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(b) Ten percent of the F centers formed by x-raying
KBr at 300'K can be bleached by F light at 5' or
at 78'K. Over half of the bleached centers are rebuilt
in the dark after several hours. After the dark recovery,
one may bleach the Ii band again. If one shines Ii'
light on a bleached crystal, it recovers in a few seconds.
The changes in the Ii' absorption band were too small
to directly establish its presence.

(c) About 20 percent of the F centers can be
bleached in a crystal x-rayed at 78'K. There is a partial
recovery in the dark, the fraction recovered being less
than the previous case. After this crystal has been put
through the cycle of bleaching and dark recovery
several times, it behaves similarly to a crystal x-rayed
at 300'K.

It is to be stressed that no qualitative calculations on
tunneling have been made as yet. Some idea of the
order of magnitude of the distance the electron can
tunnel through would be very helpful in interpreting

. the above data. Photoconductivity measurements at
5'K would undoubtedly throw a great deal of light on

the mechanisms of bleaching. Nevertheless, the follow-
ing interpretation of the above data is offered: These
data indicate the tunneling from one imperfection to
another occurs if the distance is small. This tunneling
can cause significant and readily measurable eGects.
These experiments suggest that the color centers are
not distributed uniformly throughout the crystal
but have a relatively high concentration in certain
layers. The concentration of imperfections in these
layers depends on the temperature at which the crystal
is x-rayed. Higher concentrations are obtained at
lower temperatures. If the Nabarro-Seitz production
hypothesis is correct, the location of high concentrations
is determined by the distributions of dislocations.
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A new method is proposed for solving a periodic potential prob-
lem in which the potential can be approximated as a constant out-
side spheres surrounding the atoms, spherically symmetrical
within the spheres. We set up unperturbed functions consisting
of a plane wave outside the spheres, joined continuously and with
continuous derivative to functions derived from the spherical
problem within the spheres. These spherical solutions are linear
combinations of eigenfunctions of Schrodinger's equation within
the spheres, subject to the boundary conditions that the logarith-
mic derivative of the function of each l value at the surface equals
the logarithmic derivative of the corresponding Bessel function
in the expansion of the plane wave, thereby, insuring continuity
of the derivative of the wave function over the sphere if the func-
tion itself is continuous. The coeScients in the expansion within
the spheres are determined by demanding that the expectation

value of the energy of the wave function be stationary when the
coefficients are varied. The secular equation connected with this
variation problem can be solved exactly, leading to wave functions
having the general character of orthogonalized plane wavese, A
linear combination of such functions is then used to build up an
approximate solution of Schrodinger's equation. It is shown that
the tightly-bound states are handled. quite differently from the
conduction band, and that the treatment of the conduction band
can well resemble the free-electron approximation, thereby per-
haps explaining the empirical success of the free-electron approxi-
mation for the conduction electrons in metals. The method can be
extended to a case where the potential does not have the simple
behavior postulated, by treating the difference between the actual
potential and the postulated form as a perturbation.

1. GENERAL FORMULATION OF THE METHOD

HE solution of the wave-mechanical problem of
an electron moving in a three-dimensional peri-

odic potential of the type found in a crystal as treated
by a self-consistent field method is an important part
of the theory of solids. No existing approximate solu-

tion is completely satisfactory, and we present in this

paper a new method having certain advantages over
each of the existing approximations. The method is
directly applicable to a problem in which the potential
is spherically symmetrical within spheres surrounding

~ Assisted by the U. S. Once of Naval Research.

the various nuclei, and is constant in the region between
the spheres, which are assumed not to overlap, though
we sh-ll later show how to extend it to more general
potentials.

