2i'

1—2mle2 P —, (11)
k&kc jP

e~ f 2
Z, ., =-,' g '1——Si(k, ~x,—x, ~), (19)i' X —X.

where

with the associated set of subsidiary conditions:

Qgf= 0 (k(k,). (12)

sinx
Si(y) =, ' ch

x

2''Ne 07~

g qzq-z:= 2 qlq z, -
yg k&kc 2 k&kc

where we have introduced co„, the so-called plasma fre-
quency, delned by

co„= (4m me'/m) &. (14)

The remaining part, for which k+IWO, we shall denote

We shall Gnd it convenient, in dealing with this
Hamiltonian, to split up the third term into two parts.
That part for which k+ 1=0 is independent of the elec-
tron coordinates and is given by

Si(y) =m/2 for y=2 and oscillates near n./2 for larger
values of y, so that B,., describes screened electron
interaction with a range ~k, . A plot of H, ., is given
in Fig. 1.

Thus we see that in using (11) we have redescribed
the long-range part of the Coulomb interactions be-
tween the electrons in terms of the collective oscilla-
tions (16), which interact with the electrons via Zz,
(17). Our problem has now been reduced to one quite
analogous to that encountered in I, vis. , a set of par-
ticles interacting with collective 6elds; the only new
complications are the short-range interaction H, , , and
the subsidiary conditions on the system wave function.
We shall see that as was the case in I with the trans-
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verse collective oscillations, the coupling between the
6elds and particles described by Bz is not very strong,
so that it is possible to obtain a good qualitative under-
standing of the behavior of the system by neglecting
this term. In this section, we shall make this approxi-
mation, and then investigate to what extent it applies,
while in Sec. III we will give a more accurate treatment
which includes the effects of the electron-field. inter-
action.

'i

H we neglect Bz, we may write the stationary state
wave function as

0'=0'oacX(xi' ' 'xn) ~ (20)

f„, represents the wave functions of the collective
fields, and may be written as a product of harmonic
oscillator wave functions like

where h„ is the nth Hermite polynomial, and we are
using the momemtlm representation of the oscillator
wave functions. X(x;. x„) represents the eigenfunction
for a set of particles interacting through B,., For the
lowest state, we then get

A=Eexp —f 2 I pol'/2~ Hxo(»'''x ) (21)
&&ac

where xo(xz x„) is the lowest state electron wave
function.

In general xo will be quite complex. However, just
because the long-range part of the Coulomb potential
is included in the oscillator energy, the remaining part
H, ., is considerably reduced in effectiveness. In fact
it will often be of so short a range that for many pur-
poses the free particle wave functions will constitute
an adequate approximation. In this case, the lowest
state wave function is

6=(expt:—2 I pol'/2~ J)oo(xz' ' 'x ) (22)
&&&c

where Do is the usual Slater determinantal wave func-
tion composed of the free electron wave functions
appropriate to the ground state of the individual elec-
trons. Our wave function fo then satisfies the exclusion
principle.

Let us now consider the eGects of the subsidiary
conditions (12). In the representation in which po and
x; are diagonal these reduce to e' algebraic relations.
We can view these relations in either of the following
ways:

(a) They permit us to eliminate the p& in terms of
the x;.

(b) They permit us to eliminate io' of the x; in
terms of the po.

Let us begin with the first way. Our wave function (22)

then becomes

Po= expL —io(P F(x;—x&)/4&)Do(xz .x ), (23)

where
F(x;—x;)=2m.e' P e'" z*' *»/k'

&&&c

represents the long-range part of the Coulomb potential.
F(x;—x,)=e'/(x; —x;) for (x;—x;())1/k. but ap-
proaches a constant 4s.e'Qo&z, (1/k'), when ~x;—x;~
((1/k, . Thus in (23) we have the usual free electron
wave function Do modified by a factor which describes
long-range electron correlation, such that the proba-
bility that two electrons are found a given distance
apart is less than that calculated by neglecting the
Coulomb interactions or by including the short-range
interaction H, ., In fact in consequence of this correla-
tion term, each electron tends to keep apart from the
others, in a manner quite similar to that obtained in
the classical treatment of II. A similar result has been

C7

'Ol2

I

V(r) (e /r )

g(r ) ~ H s.r. (r )

Vtr) (eo/r) exp Nor]
W

0
0 a5

kcr

~ ~ \ ~ g ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I\»y ~ » ~

I.5 2 2'5

Fzo. 1.H, ., (r) compared with (e'/r) and (e'/r) exp( —k.r).

obtained by Tomonaga in his one-dimensional treat-
ment.

Let us now consider method (b), in which we seek to
eliminate n' of the particle variables in terms of the
field variables po. As is clear from the form of (12), this
is a much more formidable task, one which we are not
able to carry out explicitly. However, as we shall see
throughout this paper, we can still draw a number of
useful conclusions concerning the eGect of such an
elimination without actually solving for the x; in terms
of the po. In particular, we shall see in Sec. III how one
may use a canonical transformation to replace (to
lowest order in the field-particle coupling constant) N'

of the individual particle degrees of freedom by as
many collective degrees of freedom.

We now wish to justify our neglect of U and to in-
vestigate to what extent corrections arising from the
inclusion of Hz will be of importance. In the remainder
of this section we confine our attention to the lowest
state of the system. We Grst show that the exact lowest
state eigenfunction fo of our Hamiltonian (11) auto-
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matically satisfies the subsidiary conditions (12). For
as we have noted the subsidiary condition operators
01, commute with the Hamiltonian B, so that the wave
function gp can, in general, be expressed in terms of a
series of simultaneous eigenfunctions of II and the QI, .
The lowest state of the system is nondegenerate and
hence corresponds to a single eigenvalue of the operator
QI„which we may call 0.1,. To determine the value of
el„we consider a space displacement of the entire
system (Geld plus electrons) through a distance hx,
so that where

hU= —Q
n gn —gp

corrections arising from U and Hr. We estimate these
terms using perturbation theory. With the wave func-
tion (22) the average values of U and Hz vanish. U, in
fact, has non-vanishing matrix elements only between
the lowest state (with zero quanta) and a two-quantum
state, while Br connects the lowest state and a one-
quantum state. From second-order perturbation theory,
we have

x~x +Ax, p,~p;,
x,~x +Ax.

2718
Up„—— ~a' &t&

m 2' p

(27)

From Eqs. (2) and (3) we see that the effect of this dis-
placement on the field coordinates is given by

if the state n has two quanta of momentum k and l,
respectively; and

p„~p ~ e i—kAx

q ~q ~pic kx
h(k+1)P h(k+1)

E —Ep =2hzp„+ ~ po (28)

E—pEp+ Z
&&&c

A(0~ 2ÃS8
-+(H, , ),„

k'

The Hamiltonian is thus invariant under this displace-
ment, while the subsidiary condition applied to our
lowest state wave function becomes

e '"' *&a'Pp=zzg4

However, since the lowest state is nondegenerate, it is
not changed by this displacement, and we must have
Qk'fp=nkiPp. Thus we find zzk=zzke'"'e*, which can only
be satisfied if aI, ——0.

