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Annealing of Bombardment Damage in a Diamond-Type Lattice: Theoretical
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The annealing of isolated interstitial-vacancy pairs presumably introduced by bombardment is con-
sidered theoretically with special attention paid to the diamond-type lattice. It is proposed that the annealing
can be divided into three stages. First, those vacancy-interstitial pairs having a small initial separation
will recombine under the influence of short-range elastic forces. Second, vacancies located initially farther
from their companion interstitials will wander according to a random walk process, some of them wandering
back within the range of the elastic forces and recombining but some escaping from the vicinity of their
interstitials. Finally, vacancies which have escaped in the second stage will continue to wander until captured
on surfaces or dislocations or by interstitials other than their own. Approximate analytic expressions are
derived for these various stages. An outline is given of a more complete treatment with a quantitative
solution for one particular phase of the annealing in the diamond-type lattice.

where vo is interpreted as the average lattice frequency
(ca 10" cps), T is the absolute temperature, and k is
Boltzmann's constant. When an adjacent atom jumps
into the vacancy, the vacancy moves to the former
position of the jumping atom. Hence the vacancy can
be said to jump with an average jump time v given
bX (».

If the vacancy is close to an interstitial atom, the
energy barrier and hence the jump time will be altered.

I. INTRODUCTION

~

~

HEN crystals are bombarded with high-energy
particles (neutrons, deuterons, alpha particles,

electrons, etc.) the mechanical and electrical properties
have been found to change. ' Heating tends to restore
the original properties of the crystal. These irradiation
eGects are believed to be caused by displacement of
atoms from their normal lattice sites into interstitial
positions. After bombardment the interstitial atoms
tend to return to their original positions in the lattice,
particularly if the crystal is heated.

In this paper we consider the annealing mechanism of
the simplest type of irradiation damage. It is believed
that many of the essential details of more complicated
types of damage will be exhibited by this simple type.
The case which we will consider is that of a single
interstitial atom associated with each vacancy. In the
case of heavy particle bombardment, clumps of such
interstitial-vacancy pairs will undoubtedly be present,
but the simplest case may actually be realizable in
bombardment with electrons with energies near to the
threshold for interstitial-vacancy production.

We have also given special attention to a particular
crystal structure, the diamond-type lattice, so that
annealing of germanium, silicon, and diamond can be
analyzed directly. The same general procedures can be
applied to other crystal structures.

IL DIFFUSION OF VACANCIES

We shall begin by assuming that the interstitial re-
mains 6xed and examine the behavior of a vacancy. In
order for the vacancy to be stable each of its neighboring
atoms must 6nd itself in a potential energy trough
Each must therefore overcome a potential barrier E
order to jump into the vacancy. The average time
required for one of them to make such a jump unde
thermal excitation is given by'

p -1~EIkT (1
'For a review of the literature, see G. J. Dienes, "Radiatio

Effects in Solids, " Annual I'evils of Nuclear Science (Annua
Reviews, Inc. , Stanford, 1952), Vol. II.

2 N. F. Mott and R. %. Gurney, Electronic Processes in Ion
Crystals (Oxford University Press, London, 1940).
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Fxo. 1. EGect of elastic deformation around an interstitial on
the nearest neighbor atoms of a vacancy. The distortion due to
the vacancy has been neglected. Notice how the atom between
the interstitial and the vacancy has been pushed toward the
vacancy,

One reason for this is that the lattice is deformed by the
interstitial. 'The atoms around the interstitial are forced
away from the interstitial. This causes the lattice to be
compressed in a direction radially outward from the
interstitial and to be expanded in directions perpen-

) dicular to the radial direction. This e8ect is shown
schematically in I'ig. j. for a two-dimensional simple
cubic lattice. If a vacancy is located in this deformed
region, its neighboring atoms which are located along
the radial line from the interstitial are pushed toward
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the vacancy, while those perpendicular to this line are
pushed away. This lowers the potential barrier E for
radial jumps and increases it for lateral jumps. Since
the atoms closest to the interstitial are affected most,
the jumps toward the interstitial have the lowest
barrier. Thus a vacancy within a distorted lattice
around the interstitial has a preference for jumping
towards the interstitial and an average jump time which
decreases the closer it is to the interstitial.