For such a potential, it has been generally assumed
that the wave function in the region between spheres
could be well approximated by a superposition of a
relatively small number of plane waves. On the other
hand, such a wave function behaves very badly in the
neighborhood of the atoms. Herring' has suggested the
method of orthogonalized plane waves, by which one
adds to each of these plane waves a set of atomic func-

' C. Herring, Phys. Rev. 57, 1169 (1940).
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tions corresponding to the tightly bound states of the
various atoms, with such coefFicients that the resulting
function is orthogonal to Bloch sums representing wave
functions of all the tightly bound states. Herring and
HilP have applied this method with success to beryllium,
Herring and Parmenter' to lithium, and Herman and
Callaway' to diamond and germanium. Relatively few
such orthogonalized or augmented plane vraves suttee
to give a.rather good approximate vrave function. The
method has drawbacks, however, as Herman found in
treating diamond. An energy band of 2p-like symmetry
in diamond has no lower, tightly-bound state to which
it must be orthogonalized, and as a result the method
merely uses ordinary plane waves to construct such a
wave function, with rather poor convergence. Herman'
has suggested that in such a case we could augment the
plane wave by adding something which would make it
behave more nearly like an atomic function near the
nucleus, even 'though this was not required for or-
thogonalization, but this has not been carried out in
an actual case.

The present method may be regarded as a straight-
forward procedure for augmenting a plane wave by
adding to it a contribution near each nucleus such as
to make the resulting wave function satisfy Schrod-
inger's equation as closely as possible. We set it up in a
slightly diGerent form, however: vre use for an un-
perturbed wave function a plane wave of given k value,
or propagation constant, in the region between the
atomic spheres, but join this smoothly onto a function
within each sphere which represents the best possible
solution of Schrodinger's equation. We call such a func-
tion an augmented plane wave. Then to get the 6nal
result, vre make a linear combination of a number of
such augmented plane waves, with different k values,
being led thereby to a secular equation as in the method
of Herring. Since we start vrith the best approximate
functions which we can set up, our method should con-
verge as rapidly as any such augmented plane wave
method ean.

Ke set up these augmented plane waves in the follow-

ing way. Outside an atom located at vector position
R;, the wave function is assumed to be ao exp(ik r).,
where ao is a constant. Let the atomic sphere have a
radius r,. Then the value of this wave function at points
on the surface of the sphere is

ao exp(ik. R;)P (1) (2l+1)i'Pg(cos8) jg(kr), (1)

where r, 8 are spherical coordinates with the origin at
the nucleus of the atom, and the'axis along the direc-
tion of the propagation vector k. We now wish to set

2 C. Herring and A. G. Hill, Phys. Rev. 58, 132 (1940).
3C. Herring, Phys. Rev. 55, 598 (1939); R. H. Parmenter,

Phys. Rev. 86, 552 (1952).
4 F. Herman, Phys. Rev. 88, 1210 (1952); F. Herman and J.

Callaway, Phys. Rev. 89, 518 (1953).
~.F. Herman, Ph.D. Thesis, Columbia University, 1953 (un-

published}.
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up a wave function within the sphere which joins con-
tinuously and with continuous derivative onto this
plane wave. This cannot be a solution of Schrodinger's
equation, for we knovr that a solution of Schrodinger's
equation within a spherical atom cannot in general be
joined smoothly onto a plane wave; scattering theory
shows that it can only be joined to a plane wave plus
scattered wavelets. We shall, however, try to make the
solution inside as good an approximation to a solution
of Schrodinger's equatio'n as we can.

As a 6rst step, we set up Schrodinger's equation
within the sphere, separate variables in the usual way,
and find that the radial function I associated with a
given l value satis6es the equation

+V;(r)+l(t+1)/r' (rm)=ErN, , (2)

where V;(r) is the potential within the sphere; we use
the Bohr radius as unit of length, the Rydberg as unit
of energy. We solve this SchrOdinger equation for all

energy values E, 6nding the solution regular at the
origin, and 6nd the logarithmic derivative (1/N)dl/dr
at the surface of the sphere, or at r=r;, as a function
of E.We pick out those particular values of E for which
this logarithmic derivative equals the logarithmic de-
rivative of j&(kr) at r=r;. The 'corresponding wave
functions form a complete orthogonal set within the
sphere. To prove the orthogonality, we set up Eq. (2)
6rst for one eigenvalue and eigenfunction E~ and u~,
then for another E2 and I&, and proceed by the usual
method for showing orthogonality. We 6nd

/FAN

(El El) r N1N2«= r,'Ni (r;)N2(r;)

