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The dashed curves in Fig. 5 are plots of this equation
for two diGerent values of n. It may be seen that the

niobium data do not fit any of the o, curves, so that
it may be concluded that there is as yet no theory of the
heat capacity of superconductors which is in satis-
factory agreement with these experiments.

The authors gratefully acknowledge the assistance of
Mr. L. Lesensky, Mr. B. Smith, and Mr. R. Worley
in carrying out the measurements.

P H YSI CAL REVI EW VOLUME 92, NUMBER 1 OCTOBER 1, 1953

The Vibrational Spectrum and Specific Heat of Sodium
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The frequency spectrum of the normal vibrations of a body-centered cubic crystal lattice is derived by a
method suggested by Houston, in which the secular equation is solved along three lines in the reciprocal
lattice and the result is interpolated by means of suitably chosen spherical harmonics. Some corrections are
applied to the high-frequency part of the spectrum, and the lattice part of the specific heat of metallic sodium
is calculated as a function of temperature.

I. THE PROBLEM

' 'N the theory of ideal metals one considers eGectively
~ ~ free conduction electrons moving in the field of a
lattice of positive ions. These conduction electrons
move very fast compared with the ions of the lattice,
and are relatively weakly coupled to them, so that an
"adiabatic" separation is always made as follows. In
considering properties of the conduction electrons one
regards the ions as at rest or at most vibrating as a
perturbation (to give the thermal part of the resis-
tivity); conversely, in the study of lattice properties
such as the specific heat at intermediate temperatures
and a large part of the elastic constants, the lattice is
regarded as held together by the "smeared-out" field
of the electrons.

Here we are interested in calculating the specific heat
of metallic sodium at moderately low temperatures,
i.e., between about 10'K and 100'K, and in this region
the only effective contribution comes from the lattice
of ions. At extremely low temperatures, the electronic
contribution to the specific heat becomes important,
while at high temperatures the specific heat has ap-
proximately the value predicted by classical equipar-
tition, but with some disturbing eQects believed to be
due to the large amplitude of the lattice vibrations and
consequent anharmonicity and also due to the electrons.
There is an additional disturbing eGect in the case of
sodium giving a peak in the specific heat at about
7'K.' Such eGects are known to occur in a number of
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G. L. Pickard and F. E. Simon, Proc. Phys. Soc. (London) 61,
1 (1948). The speci6c heat of sodium up to 300'K has been
measured by F. E. Simon and W. Zeidler, Z. physik. Chem.
8123, 383 (1926).

the crystal. Then, to get physical results, we apply
substances: they may arise because of changes in
crystal structure, but in any case they cannot be
accounted for in terms of lattice vibrations.

To calculate the specific heat we just have a statis-
tical knowledge of the degrees of freedom of the ions.
For this purpose it is convenient to regard the ions as
making up a lattice and to study the frequency spectrum
of the lattice vibrations, which are the normal modes of
the system. The reason for doing this statistically is
that in a macroscopic crystal there are 1023 ions, i.e.

3)&10"degrees of freedom.
The best method that gas been developed so far for

obtaining the frequency spectrum is that of Born and
v. Karman, ' who set up the classical equations of motion
of an ion interacting with its close neighbors, with given
force constants as parameters. These parameters are to
be determined from the elastic constants of the lattice.
With the use of Born's cyclic boundary conditions, the
condition that the equations of motion have a non-
vanishing solution corresponding to small harmonic
vibrations of the ions about their equilibrium positions
gives the secular equations. Thus, if there are 2V atoms
in a three-dimensional lattice, there are E distinct
3X3 secular determinants in the simplest case; these
have 3S roots, the frequencies of the normal modes of
vibration. We are interested in finding the frequency
spectrum of these 3E vibrations, i.e., finding how many
of them lie in any given frequency range. This frequency
distribution is obtained by solving a suitable number
of the X( 10") secu1ar equations.

Thus we obtain a frequency spectrum by setting up
classical equations of motion in terms of certain force
constants which are related to the elastic properties of

s M. Born and T. v. Karman, Physik. Z. 13, 297 (1912); 14, 15
(1913).
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Bose-Einstein statistics to the frequency spectrum
obtained in this way, and thus get the specific heat.