Thus, if we could obtain an exact solution for the
lowest state eigenfunction fp, we would automatically
satisfy the subsidiary condition Q&fp ——0. We may, in
general, expect that if we obtain an approximate solu-
tion for fp, we will not be able to satisfy the subsidiary
condition, but that any error we make in determining
the energy of the lowest state will not be increased by
our failure to satisfy this subsidiary condition, since
an exact solution satisles the subsidiary condition and
leads to the lowest possible energy state. The situation
with regard to the excited states of the system will be
somewhat different, and we will return to this question
later.

Let us take as our approximate it p, the wave function
(22). In this approximation the energy of the lowest
state is given by

if the electron in the initial state has momentum p;. In
(28) we may, for the purpose of this rough estimate,
approximate E„—Ep ——2'~ since, as we shall see in
Paper IV, h(k+1)'/2' —fh(k+1)/nz7 p; is always ap-
preciably less than 2'„as long as k, l&k, . We then 6nd

(7M h) (ek' Ei)
~U= —

]
E nzpp& ) k (k. 2hzp&

l &kc

q
' 1 (n')' 1 (n'~ n'h „

E 4 3 n6 hz~p484n] 2

(29)

where

6Hz=
jv

(3o)

(Hz) „p= (2nh/zp„) &(e/np) ek (p;—hk/2), (31)

if the state n has one quantum of momentum k present,
and

Thus AU introduces a fractional change in the zero
point energy, per oscillator, of (1/48)(n'/n), and since
n' is never greater than n (and is, in fact, often quite a
bit smaller), this change is negligible. Thus, we are
justified in neglecting completely the term U.

We may estimate the corrections arising from II'r in
similar fashion. We have

L)y s8
,'Ep+n' k,+-(H, , )A„——

2 7r

(25) hk' hk. p;E„—Ep =hpp~+ — =hppz, ."2m m
We then find

(32)

where Ep is the energy of an electron at the top of the
Fermi distribution, and (H, , )A„ is the exchange energy
arising from the screened Coulomb interaction term,
H, , , Eq. (18). We will not be concerned with evalu-
ating (H, , )A„at present (reserving this for Paper IV),
as we are here primarily interested in evaluating the

2~h e'
C

sk. (p,—hk/2)7'
&Hz=-

yyP i,A:&kc ku„

pP 9 h'k, 't
3.i~2. 40. i

(33)
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Since, as we shall see, k, &ko, the wave vector of an
electron at the top of the Fermi distribution, we see
that the second term in the parenthesis in (33) is
generally somewhat smaller than the first, and the 6rst
term corresponds to a fractional correction in the kinetic
energy per electron (and thus in its effective mass) of

n'/3n. This may be appreciable if n'~n but otherwise
is small. This term implies a similar order of magnitude
correction for the frequency of the collective oscilla-
tions, since g,p,o/2m and n'koo~/2 are roughly of the
same order of magnitude. Thus we find that we are
justified in neglecting H& in order to obtain a qualitative
and rough quantitative understanding of the behavior
of our system, but that the effects arising from H&
should definitely be taken into account in a careful
quantitative- treatment. This we shall give in Sec. III.

Thus far we have not specified the value of k„and
hence the number of collective degrees of freedom we
-find it desirable to introduce in our treatment. We may
obtain a rough qualitative estimate of e' by minimizing
our approximate expression for the lowest state energy
(25) with respect to k. (or n'). For the purpose of this
rough estimate, let us neglect the dependence of
(H, ., )Ay on k, . We then note. that the second term in
(25) will be negative for those k for which (2~ne'/k')
)fur„/2. Hence we obtain the minimum value for (25)
if we include in this summation, only those k for which
this inequality is satisfied. This criterion yields

4~ne' ko' (ro) ~

Ro~ 2.14 &ao)
(34)

where ro is the interelectronic spacing, defined by

n = (krro'/3) —', (35)

2 Re
=-ooEo———k,+(H', ., )A„.3x

(36)

The energy ——', (ne'/m. )k, represents a long-range corre-
lation energy, i.e., that energy associated with the
long-range correlations in electronic positions described
by the wave function (23). In contrast to the exchange
energy, this term represents Coulomb correlations be-
tween electrons of both kinds of spin. For Na it is, per

and ao is the Bohr radius. .For a typical metal like Na,
we have (r,/ao) 4 and hence k, ko. From (10) we
see that in this case n'~n/2. In Paper IV where we
give a more detailed treatment of that choice of k, which
minimizes the energy, including the eGects of Hi, and
(H. ., )~„we find for Na, k,~0.68ko, and n'~n/8 in fair
agreement with this rough estimate.

Finally we may remark that with the choice of
k, (34), the energy of the lowest state is

n'L)„ee'k,
Z= o&o+ — +(III.r.)Av

2 7r

electron,
2 2 e——e'k~~ ——e'ko——0.4—,

3Ã 3'F ra
(37)

a not inconsiderable energy. In Paper' IV we return to
a more careful estimate of the long-range correlation
energy.

In this section we wish to consider the eGect of the
Geld particle interaction term Hz on the motion of the
electrons and the collective oscillations. We do this
with .the aid of a canonical transformation which is
chosen to eliminate Hi in first approximation. Thus we
seek a canonical transformation to a new representa-
tion in which the coupling between the Gelds and the
electrons is described by a term Hii, which is appreci-
ably smaller than Bi, and may consequently be
neglected to a good degree of approximation (com-
parable, say, with our neglect of V). We shall then see
that the eGects of the coupling between the electrons
and the collective field variables, as described by H&,
are threefold: there is an increase in the electronic
eGective mass, the frequency of the collective oscilla-
tions is increased and becomes k dependent, and the
eGective electron-electron interaction is modified. As
we anticipated on the basis of our perturbation-theo-
retic estimate of Hi in the preceding section, none of
these effects is so large as to destroy the qualitative
conclusions we reached there, although the quantitative
estimates of the energy and wave functions of our sys-
tem are somewhat altered.

The measure of 'the smallness of Biz, and hence the
extent to which we are successful in carrying out our
canonical transformation, is the expansion parameter

(38)

where we average over the particle momenta and the
collective field wave vectors, and co is the frequency of
the collective oscillations. We find

9 1 kc'po', ao
~=—X- =op'—,

25 3 m'o)~ r,
(39)

where we have replaced ~ by its approximate value co~
and

P= k,/ko.

It is clear that by choosing P or k, small enough, our
expansion parameter 0. may be made as small as we
like. We shall assume throughout the remainder of this
paper that such a choice has been made, i.e., that
0,«1.In Paper IV we show that this criterion is satisGed
in that n 1/16 for the electronic densities encountered
in metals, if we take for P that value which minimizes
the total energy. Another parameter of whose smallness
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we shall have occasion to make use is the ratio of the
number of collective degrees of freedom, e', to the total
number of degrees of freedom, 3n. For most metals,
with the above choice of P, we find (n'/3n) 1/25

%e shall make the further approximation of neglect-
ing the sects of our canonical transformation on B,, ,
the short-range Coulomb interaction between the elec-
trons. From Eq. (11), we see that if we neglect H'z,

the collective oscillations are not affected at all by
H, , . Thus B', , can inRuence the q& only indirectly
through Hy. But, as we shall see, the direct eGects of
Hi on the collective oscillations are small. Thus, it
may be expected that the ieChrect eGects of II,., on
the q~ through Hq are an order of magnitude smaller
and may be neglected in our treatment which is aimed
at approximating the eGects of Bz. We will justify this
procedure in greater detail in the following section.