If we assume the vacancy to be Axed and the inter-
stitial atom to move, in the undistorted lattice the
average jump time is given by (1), where the barrier
energy E is now interpreted as the energy required by
an interstitial to squeeze between neighboring atoms to
an adjacent interstitial site. Within the region distorted

by the vacancy, however, the situation is more compli-
cated than before. The germanium lattice surrounding
the vacancy moves towards the vacancy, the radial
distance between atoms increasing and the tangential
distance decreasing. Thus interstitial jumps along the
line to the vacancy are more diKcult. Motion toward or
away from the vacancy will therefore be accomplished

by diagonal jumps. This possibility has not been fully

explored, although we do not believe it will change our
general conclusions significantly. %e shall consider here
only the vacancies as moving.

IIL STAGES OF ANNEALING

For those vacancies located within the deformed
lattice around the interstitial, the vacancy jumps
mainly towards the interstitial with jump times which
become progressively smaller as the vacancy approaches
the. interstitial. Thus, the time required for recombina-
tion of these vacancies is approximately the time in

which the vacancy jumps from its initial position.
For those vacancies which are located outside this

deformed region, the probability of jumping in any
direction is the same. Thus these vacancies wander
according to a random-walk process, some wandering
back within the deformed region where they are subse-

quently captured, and the rest wandering off through
the crystal. The vacancies which wander off are
"liberated" from their original interstitials. These will

eventually be captured on dislocations or on the surface
or may recombine with other interstitials.

These different processes correspond to different

stages of the annealing, since they occur at different

times. First to recombine will be those vacancies initially

located within the deformed lattice surrounding the
interstitial, since the time of recombination is less than
the average jump time in the undistorted lattice. Second
to recombine will be those which are initially located
outside of the deformed lattice around the original

interstitial, but which wander back after a small

number of jumps of time v and are captured at their
original interstitials. Finally, because they must wander

throughout the crystal, those vacancies which were

liberated from their original interstitials will recombine
or be captured after a large number of jump times 7-.

BP D B BP
r2 0l

r2 By Br
(4)

where D is the diffusion constant. This equation can be
solved under the boundary conditions that P must
vanish at infinity and also at r =r„where r, is the radius
of the deformed region around the interstitial 3

r—r;2

4Dt

(r+r —2r,)'

The integration of this expression over the volume gives

3 H. S. Cars)am and J. C. Jaeger, Condlction of Heuf in Sol@'s
C,
'Oxford University Press, London, 1947).

IV. APPROXIMATE TIME DEPENDENCE OF
ANNEALING

We shall consider the functional dependence on time
of these various stages of annealing. Let us designate N
as the number of unrecombined vacancy-interstitial
pairs per unit volume and number the vacancy sites in
order of their distance from the interstitial. Let X; be
the number of vacancies which were originally in the ith
site. The expression for the annealing will be obtained
from the expression for a particular initial site i, mul-

tiplied by lV;, and summed over all the sites.
For a vacancy initially within the distorted region

around the interstitial, the rate of recombination of
vacancies in site i will be approximately proportional
to the number of unrecombined pairs:

dN/dt = lV//r;, —

where r; is the average jump time from the site i
towards the interstitial. This leads to an exponential
dependence on time characteristic of a monomolecular
law of recombination. We shall designate by subscript
M this 6rst stage of the annealing, which is thus
'given by

N~=+yN, t, ""
where Pq indicates summation over all of the sites
within the region distorted by the interstitial.

A vacancy located initially outside this distorted
region will be governed by a random-walk process. As a
first approximation, we shall treat this as diffusion in an
isotropic medium. Let P(r, , r, t) be the probability per
unit volume of finding a vacancy at a distance r from
the interstitial at a time t after it was initially located
at r;. There is spherical symmetry around the inter-
stitial so that the differential equation governing the
diffusion can be written
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the total probability of 6nding a vacancy unrecombined.
The integrated expression contains two parts: one which
vanishes with time and the other which does not. The
vanishing part corresponds to the vacancies which re-
combine during this second stage and the constant part
corresponds to the vacancies which are liberated,
eventually to recombine in the 6nal stage. By multi-
plying the time-dependent part by the initial number
of vacancies in site i and summing over all the sites,
we obtain the expression for the second stage of the
annealing, indicated by a subscript L for liberation:

c r r
(6)

Here gp indicates summation over all of the sites out-
side r, and erf refers to the error function. The diffusion
constant is related to the jump time by the expression'

D= (f')/2«, (7)

where b is the magnitude of the change in the radius r
during a single jump, and the brackets indicate the
average over all possible jumps. Equation (6) can be
rewritten in terms of (7) to give

For the diamond-type lattice it is not difficult to show
that (b') =a'/16, where a is the cube edge of the unit cell.