II. METHODS OF SOLUTION

The central technical problem is solving a sufhcient
number of the S secular determinants to get a fre-
quency spectrum, without too much labor. Several
methods have been given: there are methods which
depend on solving a suitably chosen random sample of
the E secular equations also, there is an elegant
method developed by Montroll, 4 which depends on ob-
taining the frequency spectrum in terms of moments of
various powers of the vibration frequencies. This
method unfortunately suffers from the severe practical
limitation that in the lower approximations the spec-
trum is given more accurately at high than at low fre-
quencies, and at low temperatures, where the specific
heat deviates markedly from the classical value, it is
just the low-frequency part of the spectrum which is of
importance. I.eighton' has derived the frequency
spectrum of some face-centered cubic lattices by a
mechanical-analog method.

Houston6 has described a method of deriving the
frequency spectrum of any lattice by solving the secular
equation analytically along a certain number of direc-
tions in the reciprocal lattice, and interpolating by
means of suitably chosen spherical harmonics. This
method is extremely simple in computation, and is
satisfactory at low frequencies. However, Nakamura~
has examined the method closely for the case of a square
two-dimensional lattice, which has been solved exactly
by Montroll, and comes to the conclusion that the
method of Houston fails at large frequencies. Also
Van Hove has examined the nature of the singularities
of the frequency spectrum of general lattices, and finds
that the infinite peaks characteristic of Houston's
method are not given by the exact theory. It ought to
be mentioned that Houston in his original article
realized (or at least implied) these drawbacks of his
method.

In this work the Houston's method is used, together
with some modifications suggested by Nakamura's
criticism. The reason for this is that for actual thermal
properties one is interested not so much in the detailed
shape of the frequency spectrum, but in various in-
tegrals including the spectrum as a weighting function,
so that perhaps the errors in the shape of the high-

s M. Blackman, Repts. Progr. Phys. 8, 11 (1941) (Blackman
has done much work on diferent aspects of the problem); P. C.
Fine, Phys. Rev. 56, 355 (1939): body-centered cubic lattice,
applied to tungsten.

4 E.W. Montroll, J.Chem. Phys. 10, 218 (1942);11, 481 (1943);
E. W. Montroll and D. C. Peaslee, J. Chem. Phys. 12, 98 (1944):
body-centered cubic lattice. See also H. Thirring, Phys. Z. 14,
867 (1913);15, 127, 180 (1914).

s R. B. Leighton, Revs. Modern Phys. 20, 165 (1948): applica-
tion to silver.' W. V. Houston, Revs. Modern Phys. 20, 161 (1948).

r T. Nakamura, Progr. Theoret. Phys. 5, 213 (1950).
8 E. W. Montroll, J. Chem. Phys. 15, 575 (1948).
L. Van Hove, Phys. Rev. 89, 1189 (1953). I am indebted to

Dr. Van Hove for sending me a copy of this article prior to pub-
lication.

frequency part of the spectrum may not be too serious
in this connection.

III. SEPARATION OF THE ELASTIC CONSTANTS

C11 C12 C44 C11 C12

Experimental data (90'K):Bender 0.945 0.779 0.618 0.166
Quimby and Siegel' 0.603 0.459 0.586 0.144

Calculation (O'K): Fuchsd 0.972 0.831 0.580 0.141

a The data actually used are those of Fuchs; for the separation of Eq.
(1) the data on c44, and c» —ctg are the significant ones.

b See reference 11.
& See reference 12.
~ See reference 13.

of each ion with its nearest and second-nearest neigh-
bors; the force constants for these interactions are
denoted respectively by o, and p, and are measured in
units of dynes/cm. The simplest over-all picture of a
cubic crystal like sodium is obtained by assuming, as
do I'uchs" and Leighton, ' that the conduction electrons
form a Quid in that their energy depends only on the
volume and is therefore not affected by a pure shear
deformation of the crystal; thus the electrons contribute
one independent elastic constant. The lattice of ions
has cubic symmetry and is regarded as defined by two
independent elastic constants because one supposes that
the ions interact with central forces." Thus, if the

' The effective mass of the conduction electrons in sodium is
0.94 m (in the Bloch approximation); see F. Seitz, Modern Theory
of Solids (McGraw-Hill Book Company, Inc. , New York, 1940),
p, 354; also N. F. Mott and H. Jones, Theory of Metals aed Alloys
(Oxford University Press, London, 1936).