With regard to the subsidiary conditions (11), we
shall find that to order e, the subsidiary conditions in
our new representation involve only the new particle
coordinates (X;, P~), Thus we may write our new wave
function in terms of products like

Cz;,(~(Xz . X„),

and the subsidiary conditions will only act on the y(x;).
The e' subsidiary conditions may thus be viewed as
consisting of m relationships among the particle vari-
ables, which electively reduce the number of individual
electronic degrees of freedom from 3e to 3m —e'. This
reduction is necessary, since in this new representation
the e' collective degrees of freedom must be regarded
as independent. For the 6eld coordinates no longer
appear in the subsidiary conditions, and hence describe
real collective oscillation, which is independent of the
electronic motion in this new representation.

There is a close resemblance between our Hamiltonian
(11), which describes a collection of electrons interact-
ing via longitudinal 6elds, and the Hamiltonian we
considered in I, which described a collection of elec-
trons interacting via the transverse electromagnetic
6elds. In fact, we shall see that our desired canonical
transformation is just the longitudinal analog of that
used in Paper I to treat the organized aspects of the
transverse magnetic interactions in an electron gas. In
order to point up this similarity and to simplify the
commutator calculus, we introduce the creation and
destruction operators for our longitudinal photon 6eld,
a~ and aI,~, which are defined by'

Hz ——(e/m) p (2mb/ar)'*(e& ~ (p,—Ak/2)aze'"'*'
i,k(kc

+e—'~ *'az*eg (p,—Ak/2)), (44b)

AG) Aco

Hre&d= P (aI aI+a—Ial )+ (~z ~)
k&&c

X (aI as+ aI al . aÃ z: a—I aI-)—~ —(44c)

&ih (xi—xg)

H, , =2~e' P—
k )kei'

(44d)

(44e)

We note that Hs, ~e takes the form (44c), because we

have expanded in terms of creation operators of fre-
quency co rather than co~.

%e now consider a transformation from our opera-
tors (x,, p;, az, az*) to a new set of operators (X,, P,,
Az, AI,*), which possess the same eigenvalues and
satisfy the same commutation rules as our original set."
The relation between these two sets may be written as

s(hX e+is/A

(with similar equations for p, , a&, and a&*); (45) may
be viewed as an operator equation, and we may take
5 the generating function of our canonical transforma-
tion to be a function of the new operators (X;, P;,
A&, AI,*) only. The operator relationship between the
old and new Hamiltonians is

in virtue of (41). In terms of these variables, we then
write our Hamiltonian and supplementary conditions
schematically as

H=H„„+Hz+Hr ze+H. ..
a,c= 0 (k&k.),

where, using (11), (12), and (41) and neglecting U
(Eq. 15),

pP 2zre I
H~-z=Z

2m &&~c

qz= (5/2&a)&(az, .—a z*),

pal=i(ken/2)l(aI, *+a p),

and which possess the commutation properties

Laz, az 7= Lax, az

Laz, az *7=&~z,

(41)
g
—iS/h~~iS/h

newy

where K represents that Hamiltonian which is the same
function of the new coordinates as H is of the old, and
H„, denotes the Hamiltonian expressed in terms of the
new coordinates.

Oco is here unspecified, but will later be chosen to be the fre-
quency of the collective oscilla, tions.

'0 Quantum mechanical transformation theory is developed in,
for instance, P. A. M. Dirac, Princip/es of Quantum Mechanics
(Oxford University Press, London, 1935), second edition.
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S= —(ei/m) P (2m'/oi) '*

ik&kc

ei. (P;—hk/2)Az,

o)—k P;/m+ lid'/2m

Xexp(ik X;)—exp( —ik X;)Ai,*

The problem of finding the proper form of S to
realize our program was solved by a systematic study
of the equations of motion. We do not have space to go
into the details of this study here but confine ourselves
to giving the correct transformation below. We shall
then demonstrate that it leads to the desired results.
Our canonical transformation is generated by

(2 e~) &

e'" *' exp(ik X,)+ P l

«&. ( M2 )

oi —1 P,/m+At2/2m+ foal k/m

Ai exp[i(1+k) X,]
o&—1 P;/m+ fzP/2m

(2me'o&) ~

—

l exp( il—X,)Ai*
«i. L M' )

eg. (P;—Ak/2)
X (47)

co—k P /m+fzk'/2ml o&
—1 P,/m+At2/2m+51 k/m

On comparison with Eq. (45) of I, this generating func-
tion may be seen to be just the longitudinal analog of
the "transverse" generating function given there. [The
additional term in hk/2 arises because k P, does not
commute with exp(ik X,).] Since H;„„,„and Hs, zd are
also analogous to the transverse terms encountered in

I, we may expect that many of the results obtained
there may be directly transposed to this longitudinal
case. The differences in the treatments will arise from a
consideration of H,h„t„„g, and the subsidiary con-
ditions.

We Gnd it convenient to write the relationship be-
tween any old operator, 0,&d and the corresponding
new operator 0„, as

~—1 P,/m+fzP/2m
exp(ik. X;)+, (51)

and we shall use these relationships in determining II„,
We now proceed in a manner directly analogous to

that of Paper I. We classify terms in II„, by consider-
ing the corresponding schematic terms in H [Eq. (44a)-
(44d)] from which they may be considered to arise.
Every term, K, in H, leads to a zero-order (commutator)
term, W, which is the same function of the new variables
as it was of the old variables, and in addition, a 6rst
order commutator, + (i/fz) [E,S], a second-order term,
—(1/25')[9", [E,S]], etc. A convenient grouping of
the terms in II exists which considerably simplifies the
calculation of H„, . To demonstrate this grouping, we

H.= Q;P;2/2m+ Q (fzo~/2) (ai*aI,+a,ai*).

consider
O,~d

=exp (—iS/fi) O„,„exp (iS/fi)
=0„,„+(i/fz) [0„,„,S]

—(1/2') [[0„,„,S],S]+, (48)
The first-order commutator arising from H is

(2~a) ~

y;=P;+(e/m) P l l
k

&&&c ( o& )
ej, (P,—fik/2)

(a —k P,/m+Ak'/2m

XAi exp(ik X,)+exp( —ik X,)Az,
*

eg (P;—hk/2) +" (49)
re —k P,/m+ flak'/2m

t2my&
a~=A~ —(e/m) &l —

I

e). (P;—(hk)/2)
Xexp( —ik X;) + ' ', (50)

(o—k P;/m+hk'/2m

and we will classify terms in this series according to the
power of S they contain; i.e., [0,S] is the first-order
commutator of 0 and S. We then find, keeping only
first-order commutators, that

+ (i/h) [K„S]= —(e/m) P (2m.fi/or) '
i, k(Icc

X (e„(P,—flak/2)Ag exp(ik X;)

+exp( ik X,)—Az*eq (P;—flk/2)). (52)

By Eq. (44c) we see that the above term is just the
negative of Hi, expressed in terms of the new variables.
Thus, the first-order commutator of K, with S cancels
the term arising from the zero-order commutator of
Ki. K~ and K are thus "connected" in that a simple
relationship exists between the various order com-
mutators arising from these terms; in fact, the nth
order commutator of K, with S is equal to the negative
of the (n —1)th-order commutator of Xz with S. The
terms in H„,„arising from the connected terms H,+Hz,
may consequently be written in the following series:

! 1 1
H'=X.+P PC„S]„— (i/f). , (53)"IN! (~+1)!l
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where [3'.r, Sg„ is the eth-order commutator of Xr
with S.