&([(1/N&)du&/« —(1/e2)dN2/«] I;, (3)

where the expression on the right is to be computed
when r=r;. Since the two logarithmic derivatives are
equal, each being equal to the logarithmic derivative
of j&(kr), the orthogonality is proved. We normalize
each of the wave functions N(r)Pq(coso) over the sphere
Each of the wave functions and energy values should
really carry three indices: one (i) to indicate which
atom we are dealing with, a second (e) to indicate
which of the eigenvalues vre are dealing with, number-
ing up from the lowest energy, and finally the l value.
Thus v e shall call them I;„r,E;„~.

Now we build up within the sphere a linear combina-
tion of these wave functions, of the form

P(n, l)a;„~;„,(r)P, (cose).

We choose the u's to obtain continuity with the plane
wave outside. That is,

Q(n) a;„pc;„&(r,) = uo exp(ik R;) (2t+1)i j&(kr;), (5)

for each / value. Since each of the I;„~'shas the same
logarithmic derivative as j~(kr), this means that if we
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make the wave function. continuous, we shall also auto-
matically make its derivative continuous. We must
now determine the a' s. We do this as follows. We set up
the expectation value of the energy of our augmented
plane wave, consisting of the function (4) within the
~th sphere, and the plane wave outside the spheres.
This expectation value is

E=P(ill) a;„&*a;„tE;„r+ap*upEpQ, (6)

where Eo is the kinetic energy of a plane wave of pro-
pagation vector 0, and 0 is the volume of the space
outside the spheres. We may carry our integrations
over unit cell, in which ease 0 is the volume of unit
cell outside the spheres, and the summation over i goes
over all atoms in the unit cell; but we may equally well
use the whole crystal. We wish to have the wave func-
tion normalized over the same volume, and this leads
to the condition

1=+(' i);„*;„+,* oQ. (7)

Now we demand that the a's be chosen so that the ex-
pectation value E of the energy is stationary with re-
spect to variation of these parameters, consistent with
always maintaining a normalized wave function, and
always satisfying the condition (5) of continuity.

This variation problem can be handled by the method
of undetermined multipliers; and by a great piece of
good fortune, as shown in the Appendix, the solution
of the resulting secular problem can be carried out ex-
plicitly. We 6nd in the Grst place that the eigenvalues
8 are given by the equation
—Q-' P(il) (21+1)'gP(kr;)(Ep —E)-'

X{Z(~)LN'-P(r;)/(E'. —E)j}-'-1. (8)

This equation can be handled by computing the func-
tion of E appearing on the left side of the equation, and
6nding the values of E for which it equals 1. We can
show that there is an eigenvalue closely equal to each
of the tightly bound energy levels of each of the atoms,
and also an infinite number of higher eigenvalues; in
fact, we can set up a one-to-one correspondence be-

'
tween the eigenvalues and the E;„~'s,one eigenvalue
being found between each pair of E;„~'s.

Having found the E's from Eq. (8), we can next
determine the a' s. We find

+i~t=+p exp(ik R;) (23+1)ij~(kr;)I;„~(r;)(E;„~—E)
X{K(~')LN*- P(r')/(E'- i—E)3 '. (9)

This equation determines the relation between the co-
efBcients of the spherical functions and the coeKcient
ap of the plane wave. In Eq. (9) of course we are to
insert one of the E values determined from Kq. (8).
To find ao, we use the normalization relation, which
leads to

gp~apQ{Q-' P (il) (2l+1)'jP(kr;) P (e)
XLN;.p(r,)/(E;.~-E) j
XLQ(N') I;.p(r;)/(E';i —E)j '+1}=1 (10)

We thus have completely determined our augmented
plane waves. For tightly bound states, these functions
are much like Bloch waves. We find an eigenvalue close
to each of the tightly bound atomic levels of each of the
atoms, as we have stated. , and in such a case the wave
function within the atoms of the, t type is approximately
the corresponding atomic function, joined on to a plane
wave. of very small amplitude outside, and with very
small contributions in the other types of atoms which
do not have this eigenvalue. For the higher-energy
values, however, such as we 6nd in the valence and con-
duction bands, the eigenvalue 8 will no longer approach
an atomic value, and the wave function will be of sig-
nificant size in all the types of atoms, and in the region
between.