"O. Bender, Ann. Physik 34, 359 (1939)."S. L. Quimby and S. Siegel, Phys. Rev. 54, 293 (1938)."K. Fuchs, Proc. Roy. Soc. (London) A153, 622 (1935);
A157, ~~~ (1936).

'4 For a cubic crystal with only central forces between the
atoms we have the Cauchy conditions, c»=c44, so that there are
only two independent elastic constants. An isotropic medium has
only two independent elastic constants, because c»=c»+2c44.
For an isotropic solid with central forces between the atoms there
is only one independent elastic constant, because c»=c44= 3cgg.
See L. Brillouin, Les Tersseurs (Dover Publications, New York,
1946), Chap. X.

We are considering the case of sodium, a monatomic
metal with a body-centered cubic lattice, in which the
conduction electrons are electively free" so that the
adiabatic separation into an ionic lattice and free elec-
trons should be relatively satisfactory. However,
sodium is extremely anisotropic as far as its crystal
properties are concerned. In principal axes, its three
independent elastic constants, c~~, c~2, c44, in Voigt's
notation are given in Table I, where the measurements
of Bender" and of Quimby and SiegeP' at 90'K are
given, as well as the calculations of Fuchs" for absolute
zero. The measurements are very dBBcult, and this
accounts for the relatively large spread of the experi-
mental results.

It is usual, in applications of the theory of Born and
v. Karman, to consider all the interactions in the lattice
to be central, and to take into account the interaction

TAsLF. I. The elastic cons'tants of metallic sodium (in units
oi 10"dynes/cm').
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FIG. 1.The frequency spectrum of a body-centered cubic lattice
for various models. (For convenience in the calculation, all in6nite
peaks have been replaced by 6nite ones of equal area. ) The
separability condition {1)is used everywhere except in Fig. 1(d),
so that g= ) except in Fig. 1(d), where g= -', . (a) The spectrum
G~(q) given by Houston's original method; (b) The spectrum
Gz(q) given by the 8 approximation to Houston's method;
(c) The spectrum Gz(q) given by the T approximation; (d) The
spectrum Gz(q) for g=); (e) The spectra given by Debye's
theory, Gn(g), and by Brillouin's modification, Gs(g), both for
the case g= ~8.
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electron contribution to c;. is c"~ and h 1c,; an t e lattice con-
ri u es c;;, then the total elastic con"t tns an s are

pp se, in this approximation, to be just the sum of
electron arid lattice terms. Hence we have

320

Cll —Cll +Cll &
C12 C12 +C12

&
C44 C44 —C44 )

C44 = 0& Cll = C12
'

C = C12 ) C12 =C44

This separation of electron and l tt'a ice contributions
to the elastic constants is very tt t', b

erha s u
a rac ive, but one may

per a,ps question whether it is legitimate. To t h
h othesisyp some calculations have also b

a e. o test the

witho
so een maae

still
'thout assuming the separation I h'n. n t is case, if we

s i regard our lattice as de6ned b t 1
~ ~

y wo e astic con-
stants, it is reasonable to say that
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C44 ~ C12 =C44 ~ C12.L
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Calculations with the lower lim t fimi or c44 coincide a-
proximately with those mad 'th the wi e separation (1);
some calculations with the up 1

also re ort
upper imit c44 =c12 are

a so reported. The results with the separation (1) show
much better agreement with experiment than those
with c44L ——c12.

IV. BRILLOUI¹S MODEL FOR THE SPECIFIC HEAT

It is of interest to see how the present calculations

heories available are Debye's well-known the
s a a ice as a homogeneous continuum with a

~ ~ ~

maximum frequency cutoff and -a difi-a mo cation due to
n ouin" which has a cutoff in wavelength. The reason

for Brillouin's modi6cation is th t f
me ium it gives the correct number of longitudinal and
transverse modes, unlike Debye's th h' heory, w ich merely
gives the correct total number of modes.

en anisotropic case ise calculation for the prese t
iscussed in Appendix A; the results for the specific

heat using the separability condition (1) are given in

number of model&. According to Debye's theory, the
specific hen, t at constant volume C

' f

then usual to express the experimental C, data at any

~O &EX«'.