The time dependence of the final stage of the anneal-
ing will depend on whether capture occurs at disloca-
tions or on the surface or whether the liberated atom
recombines with other interstitials besides the one with
which it was originally associated. We shall present
expressions for all three. Let us introduce Nr (Ii for
6nal) for the number of vacancies which are still free
during the 6nal stage of the annealing. The initial
number of such vacancies Xpp is found from the con-
stant part of the integration of Eq. (5). By multiplying
this by X; and summing, we 6nd

We shall assume that these are initially distributed uni-
formly through the volume of the crystal.

If these vacancies are captured on the surface, we
must solve the transient diffusion equation. ' For a
rectangular parallelepiped of dimensions of u, e, m, this
leads to

g
—imps&

N«=Nap (10)
pr' i=o ~ ~=o (2t+1)'(2m+1)'(2m+1)'

where
(2t+1)' (2««t+1)' (2m+1)'

ng „x'D + —— + (11)
Q Q2 K

'M, C. Wang an& C. E, Uhlenbeck, Revs. Modern Phys, 17,
33' (i945),

A fair approximation to (10) is obtained by taking
only the 6rst term of the summation, so that if M(&N, v,

(10) can be rewritten

Sp=Epp exp—
m'(b') (t q

2~' Erj

1 gP

Qp 2

2—y+1n
nprg

(13a)

Here y is Euler's constant=0. 577. With this approxi-
mation and the use of (7), Eq. (12) can be written

Nr ='Nr p exp) —snop(b') (t/r) j. (12a)

If the 6nal stage consists of a direct recombination of
vacancies with interstitials, we shall obtain a second-
order or bimolecular process. This can be seen by the
following consideration: The number of vacancies
which recombine in a jump time will be equal to the
number of vacancies multiplied by the fraction of
lattice sites available to the vacancy from which recom-
bination is practically certain. This fraction is equal to
the density of interstitials E& divided by the total
density of lattice sites E,&, and multiplied by the
number of sites within the deformed region surrounding
each interstitial which can be reached in a single jump
from a site outside the deformed region. On the average

where expression (7) for the diffusion constant has been
used. The approximate expression (10a) is correct at
(=0, but becomes 20 percent too high at long times.

For capture at dislocations we shall solve the same
equation with the requirement that the vacancy density
vanish at a distance r~ from each dislocation. Inside r~

we assume that the lattice is distorted in such a way
that capture is certain to follow. By symmetry the Row
of vacancies vanishes midway between adjacent dis-
locations. We shall simplify this problem by assuming
that cylindrical symmetry exists around each disloca-
tion. The boundary conditions are then (a) the vacancy
density vanishes at «=re, and (b) the vacancy flow
vanishes at r=Rd, where 2R& is approximately the
average distance between dislocations. With these
simplifying assumptions, the- annealing is given by'

1 JP (n„Rd) exp( —Dn„ot)
N p ——4N«oQ, (12)

(n„Rg)' gp'(n„rg) —JP(n„Rg)

where the J's and I"s are the Bessel and Neuman
functions, respectively, and the 0.„'s are the roots of

Jo(n.r.)r, (n„R.) J,(n.R.) I-ro(n.r.) =0. (13)

An approximate expression can be obtained for (12)
if we take only the 6rst term of the summation and
assume R~&&r~. For this case, the smallest solution of
(13) is obtained when nord(&noR&&(1, so that we may
expand the Bessel Functions around their arguments
and obtain for the smallest root of (13):
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the number of such sites will be equal to 4s r,2(b)N, t, ,
where r, is the same capture radius previously intro-
duced and (b), is the magnitude of the change in the
separation of interstitial and vacancy during one jump
averaged over all possible jumps. Thus the rate of
change of vacancies with time is

(14)

giving a diGerential equation which is easily integrable:

&so
/

1+&~,'g»iV zo(t/~)

For a diamond-type lattice the indicated. average can
be performed to give (b) = (u3'/16)a.

The total number of vacancies present after an
annealing time t is given by the summation

(16)

It should be noted that the annealing time t in all the
above expressions only appears in the ratio t/r. By
comparing the times at which the same degree of
annealing occurs for di8erent temperatures, the barrier
energy can be determined without an actual 6t of the
theoretical expressions to experimental data. The barrier
energy, so determined, will be constant in the stages of
the annealing governed by EI.and Ãy but will decrease
with decreasing time (or temperature) in the stage
governed by E~.