The various wave functions for a given k value, being
solutions of a secular problem, are orthogonal to each
other, and have no nondiagonal matrix components of
energy between them. These facts, which we expect
from general principles, are explicitly proved in the
Appendix. They thus form in a very real sense orthogo-
nalized plane waves, but the wave functions of the
tightly bound states are set up by the same method
used for the higher energy levels, and we have a sys-
tematic procedure for ending all such functions. On
the other hand, the wave functions for different k
values are not orthogonal to each other, and will have
nondiagonal matrix components of energy between
them. The required nondiagonal matrix components
of energy, and of unity, are easily computed, and are
needed in setting up the secular problem involved in
making a linear combination of a number of augmented
plane waves.

These matrix components come from two contribu-
tions: integration over the spheres, and integration
over the volumes outside the spheres. Within the ith
sphere, the Hamiltonian operating on the wave func-
tion will give Q(el) a;„~E;„~;„~P~(cos8).We must now
multiply this by another wave function, and integrate
over the sphere. We integrate 6rst over the spherical
harmonics, getting nothing unless both terms are con-
nected with the same / value; we note that the axes of
the spherical harmonics will be diferent for the two
functions. We are then left with the integral over the
sphere of a I;„~connected with one k value, and a I;„q
connected with another k value. These two functions
have diGerent logarithmic derivatives at r;, and the
integral of their product does not vanish; but by Eq.

, (3), we can reduce the integral to quantities on the
surface of the sphere which are already known. For the
integrations over the regions outside the spheres, we
must merely integrate Zo times the product of two
plane waves, which itself is a plane wave. The integral
of this product over a whole unit cell is zero. Thus the
integral over the region outside the spheres is the nega-
tive of the integral over the interiors of the spheres.
Within each sphere, the plane wave can be expanded in
spherical harmonics of angle times spherical Bessel
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functions; these can be integrated explicitly, so that
we have the complete answer.

We thus see that the matrix components of energy
are easily determined between two augmented plane
waves of different k's. The integral of the product of
the wave functions is equally simple, found merely by
omitting the E;„~'s.We then set up a secular equation
between the augmented plane waves which we wish to
combine, and solve it in the standard way. We can
handle the non-orthogonality of wave functions of
different k's either by orthogonalizing them initially,
or by carrying the overlap integrals in the secular equa-
tion. As in the orthogonalized plane wave method, if
we are dealing with a symmetry point in the Brillouin
zone, the coeScients of a number of orthogonalized
plane waves will automatically be equal, so that the
order of the required secular equation may be much
less than the number of waves which we are superposing.

2. DISCUSSION AND CONCLUSIONS

For each k value, we have found an infinite number
of augmented plane waves, corresponding to the various
eigenvalues E. These eigenvalues depend on the magni-
tude of k, but not on the direction, and will be con-
tinuous functions of j k ~

.They depend on the number of
atoms of each type in the volume, but not on their
arrangement. All directional eGects, and all eGects of
crystal structure, appear in the process of combining
a number of augmented plane waves to get our 6nal
wave function. In this respect our method resembles the
free-electron method, as well as Herring's orthogonalized
plane wave method.

There is a feature which is present in our method,
however, which is difFerent from the other methods so
far proposed: there is a great redundancy of wave func-
tions, and we must use our judgment in deciding which
ones to use. We can understand this redundancy from a
simple case, the tight-binding wave function made up
from the Is atomic orbital on one of the atoms. One of
the eigenvalues E will lie close to the atomic energy of
this state, and the wave functions will be almost like
Bloch combinations of the is atomic orbitals, but joined
onto plane waves of very small amplitudes between the
atoms. Now let us consider two k values, one differing
from the other by one of the vectors of the reciprocal
lattice. The plane wave of either of these k values will
have the same phase at each of -the atoms, so that the
corresponding Bloch sums will be almost precisely the
same, and the wave functions corresponding to these
two k's will be practically identical within the atoms,
where they are large, but will be quite diGerent between
the atoms, where they are small, being plane waves of
different propagation constants. The integral of the
product of the wave functions will mostly come from
the interiors of the spheres, and will be practically
unity, instead of zero as it would be if they were
orthogonal. Clearly in our expansion we do not wish to

use both of these wave functions. In fact, by analogy
with the tight binding approximation, we know that we
can get all the 1s-like wave functions which we need by
taking just those values of k in the central Brillouin
zone.