Qe (q~I/8)
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Pro. 2. The effective Deb e terny perature 0 for sodiu
temperature T. The 0's calculated from

(S (~ 1 cI 17.)

given T by a value of 0 which is unique, but doe»n
general depend on T "

All thes e calculations of the Debye and Brillouin
models are based on t
tamed with th

~ 0
e lattice elastic constants ob-

the separability condition (1). Using the
experimental elastic constants d d 6 '

temperature in terms of t
an e ning a Deb e

differ ve 1'
f them, one gets results which

er very little from the present ones. Th fe reason or
mes - rom the averaging over velocities used in

calculating the Debye temperature.

V. THE SECULAR EQUATION AND ITS ROOTS

A derivation of the secular equation f b
centerede cubic lattice has been given b F' ' d

a ion or a ody-

Montroll and Peaslee. 4 It is rath
n y ine an b

cor ing y a method of derivation which may be applied
also to noncubic lattices

' tl' dis ou ine in Appendix B.
The secular equation is the following:

1—cosx cosy coss+g sin'x —q'

sinx siny coss

sinx sins cosy

sin x siny coss

1—cosx cosy coss+g sin'y —q'

siny sins cosx

sinx sins cosy

siny sins cosx

1—cosx cosy coss+g sin's —q'

=0, (2)

where x, y, s are coordinates in the recipro 11 tt'OCR R iCe)

the space of wave numbers, and

g=y/2, q'= (M/8n) ' .(3)
'6 L. Brillouin) W'uve Pr0pu ation'op g o s eno 8«

w- i oo ompany, Inc., Nevr York, 1946), article 39.

M is the mass of an ioion, co the angular frequency of a
normal mode and e and 7 are force constants for
nearest and second-nearest neighbor interactions. The

y D. K. C. MacDonald, Can. J. Phys. 31, j.47~8 F. M. Kelly and D. K.
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L.1 L.2 L.3
Branch I: a and f and g

II: b and d and h

III: c and e and k.
(6)

The detail of the linking is discussed in Appendix C.

VI. THE FREQUENCY SPECTRUM

Along a given line in the reciprocal lattice, the
number of modes of vibration in a frequency range, q
to q+dq, is proportional to the corresponding volume
of phase space, that is, to

rs(dr/dq)dq,

where r= r(q) is the wave number along the line corre-
sponding to the frequency q. For the total lattice there
are G(q)dq modes of vibration in this frequency range,
and, apart from a normalization factor, G(q) is given
by the expression"

G(q) =~~G'(q),
G~(q) =0 359r'(&r/&q) .

~
~+1.624s'(ds/ztq)

~
q

+1.679t'(dt/dq) i p, (7)
where A=I, II, III, and

r'(dr/dq)(z=r'(dr/dq) for root a,

r'(dr/dq)~zz ——r'(dr/dq) for root b, and so on;
t'(dt/dq)

~
zzz

——t'(dt/dq) for root k.
"Equation (7) is essentially Houston's Eq. (21) (reference 6). I

am indebted to Dr. Houston for sending me a list of corrections
to his article.

force constants are connected with the elastic constants
of the lattice by the relations

crt = (n+y)/a; crt =c,P= n/a, (4)

where 2a is the length of the side of the unit cube;
2a=4.24&(10 ' cm. The separation of Kq. (1) together
with the experimental data for sodium (see Table I)
corresponds to g=-,'; the condition (1') gives the limits
—,'0 ~&g~& 3. The calculation has been done with g= —,'
throughout unless stated otherwise.

Houston's method of calculation' is to solve the
secular equation (2) along three lines in the reciprocal
lattice, denoted by L.I, L.2, L.3:

L.i: r= (0, 0, r),
L.2: r= (0, s, s),
L.3: r= (t, t, t).

Along each line there are three roots: we denote those
along L.1 by a, b, c; those along L.2 by zt, p, f; and
those along L.3 by g, h, k. The detailed form of these
roots is discussed in Appendix C. The solution as a
whole has three branches (I, II, III) corresponding to
the one longitudinal and two transverse branches in an
isotropic medium, and the branches link up the roots
as follows:

The Gs(q) are the contributions of the three branches
I, II, III to the distribution function G(q). The reason
for considering the branches separately is to make the
corrections suggested by Nakamura. The detailed ex-
pressions for r'(dr/dq), etc. , are given in Appendix C.