We shall see that the eGects of the held-particle inter-
a,ction (up to order a) are contained in the 6rst correc-
tion term to K, [(i/2h)S, Krg. The higher-order com-
mutators will be shown to lead to eGects of order 0,' or
n(r4'/3N) and may hence be neglected T.he evaluation
of our lowest-order term, (i/2h) [S,3C&j is lengthy, but
straightforward. We find, after some rearrangement of
terms, that

4tret
t

h q
(i/Zh)Pe„sj=

~'E4 )

2co(k P;/m) —(k P;/m)'+(h'k4/4m')

(cc—k P;/m)' —(hsk4/4m')

4tre' r h q
X (A~A.*+A.*A.)+ m» E4to)

The remaining lowest-order term in H„, is just
the zero-order term from Hn, td

—Pa &a, (h to/2)(a t*aq

+catty ),

Xseig ——', Q (h4c/2)(Ap*AI, +AtAt*)= Q (h/44o)
&&&c &&ac

X (to„' t—o')[Ay*At.+AtAg* A—t,A t, A—g*At,~f (.56)

We will now show that if we de6ne co by the dispersion
relation,

1=
m 4 (cc—(k P /m))' —h'k4/4m'

then the sum of (56) and the first two terms of (54)
vanishes. To see this we note that multiplying (57) by
co'—co~' on both sides, and. rearranging terms on the
right-hand side, yields

4tret 4c2—[cc—(k P;/m)$'+h'h4/4m'
GP Goy =

m ' [co—(k P;/m) $'—h'k4/4m'

(4o+ k P /m)' —(h'h4/4m')

4tre' 2M (k P;/m)+ (h'h'/4m') (k P—$/m)'

[40—(k P;/m) j'—h'k4/4m2
(58)

X(AtA t+Ag*A t*)—(4re'/m')

k &kc
i.j 'i Nj

[ea. (P;—hk/2) jb~'(P~+hk/2) j
~[~—k P;/m —hk'/2m]

2me (eI, P;)'
(54)

m' 4&&I. (cc—hk'/2m)' —(k P/m)'

Xexp[ik (X;—X~)]+exp[—ik (X;—X;)]

eI, (P;—hk/2)st, (P;+hk/2)

o&(4p —k PJ/m —hk'/2m)

where

Pinew =Helectron+Hcoll. +Hres part&
(0) —~

2me'
Helectron =g' 2m m' 4~&tc (co—hk'/2m)' —(k P4/m)'

from which the above statement follows for the (Ae*A I,

+AtAt*) terms in (54). The (A~A t and At.*A ~a)

terms likewise go out when we replace k by —k in
(57) and (58) and use the resulting relations to compare
(56) and (54).

'The results in lowest order of our canonical trans-
formation on the Hamiltonian may thus be expressed
schematically as follows:

In obtaining (54) we have neglected a number of terms
which are quadratic in the Geld variables and are
multiplied by a phase factor with a nonvanishing argu-
ment, exp[i(k+1) X;$. These are terms like

ijk )kci'
exp[ik (X,—X;)j 1—2m4te' g —, (60)

k' k&k, jP

Hcou =2 Q (h4o. )(AI,*At+AtAy~), (61)44re' (h q et (P;—hl/2)AtA),
Z

m' &&4,4 &44c) to —1 P/m+hP/2m
l &kc
l& —k

a&ac

and

[eg (P;—hk/2))[eI, (P +hk/2)7

4o[cc—k Ps/m —hk'/2ml

Xexp[i(k+1) X;g. (55)
Hres part =

m2 k&ke
ij:iHj

Xexp[ik (X,—X;)]+exp[—ik. (X;—X;)]

[ag, (P;—hk/2) j[eg, (P,+hk/2) j
X (62)

co[4o—(k P;/m) —(hk'/2m)]

The eGect of 'our transformation on the subsidiary
conditions may be obtained in similar fashion. Our new

Such terms are of exactly the same character as those
we considered earlier in U [Zq. (15)j, except that they
are smaller by a factor of (I P;/mto). Exactly the
same arguments that we applied in showing that U
could be neglected may be applied to terms like (55),
with the result that we 6nd that these terms are also
completely negligible, leading in fact, to an energy
correction which is smaller than that arising from U
by a factor of n [Zq. (39)g.
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subsidiary conditions are given by

(Qi,) jf = exp( —iS/A)Qi' exp(iS/k)P

i= Q, '—-[S,Q,']— [S, [S,Q.']]+ "
k

'
2h2

Xf=0, (k &k.), (63)

(Qti)new= A tv*~

4xe'

m '- [co—(k P;/m)]' —k'k4/4m'J

( 4re'

(8~e'q ~
CO

E k2~) i &g~ —(k P;/m —kk'/2m)'

( Sm e ) ' t'2m e a&) '
Xexp(ik. X,)—(

E k2k&) i«.,' E M'm')
l&k

(o+ (I P;/I)+ SP/2m Al k/m—

A iexp[qi(k —1) X;]
co+1 P;/m+AP/2m

1
exp( —il X;)—A i*.

.I—1 P;/rn +AP /2m +51 &/m

where f is our new system wave function, and Q&' is
the same function of the new variables that QI, was of
the old variables. We find

orders) the Geld variables, and is given by

h2k4

~ 2+. P P.2+
em' ' 4m'

(66)

(Qx) new& =g' u' —[(k P~/~) —kk'/2~]2

&&exp(ik X;)g =0, (k&k,). (65)

IV.

The physical consequences of our canonical trans-
formation follow from the lowest-order Hamiltonian,
P„, &'& [Eq. (59)] and the associated set of subsidiary
conditions on our system wave function [Eq. (65)].
We discuss these brieQy and then show that the
higher-order terms in P„, and (Qi,)„, are actually
negligible. We first note that our field coordinates occur
only in H„&&,, and thus describe a set of uncoupled
fields which carry out real independent longitudinal
oscillations, since the subsidiary conditions no longer
relate fmld and particle variables, and since there are
no Geld-particle interaction terms in H„, . The fre-
quency of these collective oscillations is given by the
dispersion relation [Eq. (57)], which is the appropriate
quantum-mechanical generalization of the classical
dispersion relation derived in II, as well as being the
longitudinal analog of the quantum-dispersion relation
for organized transverse oscillation, which we ob-
tained in I.