We might think that we could get all the wave func-
tions we needed for any case if for each of the eigen-
values of E we chose only those k's in the central
Brillouin zone; this would be closely analogous to the
tight-binding approximation. Yet it clearly is not sufFi-

cient, for in this case we should have no secular problem,
and the wave function between the atoms would be
represented only by a single plane wave with a k vector
in the central Brillouin zone. For the tightly bound
states, for which the wave function is small between
the atoms anyway, this is not a bad approximation,
though we find that for p-like states we must have
propagation vectors in three central Brillouin zones,
for d-like states in Qve zones, and so on, to get the
necessary number of functions. For valence and con-
duction bands, however, the wave function between
the atoms is important, and we must certainly super-
pose waves with a number of k values to get a good
approximation. The question remains whether these
waves should all correspond to the same eigenvalue of
E (that is, to the eigenvalues which join smoothly onto
each other as k changes), or to different eigenvalues.
It seems clear, from our information about wave func-
tions from other sources, that in some cases we wish to
use waves with k's in many Brillouin zones, but all
corresponding to the same eigenvalue.

The most straightforward case of this would be
sodium. There we know, mainly from the cellular
method, that for energies in the conduction band, the
wave function is well approximated by a single plane
wave between the atoms, joining onto solutions of a
spherical problem within the atoms. This means that a
single augmented plane wave, with a k value which can
range through many Brillouin zones, may well be a
very good approximation to a solution, for this par-
ticular case. This would imply that we were working
with a single eigenfunction, which would reduce for
k=0 essentially to a combination of 3s-like orbitals
obeying the Wigner-Seitz boundary condition of zero
slope at the boundary, in each unit cell. As k increases,
we see from Eq. (9) that we shall also have contribu-
tions from p-like, then d-like, orbitals, and so on, coming
in with gradually increasing coefficients (on account of

, the way in which j&(kr~) increases with k, more slowly
with high 1 values). We might well expect in this case
that the energy of this state would be approximately
proportional to k', as with a free-electron wave function,
and that the wave functions corresponding to k's in
diGerent Brillouin zones might approach orthogonality,
instead of being almost identical as with the bound
states. If we found this type of behavior, as seems
plausible, we might get a very good approximation by
taking linear combinations of such augmented plane
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waves. We should find very small nondiagonal matrix
components of energy, since the unperturbed functions
were so nearly solutions as they stood. Two wave func-
tions connected with k's in di6'erent unit cells in k
space will be degenerate if their k's satisfy the Bragg
condition, so that along the planes where the Bragg
condition is satisfied we shall have to introduce linear
combinations of these plane waves. We shall have, in
other words, an almost complete analogy to a free-
'electron calculation, and this may well prove to be the
justification of the well-known fact that free-electron
methods for the. conduction electrons work much better
than we should expect from any of the approximate
methods usually in use.

We see, then, that we may have two quite diferent
ways of choosing unperturbed wave functions, out of
the great superAuity of functions which our method
yields. For tightly bound states, we choose functions
whose eigenvalues are close to the energies of the atomic
states, and with k's in the central Brillouin zone for s
states, the central three zones for p states, and so on
(it will be interesting to make a detailed study of the
symmetry relations arising from these tightly bound p
and d states, at some future time). For the conduction
band, however, we are much more likely to want to
choose functions all corresponding to the same eigen-
value, but to k s in different Brillouin zones. This corre-
sponds to the way we have been in the habit of handling
such problems, treating the tightly bound states sepa-
rately by the Bloch method, and the conduction band
as if by the free-electron method, but disregarding the
fact that these electrons are in fact far from free. The
justification seems to come only from such an aug-
mented plane wave method as described here.