Ipi b;;' b;,.= —P; Q —+g —P;.
Tji ' 7ij

(17)

This actually represents an in6nite set of linear homo-
geneous diGerential equations for which the solution is

V. ANNEALING IN A DISCRETE LATTICE

In the last section we developed expressions for the
time dependence of the annealing by approximating the
discrete lattice outside the capture radius r, with a
continuum in which diGusion takes place, and by
idealizing the discrete lattice inside the capture radius
by permitting vacancy jumps only toward the inter-
stitial. In this section we shall present a set of diGer-
ential equations which describe the annealing without
using the above approximations.

To begin with, lattice symmetry enables us to reduce
the number of sites which we must consider. Vacancies
in sites which have the same symmetry with respect to
the interstitial have exactly the same probability of
escaping or recombining with the interstitial. Let us
introduce P; as the probability of finding the vacancy
in any of these identical sites.

We next need to consider those sites of diGerent
symmetry which are adjacent to the ith site. Let us
introduce b;; for the number of j sites adjacent to the
ith site. Also let 1/r;; be the probability per unit time
that a vacancy located in the ith site will jump to a
particular one of the adjacent j sites. The total prob-
ability of a vacancy jumping from the ith site is thus
P;b„/r;; This l.eads us to the differential equation
governing the rate of change of P; with time,

POSITIVE OCTANT

P;=P„A„%;„e»',
where y„are the eigenvalues of the matrix

(18)

(19)

in which b;; is the Kronecker delta, 4;„are the eigen-
vectors of the matrix (19), and A„are constants deter-
mined from the initial distribution of P;. Equation (18)
thus represents the general solution for the first two
stages of the annealing, providing the b;; and r;; are
known, and the initial values of P; are given.

NEGATIVE OCTANT

Fxo. 2. The diamond lattice surrounding an interstitial site
place at the origin. Only the details of the two essentially different
octants are shown. All the octants with the same label (+ or -)
have identical symmetry with respect to the interstitial. Numbers
indicate site numbers (i) arranged in an increasing sequence with
their distance from the interstitial.

VI. ANNEALING IN THE DIAMOND-TYPE LATTICE

To illustrate how this method works we have ob-
tained the b;; for a diamond-type lattice and solved the
equations for the special case where v;; is constant inde-
pendent of i, j.This corresponds to the liberation stage
of the annealing.

In the diamond-type lattice there exist "natural"
interstitial sites such that an atom located in such a
site is the same distance from its four nearest neighbors
as the separation between nearest neighbors in the
normal lattice sites. If we place the interstitial at the
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origin of the coordinate system and place one of its
nearest neighboring interstitial sites at the (111) posi-
tion (measured in units of one-fourth the cube edge of
the unit cell), this will locate the germanium atoms or
vacancy sites. Thus the four neighboring v'acancy sites
will be (111), (111), (111), and (111).The next six
nearest neighbors will be (200), (020), (002), (200),
(020), and (002). All other sites can be obtained from
these first two by adding or subtracting integral mul-
tiples of the fundamental translation vectors (022),
(202), and (220). All sites in the nearest position to the
interstitial and all progeny of these sites obtained by
translation have neighboring vacancy sites in the same
directions, namely (111), (111), (111), and (111).
Similarly all sites in the next nearest position to the
interstitial and their progeny will have their neighbor-
ing vacancy sites in the directions (111), (111), (111),
and (111).This enables us to locate easily the nearest
neighbors and hence to determine the b;;.

Since around each coordinate axis there is twofold
rotational symmetry, of the eight octants around the
origin only two will be essentially different (see
Fig. 2). For instance, we may choose for the two
octants those whose indices are all positive or all
negative. Thus the four nearest sites to the interstitial
have identical symmetry and are characterized by the
(111) position in the negative octant. In each octant
there is a threefold rotational axis along the cube
diagonal, so that all sites whose indices are related by
a simple permutation have identical symmetry. Thus
(200), (020), and (002) have the same symmetry. In
fact since at least one of the indices is zero, they are on
the edge of the octant and are common to the positive
and negative quadrants, so that all six next nearest
neighbors to the interstitial have the same symmetry.
The four nearest neighbors thus represent site i = j., and
six next nearest neighbors represent site i =2. The first
few sites are shown in Fig. 2.

A scheme for representing all the vacancy sites in
the vicinity of the interstitial is shown in Fig. 3. Here
the nearest neighbors are connected by lines and the
numbers on the lines indicate the b;;. For convenience
the sites are plotted with their distance from the inter-
stitial on the vertical axis and their distance from the
nearest coordinate plane on the horizontal axis. Position
in the positive octant is plotted to the right and position
in the negative octant to the left. . The areas of the
circles are drawn proportional to the number of sites
with the same symmetry.