Now we can immediately derive the frequency
spectrum Gzz(q) according to Houston's original pro-
cedure. In general each Gzzs(q) will have three singu-
larities corresponding to the maximum frequencies
along the three lines L.1—L.3. Two or more of these
critical frequencies may coincide, and root g is anoma-
lous. The result for Gzz(q) is given in Fig. 1(a).

Nakamura~ has given a detailed examination of
Houston's method for the case of a square two-dimen-
sional lattice which has been solved exactly by Montroll.
He finds that in this case Houston's method gives the
low-frequency behavior correctly for each branch,
deviates somewhat in the shape of G(q) at the 6rst peak
(i.e., the peak of lowest frequency) on each branch, and
is completely wrong above the first peak on each
branch, in fact, the frequency spectrum falls oG con-
tinuously above the first peak to zero at the maximum
frequency predicted by Houston's method.

These features are probably fairly characteristic of
the method. If one is interested only in properties like
the specific heat the method seems usable, because here
one is most concerned with the detailed behavior of
G(q) at low frequencies, and apart from this one may
be satisfied with a knowledge of the location of the dis-
continuities in G(q) and in the total number of modes
between the discontinuities. This area is given cor-
rectly by Houston's method, being just composed of
terms of the form

r —dq = s (fs t'z ). —
~gy dg

The method used here is the following. We study
each branch h. (I, II, III) separately. Consider a branch
A. with the roots n, p, y (e.g. , the roots b, d, tz along
branch II). Let root n have a singularity in r'(dr/dq)
at q= q, and similarly, let P, y have singularities at qp,
q„where q &qP(qr (the generalization to any other
case, such as root g of branch I, is immediate). Then
Houston's method gives the following properties at
least approximately correctly:

(1) G~ (q) for 0 ~( q ~& qn;
(2) the positions of qp, q~; and
(3) the areas

p
A p =, Gp'(q)dq; 3„.= G;(q)dq,

where Gps(q) is the contribution to G~(q) due to root p,
etc. ; thus

G'(q) =G-'(q)+Gp'(q)+G, '(q),

i.e., G z(q) =0.359rs(dr/dq) for root a (of branch I).
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By analogy with Montroll's and Nakamura's results,
we represent G~(q) for q)q by functions without
singularities at qp, q~ but having the properties (2),
(3) given by Houston's solution. In particular, we
use two simple forms which appear fairly plausible by
analogy with Nakamura's work.

Approximation R (rectangle): replace Gp (q) by a
rectangle of area Ap lying between q and qp, and
similarly for G,~(q).

Approximation T (triangle): replace Gp~(q) by a
triangle of area A p lying between q and qp, such that
its peak is at q, i.e., its height is 2A p, /(qp —

q ) at q
and zero at qp, and a similar expression for q~~(q).

The results for Gii(q) and for Gp(q) are given in Figs.
1(b) and 1(c). They may be compared with Gzz(q)
given by the original calculation by Houston's method.
For convenience in calculation the infinite peaks in

G(q) have been replaced by finite ones having the same
area. The curves in Figs. 1(a)—1(c) refer to g= —'„cor-
responding to the assumption of separability of electron
and lattice contributions to the elastic constants, as
implied in Eq. (1).

VII. THE SPECIFIC HEAT

In giving the specific heat at constant volume C, as
a function of the absolute temperature T, it is usual to
plot an effective Debye temperature 0, which depends
on T, as a function of T, because this Debye tempera-
ture is a sensitive criterion, and one of some physical
significance, at least for 0~&T. The results, based on
the separability condition (1), are given in Fig. 2 for a
number of models. We give first the Debye temperature
obtained from measurements of the specific heat. ' Then
the effective 0' of Deb'ye's and Brillouin's models, as
predicted from the elastic constants, are given (see
Sec. IV and Appendix A). Also there are three 0''s
coming from the three approximations used here,
namely 0~&, 0'ii, 0'r, resulting from G~(q) $i.e.,

Houston's original picture —see Fig. 1(a)], from Gg(q)
(Fig. 1(b)j and from Gr(q) LFig. 1(c)j, respectively.
From the shapes of the G(q) it is clear that we must
have O~&~O~ &~Or, and by comparison with Naka-
mura's discussion one would expect the exact G(q) to
lie somewhere between Gii(q) and Gr(q), and hence
one would also expect the exact 0 to lie somewhere
between O~ and Or.