We now note that there can be cases that are ambigu-
ous, and presumably the first one of these which will

appear in the periodic table comes with the iron group,
where the 3d electrons are being incorporated -into the
interior of the atom. For potassium, calcium, and the
elements following immediately after, the atomic 3d
energy level lies above the 4s. We may presume that in
these cases we wish to use a single eigenvalue, which
reduces to something like the 4s atomic level for k=0,
and to follow continuously along to higher k values,
using wave functions in many Bri11ouin zones. On the
other hand, when we have gone through iron, cobalt,
and nickel, to copper and zinc, the 3d level in the atom
has become rather tightly bound. In this case pre-
sumably we wish to treat the appropriate wave func-
tions in central Brillo'uin zones (we remember that we
must use five such zones), and to start again with a
higher eigenvalue and a continuous set'of k values, to
represent the conduction band of the elements starting
with copper. The change in the method of treatment
which will arise in this way would be a very interesting
thing to study, and may well explain many of the para-
doxes associated with the energy bands of the transition
elements, and the question as to which electrons are to

be treated as free electrons, which as bound or atomic
electrons.

We may note two generalizations of the method which
follow easily. In the first place, we have noted that the
setting up of the augmented plane waves does not de-
mand a regular crystalline arrangement of the atoms.
Thus we have an equally valid starting point for a
treatment of perturbed or irregular lattices. Secondly,
the potential function in a real crystal does not have
the properties postulated here, of being spherically
symmetrical within each atomic sphere, and constant
outside. If we wish to take account of the deviations
of the real potential function from such a behavior, we
may first set up as good an approximation to the real
potential as possible which has the behavior we have
postulated, and set up the wave functions using this
potential. When we come to compute the diagonal. and
nondiagonal matrix components of energy, however,
and to solve the secular problem, we may include the
deviations of the real potential from this simpli6ed
value as perturbations, computing their contributions
to the matrix components of energy numerically, if no
analytic method is available. This possibility of taking
into account deviations from this simplified potential is
found in the orthogonalized plane wave method, but
not in the cellular method, and it results in considerable
shortcomings in the applications of the latter method.

We may observe in closing that our method is really
a form of cellular method in which we have trans-
ferred the problem of satisfying boundary conditions
from the surfaces of the polyhedral cel1.s, to the sur-
faces of the inscribed spheres; we may regard the
regions where we expand the wave functio'ns in plane
waves as matching regions, extending the wave func-
tions smoothly from one spherical cell to another. The
writer' attempted in 1937 to avoid the djLIIiculties of the
cellular method. by a method somewhat like the present
one. That suggestion, however, suGered from mathe-
matical complications so severe that it has never proved
useful. It is hoped that these mathematical dHBculties
have been overcome by the present method, suKciently
so that it may be better adapted for application to real
crystals than the hitherto available methods.

To find the required wave functions, we wish to vary
the u;„&'sand as so as to make the energy in Eq. (6)
stationary, while maintaining the conditions (5) and
(7). To do this by the method of undetermined multi-
pliers, we may add the derivative of Eq. (6) with re-
spect to one of the a;„~*'s (formally treating this as
independent of. the corresponding u;„~),plus appropriate
constants times the derivative of Eq. (7), and of the
conjugates of each of Eqs. (5), with respect to the same

quantity, and set this equal to zero; we do the same for

s J. C. Sister, phys. Rev. 51, 846 {1937).
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derivatives with respect to uo~. 7Ve thus have

a;„,(E;„,E)—X;—ioi;„,(r;) =0,

aoQ(Eo —E)+Z(il) &;,

Xexp( —ik R;)(2l+1)(—i)'ji(kr;) =0. (12)

Here we have chosen the undetermined multiplier for
Kq. (6) to be E[w—e shall shortly prove that this E
is the same as the expectation value appearing in Eq.
(6)), and that connected with Kq. (5) .for a particular i
and l to be —X;2. We can now solve Kqs. (11) and (12)
very simply. We have at once

a;„i=)„rii;„i(r;)/(E;„i—E), (13)

aoQ= —P(il) X,i exp{—ik Ri)
X (2l+1)(—' i)'ji(&r~)/(Eo —E) (14)