We have attempted the solution of Eqs. (19) with
two diGerent boundary conditions, capture at i=1 and
i=2, and initial location of the vacancy. successively at
each of the nine closest sites. Because the determina-
tions of y„, 0;„,and A„are laborious if many sites are
considered, we did not use this method. Instead we
used three separate approximate methods whose regions
of accuracy overlapped enough to determine the com-
plete solution. For the early stages of the annealing we

considered only the erst twelve sites and permitted no
return from sites outside these. The Eqs. (19) were then
solved on an analog computer for P~ and P&+Pm for
the two stated. boundary conditions, respectively. After
enough time elapses (ca Sr) these computed values will

fall below the actual values because of the neglect of
vacancies diGusing back from outside the first twelve
positions. In order to correct this error, we would have
to consider more sites than the computer could handle.
To extend the solution to longer times we replaced the
continuous differential equation of (19) by a discon-
tinuous jump equation in which after a time 7 the in-
crease in I'; is given by

hP;= —P;+~~Qy b;;Pr. (19a)
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The factor ~ appears here because there are four sites
to which a vacancy may jump; i.e., P;b;;=4 and
v;; =4r. It was not diKcult to solve this equation taking
into consideration the first one hundred sites. This
allowed sixteen jump times r before the influence of
sites outside the first one hundred could be felt. For,
times longer than this enough sites were involved so
that we felt the continuum, dMerential equations should
be applicable and we could use an equation of the
type (8), where r, and r; were regard. ed as adjustable
parameters to tie smoothly onto the solutions obtained
from (19a).

The complete solutions for two particular initial con-
ditions are shown in Fig. 4. Here on the vertical axis is
plotted the probability that a vacancy has recombined

I I I I I

-4 -3 -2 -I 0 I 2 3 4
X =DISTANCE OF VACANCY FROM NEAREST COORDINATE PLANE (Q 4)

FIG. 3. Representation of the vacancy sites relative to an
interstitial located at the origin. Sites with the same symmetry
are lumped together, the area of each circle being arranged pro-
portional to the number of individual sites. Lines connect nearest
neighbors, and the number of these (b;;) is indicated. Notice that
the sites occur in shells of about the same radius.
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of the approximate solutions from this in the range of
time where the approximation begins to break down.
The approximate solution of Sec. IV, Eq. (6), in which
r, and r, were not adjusted is -shown as a dashed curve.
The two boundary conditions shown represent the
largest departures of the approximate solution of Eq. (6)
from the more complete solution of all the boundary
conditions investigated. The approximate solutions of
Eq. (6) can be made coincident with the complete
solution for long times by adjustment of r, and r;. The
effective values of these radii for coincidence for these
two cases are marked on the curves. Even though the
approximate solution departs considerably from the
complete solution, only a small adjustment of r, and r;
is required for coincidence of the curves.
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FIG. 4. The annealing in an undistorted discrete diamond-type
lattice pEq. (19)) comi3ared with the annealing in an isotropic
homogeneous medium LEq. (6)) for two particular Initial condi-
tions. The light lines indicate how the three approximate curves
used in solving Eq. (j.9) depart from the actual curve. The two
cases shown represent the largest departures of the continuum
solution from the discrete solution.

CAPTURE AT I.=2

INITIAL
SITE: t=3 '

0.35
2
4 O.SO

0
0.25with an interstitial, 1—(X/1V~), at a time f after starting

in position i: The heavy line for each curve represents
the final solution and the light lines show the departure

0
0.1 8 3 4 6 4 1006 4 4 4 3 4 6 4 10

ANNEALING TIME, t/TINITIAL
SITE:L=2

FH:. 6. Same as Fig. 3 except that the lattice is as'sumed to
be deformed out to the second site (6=2).

0 0.45
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20 0.35

u. 030
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/

0
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FIG. 5, The probability that a vacancy and interstitial have
recombined a time t after starting in the ith site of a diamond-
type lattice. The heavy line represents the complete solution for
a lattice which is undeformed outside the fIrst site (i= 1). The
light and the dashed lines indicate how the three approximate
curves used in the solution depart from the actual curve.

The complete solutions for all of the boundary con-
ditions investigated are shown in Figs. 5 and 6. The
effective value of r,/r; is marked on the curves. This

. represents the asymptotic value for the annealing
probability at long times. The value for (r,),«could be
chosen the same for all curves with the same capture
site. The value for (r,),tI approached the true value as r;
increased. In no case did these radii have to be adjusted
by more than 15 percent. Use will be made of the
analysis in this section in the interpretation of the
observed annealing of bombarded germanium in the
following paper.
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