This dispersion relation plays a key role in our collec-
tive description, since it is orily for ~ (k) which satisfy it
that we can eliminate the unwanted terms in the
Hamiltdnian [Eq. (54)] and the unwanted Geld terms
in the subsidiary condition. For sufBciently small k,
we may expand (57) in powers of (k P;/mar) and
(kk'/mo) and so always obtain a solution for ~(k). If we
do this, and assume an isotropic distribution of P;, we
find

exp(ik. X;)
~—1 P;+kP/2m

and hence
k' P' h,'k' iI+ ~ +2'' ' co ' Sm'co„'~

(67)

[S, [S, Q ']]+ ~ . (64)
2fi'

(Q&)„,„ is considerably simplified when we note that
the first two terms vanish when we apply the dispersion
relation [Eq. (57)] for both plus and minus k. The
fourth term consists of a linear term in the field co-
ordinates multiplied by a nonvanishing phase factor,
and the eGect of such a term in the subsidiary condition
is the same as that of a term like (55) in the Hamil-
tonian. Since there is no point in obtaining the sub-
sidiary condition to a higher order of accuracy than is
maintained in our Hamiltonian, we may neglect this
term. Wi.th this approximation, our subsidiary condi-
tion reduces to one which does not involve (in lowest

These appropriate dispersion relations are, in fact,
quite sufhcient for our purpose, since the expansions
involved in obtaining them are the same that we have
used in obtaining H„, .

We have treated & as a pure number thus far, al-
though we see from (57) or (67) that &o is, in fact, an
operator, since it contains P;. We have ignored this
fact, for instance, in working out our commutation
relations and obtaining H„, . This treatment of co as
a pure number is only strictly justified if our system
wave function is an eigenfunction of P;, which is not
the case. Thus co contains and, in turn, can contribute
to the Hamiltonian, oG-diagonal terms which cause
transitions between states of diGerent energy. These
terms could then, in principle, be eliminated from the
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where zz is given by (39) and p by (40). Since p&1, we
see that the eGect of the k4 term is small compared to
the k' term. This result holds true quite generally, in
that where an expansion in powers of n=((k P;/
mo)2)2„ is justified, the terms of order (k'k'/4m'a&2) are
negligible. The average fractional increase in the fre-
quency is thus of order 3n. As we have remarked, for
the electronic densities encountered in metals, n turns
out to be 1/16, so that this constitutes at most a 20
percent correction in the collective oscillation frequency.
22'„'The effect 'on the electrons of the elimination (in
lowest order) of the electron-field interaction may be
seen by considering the second term in H,&„t„„and
H p t. We first note that in the approximation of
small o., the second term in H,~„t„„becomes

+red
18+'e ' 2m 3e ' 2m

If we combine this with the f'zrst term, P;P;2/2m, we
obtain

I' (322—22'y P,2

&-e+&
2m& 322 ) i 2m*

where
m*= mX3~/(3~ —e'). (69)

Thus the "new" electrons behave as if they had an
effective mass m*, which is given by (69), and which is
slightly greater than the "bare" electron mass ns. This
increase in the eQ'ective electronic mass has a simple
physical interpretation. For we note that according to

Hamiltonian by a further canonical transformation.
However because the dependence of cv on I'; is already
or order o., this elimination would produce terms of
order o.' which are truly negligible. We are justi6ed in
neglecting the oG-diagonal elements of the operator ~.

According to (67), in consequence of the electron-
field interaction the frequency of the collective oscilla-
tions has become k dependent. We may obtain an order-
of-magnitude estimate of the fractional change in this
frequency by averaging the dispersion relation (67)
over all k&k, and carrying out the indicated sum over
particle momenta. In obtaining this mean value of
P;P,2, we should use the appropriate eigenfunctions of
our new Hamiltonian (59). However, as we shall see
later, the correct particle eigenfunctions can be re-
placed for many applications by plane waves, so that
P;P;2 may be approximately evaluated by assuming a
Fermi distribution of electrons at absolute zero. We
then Qnd

3 (k')2„PP' k2(k'), q
(~)"=~,l 1+— +

10 m2u ' 8m2~„2)

=~„(1+3a[1+(3/10)P'1), (68)

Eqs. (4/) and (48),

ei (22rh1 ~ RPGOA Iz,

X;=x;—P ~

m&(&o( or P ra —k P;/m+M/22m

Xexp(ik x;)—exp( —ik x;)

Hr p

—27M ("~') (22.»)
exp[ik (X;—X;)]

m' &(&. a)~ +2k2(V2)A,
i,j;i'

( P,)( P;)/( '(V'), )= —2' 8
k &kc

i,j'i' k2+E'

&(exp[ik (X,—X;)7, (71)

where (V2)A, =P;PP/m222 and E'=&a '/(V')2. If we
assume that the electrons form a completely degenerate
gas, then for most metals,

Thus
Q2 (5/3) (~ 2/p 2)~k 2 (72)

(ep P;) (22 P;)/(m2(V2)2, )8', .p.——22re2 g
k'+k22

)&exp[ik (X,—X;)j. (73)

i'
k&kc

H p t thus describes an extremely weak attractive
velocity dependent electron-electron interaction. For if
the summation in (73) were over all k, it would corre-
spond to a screened interaction of range (1/k2); how-
ever, the summation is only for k&k„where k, &ko, so
that we are describing here that part of a screened
interaction beyond the screening length. A more de-
tailed analysis conlrms that this qualitative estimate,
and justifies our neglecting H, .p. in comparison with
H, , in considering the sects of electron-electron in-
teraction.

Let us now consider the eGect of the higher-order
terms, such as [S, [S,Xz)$. {The higher-order com-
mutators arising from Ks,~d

—pa &z;, (Rr/2) (A2 A2
+A2A&*) will be of this same type, since the zero-order
commutator from this term cancelled part of [S,Kzf.)
The calculation of [S, [S,Kzj] is quite straightfor-
ward, but scarcely worth going into here, since by
comparison of Eqs. (49), (50), (51), and (44), it may
easily be seen that the lowest order non-negligible terms
terms will resemble Hz but will be at least of order
(k P;/neo) smaller. These terms which we earlier de-

X (7o)
cu —k P,/m+bk2/2m

The X; thus represents the "bare" electron plus an
associated cloud of collective oscillation; the increased
eGective mass may be regarded as an inertial eGect
resulting from the fact that these electrons carry such
a cloud along with them.

H p t in the approximation of small n, may be
written as
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noted by Hzz could be eliminated by a further trans-
formation. However, since as we have seen, the elimina-
tion of Hz led to effects of order zz (or e'/3N), the effects
so obtained would then be of order n2, and we may
neglect them entirely in our approximation of small n.
Exactly the same conclusions apply with respect to
the higher-order commutators of the subsidiary con-
dition operator, (Qz,)„, , since it is not fruitful for us to
evaluate (0&)„,„to any greater accuracy than that ob-
taining for H„, .

It is interesting to note that included in these higher-
order terms is the inhuence of our eGective mass cor-
rection, Eq. (69), on the frequency of the collective
oscillations. Thus, on evaluating these terms, one 6nds

h'k'
c0'= a)„'+ Q I'p+

zz(zzz*)' ' 4(zzz*)'

instead of the dispersion relation (66). This is, of
course, just what might be expected, since the suc-
cessive elimination of the 6eld-particle interaction terms
leads to a mass renormalization, familiar from quan-
tum electrodynamics, in that everywhere m appears,
it s'hould properly be replaced by m*."This correction
is here quite negligible, usually leading to a fractional
change in the collective oscillation frequency of less
than 1 percent. For this change is (o.e'/zz), and for
the electronic densities encountered in metals,

zz(zz'/n) —(1/16) (3/25) = (3/400).