We must next determine the multipliers );~ and E.
First we eliminate the );&'s, and get an equation for E.
We substitute Kqs. (13) and (14) in Kq. (5), obtaining

7; 2( ) L '.&(;)/(E'. -E))
= —Q ' exp(ik R;)(21+1)i'j&(kr;)
Xg(i'l') X; i exp( —ik R;)(2l'+1)(—i)'

xg (&.;)/{E —E). (»)
We multiply both sides by

fZ(22) LN' P(r')/(E'. i—E))) '

exp( —ik R;) (2l+1)(—i)'j&(kr;),

and add terms for all i and l values. %e then can cancel
terms from both sides of the equation, and are led at
once to Kq. (8). Now that E has been determined, we
see at once from Kq. (15) that

X;&=b exp(ik R;)(21+1)i'j&(kr;)
X{+(~)[~;.P(r,)/(E;„,—E)))-', (16)

where b is a constant. By substituting Kq. (16) in
Kq. (12), and using Kq. (8), we find at once that b=ao.
Thus we are led to Kq. (9). Substitution in Kq. (7)
leads at once to Kq. (10).

%e can now prove the three theorems we desire
about our wave functions:-the quantity introduced as
an undetermined multiplier E is the same as the ex-
pectation value of energy defined in Kq. (6); and the
functions are orthogonal, and have no nondiagonal
matrix components of energy between them. To prove
the first, we start with Kq. (15), multiply by X;io, and

p (222l) ain»~ain!2+aol a02Q (20)

which is the expression of the fact that the two wave
functions are orthogonal to each other. Next let A —8
= 1, AEg+BE2 0. Then— ——

Q (&21) a;„»*a;„22E;„i+a02*a02QE0=0, (21)

showing that the nondiagonal matrix component of
energy between the two states is zero.

sum over i and l. We have

p (ill) X;, x;,2i;„p(r;)/(E;„&—E)
—Q-'[P (il) X;&* exp(ik R.i) (2l+1)i'j&(kr;))

X[+(iV) X; i exp( —ik R;)(2l'+1)(—i)'
xg (&.; )/(Eo —E)). (»)

We multiply and divide each term on the left by
E;„&—E, and multiply and divide on the right by Eo—E.
We may then rewrite the result, using Kqs. (11) and
(12), as

g(i22l) a;„r*a;„i(E;i—E)+ao*aoQ(Eo—E)=0

from which it follows at once, from Eqs. (6) and (7),
that E is the expectation value of the energy.

To prove the other theorems-, we must use two energy
values, E~ and E2, with corresponding coeKcients ),~~,

X;i2, aors, ao2, etc. We then set up Kq. (15) for the state
2, multiply it by );&&*, and by a coe@cient A, and sum
over i and l; we also set up Kq. (15) for the state 1,
take its conjugate, multiply by X;&2, and by a coeKcient
8, and sum over i and l; and subtract this from the
6rst equation. The result of this is

Q (iril) );)(*X;i22i;„p(r;)[A/(E;„i—E2)—B/(E;„,—E„))
= —Q '[P(il) X;»*exp(ik R;)(21+1)i'j&(kr,))
X[+(i'l') X; 2 2 exp( ik R—;)(2l'+1)(—i)'
xj (&.;))A/(E, —E,)+Q-'[p( i) l;
Xexp( —ik Ri)(2l+1)(—i)'ji(kr;))[P(i'l') Xi i g

Xexp(ik R; )(2l'+1)i'ji (kr,'))B/(Eo —Ey). (18)

We reduce the fractions on the left to a common de-
nominator, use Kqs. (13) and (14), and have

Q(i22l) a; » a, )2[(A B)E;„i+(—AEg+BE2))—
+aoi*a02Q[(A —B)Eo+(—AE&+BE2))=0. (19)

The two constants A and J3 are at our disposal. First
let us chose them so that A —B=O, AE~+BE2=1.—
Then we have