Our only other approximation has been to neglect
the eGect of the canonical transformation on H. ..
which will lead, indirectly, to the eGect of H, , on the
collective oscillations. Suppose we consider a typical
first-order term arising from [S,H, , ].This will be like

(2zie') ~ exp( —il X;)
2me' P

x&a. 4 hP ] h'

(hl k/zzz)A i* exp(ik. X;) exp( —ik X;)

(cv —l P;/zzz+hP/2m) (&v
—1 P;/zzz+hP/2m+hi k/zing)

These terms thus consist of a nonvanishing phase
factor multiplying a 6eld variable and a short-wave-
length density fluctuation. The structure of (74) is
quite similar to that of U [Eq. (15)], the di6erence
being that the shogt-wavelength density Quctuation

P; exp( —ik X;) here plays the same role as the col-
lective field variable (which is essentially a long-
wavelength density fluctuation) did in U. If we had a
term for which k= 1, (74) would reduce to a term like
Hz, just as the third term in (11) reduced to ~„2+i
X(qzq z/2). Thus we might expect that (74) bears
about the same relationship to Hz, as U does to (zo„'/2)
X+zqiq z;. However, it is quite a bit more dificult to
establish the smallness of (74) mathematically than it
was for U, since a perturbation theoretic estimate in-
volves the consideration of intermediate states in which
two electrons are excited. We note that the main effect
of H, , is to produce short-range correlations in par-
ticle positions, analogous to the long-range correlations
produced by the long-range part of the Coulomb po-
tential, in. the sense that the particles tend to keep
apart and thus tend to reduce the eGectiveness of H, ,
Because of the analytical difhculties involved in a
justi6cation along these lines we prefer to justify our
neglect of P4) in a more qualitative and physical
fashion.

We see that (74) describes the effect of the collective
oscillations on the short range collisions between the
electrons, and conversely, the effect of the short-range
collisions on the collective oscillations. We may expect
that these eGects will be quite small, since H, , is itself
a comparatively weak interaction. The short-range
electron-electron collisions arising from H, ., will act
to damp the collective oscillations, a phenomenon
which has been treated in some detail classically by

Bohm and Gross." A test for the validity of our ap-
proximation in neglecting terms like (74) is that the
damping time from the collisions be small compared
with the period of a collective oscillation. In this con-
nection we may make the following remarks:

(1) Electron-electron collisions are comparatively in-
eGective in damping the oscillations, since mo-
mentum is conserved in such collisions, so that
to a first approximation such collisions produce
no damping. [Such collisions produce damping
only in powers of (k P;/neo) higher than the
first. ]

(2) The exclusion principle will further reduce the
cross section for electron-electron collision.

(3) If Hz is neglected, collisions have no effect on the
collective oscillations. This means that the major
part of the collective energy is unaGected by these
short-range collisions, since only that part coming
from Hz, (which is of order n relative to h~~) can
possibly be influenced. Thus at most 20 percent
of the collective energy can be damped in a
collision process.

All of these factors combine to reduce the rate of
damping, so that we believe this rate is not more than
I percent per period of an oscillation and probably is
quite a bit less. A correspondingly small broadening of
the levels of collective oscillation is to be expected. It
is for these reasons that we feel justi6ed in neglecting
the effects of our canonical transformation on H, , .
"Note, however, that m is not replaced by m* in our expression

for co„, Eq. (14), since the collective oscillations are not affected
by the field-electron interaction in this order."D. Bohm and E. P. Gross, Phys. Rev. 75, 1864 (1949).
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The motion of the electrons in our new representation
is considerably more complicated than that of the col-
lective fields. The major reason for this complication
is our set of subsidiary conditions (65), which essen-

tially act to reduce the number of individual electron
degrees of freedom from 3e to 3e—e', where e' is the
number of collective degrees of freedom and is given by

k.' p'koa p'I
n'=

6x' 6~' 2
(75)

Ke may obtain a better understanding of the role of
these subsidiary conditions by making use of the den-

sity fiuctuation concept which we developed in Paper II.
There we saw that classically the collective component
of the density Quctuation pI, was proportional to

R '=g ~ik. xi

' id2 —(k P;/m)'

In a quantum-theoretical treatment of the density
fiuctuations, the collective component is found to be
proportional to

Eg&=P ~it xg (76)
' ~'—L(k P;/m) —$P/2m)'

This result may be seen to follow directly from the
quantum generalization of the methods of II given in

Appendix I. In the preceding expressions, x; and pi of
course refer to the "original" position and momentum

of the electron, i.e., the Hamiltonian in terms of these
variables is given by Eq. (1). On the other hand, our
"new" electron variables (X,, E;) describe electron
motion in the absence of any collective oscillation,
since there are no terms in. our Hamiltonian (59) which

couple the electrons and the collective oscillation. Con-

sequently we should expect that the collective com-

ponent of the density fluctuation when expressed in

terms of these "new" variables should vanish, since

these variables are chosen to describe "pure" individual

electron motion and are incapable of describing, or
taking part in, collective oscillation. But this is just
what our subsidiary conditions assert, as may be seen

by comparing (76) and (65). Thus, if we carry out a
transformation to "individual' electron variables, we

must expect a set of subsidiary conditions given by
(65), since these guarantee that we have developed a
consistent description of the state of the electron gas in

the absence of collective oscillation.
The physical content of the subsidiary condition also

follows from the density Quctuation concept. For we

may rewrite the subsidiary condition, Eq. (65) as

g; exp(+ik X;)p

(k P;/nt hk'/2m) exp(ik X—~)
(77)

aP —[(k P,/m) —kk'/2m)'

i

Since we are dealing with k(k„ for which (k P;/mo)'
&(1, we see that the subsidiary condition asserts that
in terms of our new coordinates and momenta, the
density Ructuations of long wavelength are greatly
reduced. This reduction is due to the fact that the
major portion of the long-wavelength density Quctua-
tions is associated with the. collective oscillations, and
described in terms of these in our collective description.

I;n our new representation, the subsidiary conditions
(65) continue to commute with the Hamiltonian (59).
This follows since. the commutation relations are un-
changed by a canonical transformation; it may easily
be directly verified from (65) and (59) that these com-
mute within the approximations we have made. Conse-
quently, just as was the case with (11) and (12), if
we correctly solved for the exact lowest state eigen-
function of our Hamiltonian B„, , we would auto-
matically satisfy the subsidiary conditions (65), since
the ground state of our system is nondegenerate. For
this reason, the energy of the lowest state of our system
is relatively insensitive to whether we satisfy the sub-
sidiary conditions or not. For since the lowest state
wave function does satisfy the subsidiary condition,
moderate changes in this wave function, involving cor-
responding failures to satisfy the subsidiary conditions,
will provide quite small changes in the energy. Con-
versely, because of this insensitivity of the ground state
energy to the degree of satisfaction of the subsidiary
condition, it will take a quite good approximation to the
lowest eigenfunction of II„, to satisfy the subsidiary
conditions to a fair degree of approximation.

It should be noted that the lowest state wave func-
tion satisfies the subsidiary condition because of the
eGects of the term II,.~ in the Hamiltonian. For as
we have seen, the subsidiary condition describes a long
range correlation in the particle positions, which is
independent of the amplitude of collective oscillation.
In the approximation that we are using, this correlation
has to be due to the residual interaction between the
particles, since the subsidiary conditions will auto-
matically be satisfied if we solve for the lowest state
wave function. At erst sight, it might be thought that
the short-range potential H, ., might also play an
important role in establishing these correlations, since
it corresponds to a fairly strong interaction potential
when the particles are close to each other. However,
from the definition of H, ., in Eq. (18), we see that it
has no Fourier components corresponding to 4&k,. As
a simple perturbation theoretical calculation shows,
the only eBect of H, ., in the erst approximation is to
turn a plane wave function.

fo ——exp(i g k„x„),

into the function

/=f0(1+ Q 'C„„exp(ik (x„—x„))),
18fS

k )kc
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where C „is a suitable expansion coeflicient, which can
be obtained by a detailed calculation. "But since the
sum is restricted to k&k„B,., introduces only short-
raege correlations, which have nothing to do with the
subsidiary conditions. On the other hand, H, .~. which
has only /ong-ralge fourier components (i.e., k(k,)
introduces only corresponding long-range correlations.
Thus, in the present approximation, it is H, .~. that
is responsible for the long-range correlations implied by
the subsidiary condition.

On the basis of the above conclusions, we may de-
duce the following physical picture. The long range
Coulomb forces produce a tendency for electrons to
keep apart, as a result of which the Coulomb force
itself tends to be neutralized. But this neutralization
could not be perfect; for if it were, then there would be
no force left to produce the necessary correlations in
particle positions. Our calculations show that II,.~. is
the small residual part of the Coulomb force which
must remain unneutralized in order to produce the
long-range correlations needed for agreeing. Because
this force is so small, it will produce only correspond-
ingly small changes in the particle momenta, so that in
most applications a set of plane waves will provide a
good approximation to the particle wave function (in
the new representation, of course).

All of the above applies rigorously only in the ground
state. In the excited states, similar conclusions apply;
but the application of the subsidiary conditions is more
diflicult, because the wave functions of the excited
states are no longer now degenerate. Here, we could in
general expand an arbitrary eigenfunction of B„, &" as
a series of eigenfunctions of (Qz)„,„.To satisfy the sub-
sidiary conditions, we then retain only those terms in
this series for which (Qq)„,„=0.This reduction in the
number of possible eigenfunctions corresponds to the
reduction in the number of individual electron degrees
of freedom implied by (65). The exact treatment of the
problem of the excited states is quite complex and will
be reserved for a later paper by one of us. However,
we may expect that if the reduction in the number, of
individual electron degrees of freedom is comparatively
small Pi.e., (n'/N)«1j, then their effect on the energy
spectrum of the electron gas will be correspondingly
reduced.

W'e conclude this section by summing up the results
of our canonical transformation to the collective de-
scription. We have obtained a Hamiltonian describing
collective oscillation plus a system of individual elec-
trons interacting via a screened Coulomb force, with a
screening radius of the order of the inner-electronic
distance. Although the individual electron wave func-
tions are restricted by a set of e' subsidiary conditions,
which act to reduce the number of individual electron
degrees of freedom and to inhibit the long-range density
fluctuations associated with the individual electron

'3 The additional terms describe correlations in particle posi-
tions.

k'
H= — f*(x) hf(x)dx2'

t'p(x) p(x )+ dxdx )
2~ & [x—x'J

where

(A1)

p(x) =Q.f,*(x)P.(x). (A2)

It is convenient to Fourier-analyze f,(x) and f,*(x) by

f (x)=Q c e' '*
k (A3)

4'. (x)=Z ck.*e '"'*

where the cr„and cr„* obey the anticommutation
relations

)Cko', Ck~r~)+ —[Ck~, Ck~n~ j+—0&
(A4)

I Cke) Ck e 1+ 8kk'8g~ ~

in virtue of the anticommutation relations satisfied by
the P, (x). We also hand

p(x) =Pkpke"*, (A5)

where, using (A2) and (A3),
px= Qkck. Ck+x. . (A6)

In terms of ck. and px, our Hamiltonian (A1) becomes

pjcpB=P ck *ck +2m.e'g
2m ~ k'

'4 See, for instance, G. Wentzel, QNuntum Theory of 8'ave
Fields (Interscience Publishers, ¹wYork, 1949).

(A7)

motion, for many purposes the eGect of these subsidiary
conditions may be neglected. In Paper IV we examine
the physical conclusions we are led to by the use of the
collective description for the motion of electrons in
metals. We shall see that these are in good agreement
with experiment and enable us to resolve a number of
hitherto puzzling features of the usual one-electron
theory.

One of us (D.P.) would like to acknowledge the sup-
port of the OfFice of Ordnance Research, U. S. Army,
during the writing of this paper.

APPENDIX I
. In this appendix we treat the collective Quctuations

in charge density by ending the equations of motion of
the associated operators, thus developing a direct
quantum-mechanical extension of the methods used in
Paper II. We use the electron held second-quantization
formalism, in order to facilitate comparison with the
work of Tomonaga and to take into account explicitly
the fact that the electrons obey Fermi statistics.

Following the usual treatments, ' we describe the
electrons by the Geld quantities f.(x) which satisfy the
anti-commutation relations Q, (x), P, (x')$+= Q,*(x),
P. *(x')j+——0 and g.(x), P. *(x')(~=8(x—x')8.. o re-
fers to the electron spin and takes on two values corre- .

sponding to the two orientations of the electron spin.
We work in the Heisenberg representation. The Hamil-
tonian which determines the equation of motion of the
f's is
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The second quantization formalism we are using here
is of course equivalent to the use of an antisymmetrized
many-electron wave function in the usual con6guration-
space representation (which we use elsewhere in this
paper). For instance, the density fluctuation operator
pI, is equivalent to the configuration space operator
P; exp( —ik X;) we introduce earlier. Thus the results
obtained in this appendix may be directly compared to
those obtained in the previous sections of this paper,
and in Paper II.

In Paper II, we saw that classically pI, could be split
into an oscillatory part gj„and an additional part which
represented the charge density of a. set of screened
electrons moving at random. W'e shall now show that a
similar qI, can be introduced quantum mechanically,
and is proportional to

We now split the sums over n and K into two parts.
In the second term on the right hand side of (A12),
we see that those terms for which e= K give us a factor
of e, the total number of particles, while the remaining
terms, with n~E lead to nonlinear contributions, since
there appear here electively two factors, each of order
pK. It can be shown that the neglect of those terms
for which o./E is equivalent to the "random phase
approximation, " as applied for instance in the neglect
of U Eq. (15).Similarly, in the third term on the right-
hand side of (A12) we find the terms for which n= —K
give us a factor of e, while those with nN —K may be
neglected in the random phase approximation.

With these approximations, we then obtain

PK, ar+zM)x, co

~~ a)'—(kk K O' —E'/2m)'
(A8)

&ku &ao%re'
=ax 1—Z

m (co—k. IGi)' —O'E4/4m
(A13)

In the usual coordinate representation, this operator is

&ko &~Ke
(A9)

and are related to qK by

ex= (1/2) L(tx. --kx, --)/~3.

If the $&, „satisfy
$x, +~5x. =o,

(A10)

(A11)

then it immediately follows on differentiation of (A10)
that

jx+~'qx =o

We have gx, =(1/ih)tgz;, H$. If we use the com-
mutation properties I Eq. (A4)$, we 6nd that

)K, ~+1(d)K, co
=Q Ck~ Ck+K~

~k+K—a, op—a
+2%'8 Q cpg

2 (o—kk K+BE'/2m

co—h(k —n). K+AE'/2m

paCke Clr+K+a, o

x
Q kk K+BE'/—2m

(A12)
a)—k(k+ n) .K+AE'/2m

qx=Z exp( —~K X;). (Aga)
~ (g' —(K.P;/m —QE2/2m) 2

In the limit of A~O, this reduces to the q~ of Paper II
(Eq. 16).

As in Paper II, Eq. (17) we End it convenient to
introduce the quantities $z;„, which are, quantum
mechanically

Thus we see that $x, and hence qx, oscillates har-
monically provided co satisfies the dispersion relation

4n-e2

m & (&u
—kk. K)'—h'E4/4m'

(A14)

where Pq' here denotes the sum over all occupied elec-
tronic states. This dispersion relation is, however,
identical with that we found in Sec. II Fq. (57). Thus
we see that the same results can be obtained by solving
for the operator equations of motion as can be ob-
tained by the canonical transformation method.

However, a word of caution should be injected at
this point. For if one naively diagonalizes the terms on
the right-hand side on (A12), assuming the electrons
occupy a Fermi distribution at T=O, one obtains addi-
tional "exchange" terms which apparently contribute
to order kn in the dispersion relation (A14). This in
turn introduces an apparent contradiction between the
results herein obtained and the dispersion relation (57).
The resolution of this contradiction lies in the fact that
the electrons in consequence of the Coulomb inter-
actions do not behave like a gas of free particles (as is
tacitly assumed in diagonalizing A12), but rather ex-
hibit long-range correlations in positions which act to
reduce the long-wavelength density Quctuations. This
reduction in the long-wavelength density fluctuations
has the result that no "exchange" contributions to the
dispersion relation appear up to order k4. Physically this
result follows from the fact that the long-range correla-
tions act to keep the particles far apart, so that they
have less chance to feel the eGects of the exclusion
principle. This result follows quite simply in our treat-
ment in the body of this paper where we take into
account the exclusion principle by antisymmetrizing
the individual electronic wave functions. However, it is
rather dificult to establish the equivalent result in the
above second-quantization formalism, so we do not
enter on this question farther here.
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px= i p (hh K/—21)ck K/2 Ck+K/—2,

d pz/dt = —p (hh K/2/2)'ck K/2*c~z/2 ~„'pz

(A16)

(K.K')
px px-x" (A17)

K'gx (E')2

If we neglect the nonlinear terms on the right-hand side
of the above equation, we see that pK still does not
quite oscillate harmonically. This is because of the
term —pk(hk K/2/2)'ck K/2 Ck+z/2, which is the quan-
tum-analog of the term P;(k. V;)2e 'k'*' appearing in
Paper II, Eq. (9). As in the classical treatment, this
term arises from the fact that we have a collection of
different electrons, each moving with a diferent ve-
locity and each therefore contributing differently to
pK. Hence, for the same reasons given in Paper II, it is
necessary to seek the function ttz )given in (A8)]
which oscillates harmonically in spite of the random
motions of the individual electrons.

However in the ore-dinsemsioeal case a considerable
simpli6cation is possible when the wave function is
approximately that associated with a Fermi distribu-
tion of electrons at absolute zero. For in this case,
either the operator cl K/2* or the operator C~K/2 will
be zero except in a small region of vridth E at the top
of the distribution. If E is small, then the term (E h)2
=E'k' can be approximated as E'ko', where ko is the
wave vector of an electron at the top of the distribution.
We then get

d'pz/dt'= —(h E'h /222'+kd )pz, (A18)

and we see that pK oscillates harmonically, which is the
result of Tomonaga.

In the three-dimensional case, such a simplification
is not possible. For the Fermi distribution is now spheri-

~ We here suppress the spin index, since this will play no role
in what follows.

APPENDIX II
Tomonaga~ has developed a very interesting one-

dimensional treatment of the degenerate gas of Fermi
particles in which the excitations are described in terms
of a Bose 6eld, and in vrhich he obtains plasma oscilla-
tions for the degenerate electron gas. His method,
hovrever, appears to be intrinsically restricted to this
one-dimensional case. It also involves the approxima-
tion that the wave function of the electron gas is not
very diferent from that of a collection of free electrons
with a Fermi distribution at absolute zero. In this
appendix we shall exhibit the relationship between
Tomonaga's methods and ours.

To do this let us 6rst find the equation of motion of
the operator pK. We find it convenient to make the
simple transformation'5

px=, gkCk Ck+K=pkck K/2 Ck+K/2. (A1~)

The equations of motion of pK may be obtained by
commuting it with the Hamiltonian (A7). We find

gx gz~+ gz l.

2L~2—(hh2E/2/2) 2) 1

gP Ck K/2 Ck+K/2++ Ck—K/2 Ck+K/2)
+rt: —rt;

1PK=PK +Pz
2[sP—(hhkE/222)2]

XQ Ck K/2 Ck+K/2++ Ck—K/2 Ck+K/2
+It —k

If we note from (A18) that k22 —(hh2E/2N)2=co~2, we
then obtain for the operators

Gk= gz ~PK= Q Ck K/2 Ck+K/2)

gk =gx+MPK=Q Ck K/2 Ck+K/2.

These are just the Eqs. (2.5) of Tomonaga.
Thus, in the one-dimensional case, vrith Tomonaga's

assumption of an approximate Fermi distribution of free
electron momenta, we obtain the same results as
Tomonaga.

cal, and the factor k K—h2E cos8, where 2t is the angle
between k and K for the electrons at the top of the
Fermi distribution. Thus the various terms CI, K/2

XC~K/2 can no longer be given a common factor, and
the simple result (A18) can no longer be obtained. The
reason for this change may be given a simple physical
interpretation. In a one-dimensional problem, the elec-
trons at the top of the Fermi distribution have only
one velocity, and therefore all electrons contribute
approximately in unison to pK. In the three-dimensional
case, each electron contributes di6'erently, so that the
function pK is altered in time, and a new function is
introduced which cannot be expressed as a simple
function of pK.

It should also be noted that our criterion for the
validity of the collective approximation is difterent
from that of Tomonaga. For vre require the smallness
of n=((k P,/cue)2)&„, while Tomonaga requires the
smallness of (AW/h~) where AW is the mean excitation
energy of the electron distribution over the ground
state Fermi energy.

Finally, we shall demonstrate explicitly the relation-
ship between Tomonaga's variables and ours. From
(A8), (A9), and (A10) we may write for our collective
variables in the one-dimensional case:

Crt:—K/2 Crt+K/2+@
2

|tz=P (A19)
(o2—(hhE/2/2)'

Z CIVIC K/2 C~K/2
p»= p (IthE/22/tk))(o„2. (A20)

k)(E) k ra2 —(12hK/2/2)2

Now Tomonaga breaks his sums over k into two parts,
corresponding to positive and negative values of k.
We shall do the same, noting that the only nonzero
contributions are in a small region of vridth E near the
top of the distribution. We get