All the calculations discussed above refer to the case
where the separation of elastic constants into ionic
(lattice) and electronic terms is made as suggested by
Fuchs" and Leighton thus, g= —,'. To test the validity
of this separation, we proceed as suggested in Sec. III.
If we still wish to describe the lattice by two elastic
constants, c~i and c~2 =c44, but without assuming the
separability condition of Eq. (1), then we have to take
the limits of Eq. (1'), which give i'0 ~&g ~& 3. The fre-
quency spectrum calculated on the R approximation
with g=x is given in Fig. 1(d), and the corresponding
specific heat, or rather Oii, is given in Fig. 2. We see

there, by comparison with the experimental O~, that
g= —,'gives a much more satisfactory result than g= 3,
so that there is certainly no evidence against the sepa-
ration of Eq. (1).

One feature of the theory which is mentioned by
Nakamura' is that if one puts g=0, i.e., considers only
interactions of an ion with its nearest neighbors, then
Houston's method does not give a very good frequency
spectrum because there are too many modes of zero
frequency; in fact, the frequency of the 6rst peak in G(q)
is proportional to g&. There is no reason to suppose that
this feature is peculiar to Houston's method of evalu-

ation; in fact, if one considers only nearest-neighbor
interactions there are many modes of zero frequency,
as can be seen by examining the secular equation. From
physical reasoning it would seem that the case g=0
might be taken to correspond to a liquid, as representing
only extreme short-range order; and it might perhaps
be possible to use this kind of treatment in discussing
some properties of liquids. In this picture the physical
meaning of the modes of zero frequency is that they
correspond to Qow rather than to vibrational motion.

The precise meaning of the results given in Fig. 2 has
to be discussed in some detail. As was pointed out in

Sec. I, only the range 10'KIT~&100'K is strictly
relevant for comparison with experiment. C„has a
peak at 7'K, and also it exceeds the classical value 3Xk
above 206'K, and the fall in 8 above 100'K is due to
this. Besides, for T= 120'K, C. is already 5.5 cal/M
degree, so that a very small error in C, introduces a
large but not particularly significant error in 0. From
the admissible region between 10' and 100'K it is clear
that g= —', gives better reults than g=3, and that the
experimental O~ value lies between 0'ii and &'p as one

might expect, in particular, 0'ii (which comes from

Gz(q), which is actually the simplest function to use)

gives the best approximation.
In general, one is particularly interested in the

character of the lattice specific heat corresponding to
temperatures of less than 10'K in the present case, .

because this is where the specific form of the frequency
spectrum is most important. The general features of the
frequency spectrum shown in all the models used here
are the same, and are of the character usually found in
calculations of this type. Generally these give G(q)
proportional to q' at low frequencies as in the simple

Debye theory, but with a number of peaks at higher
frequencies. In consequence of this the present curves
of 0 ws T are similar to other such calculations, ' 5 6 with
a relatively high value near T'= 0, then a minimum, and
finally a rise to a constant value. For g= —', there are
slight falls in O~ii, 0'r above 30'K, but these are prob-
ably not particularly significant.

It is clear' ' that Houston's method, even with
modi6cations like those used here, does not give a
particularly accurate expression for the frequency

S. Huzinaga, Busseiron Kenkyu (Japanese report of chemical
physics in Japanese) No. 20, 117 (1949).
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spectrum. However, the R approximation to G(q) in
particular gives a fairly satisfactory approximation to
the Born-v. Karman frequency spectrum, with con-
siderably less computational work than any other com-
parable method suggested so far, and this feature may
make it suitable for various other applications. For
instance, in the present case the elastic constants of
sodium are not known very accurately, and also it
seemed desirable to check the validity of the separa-
bility condition (1). Again, in many applications like
the present, the deviations of the frequency spectrum
from the simple Debye form give only a small correction
to most observable eGects, so that a fairly simple cor-
rection like the present one might be quite useful.
Further, an approximation like the present one can be
improved with relatively little work if the secular
equation is solved along more than three lines in the
reciprocal lattice.

I should like to thank Dr. D. K. C. MacDonald, who

suggested this problem to me, Dr. W. Kohn, Dr. E. W.
Montroll, and Dr. T. Y. Wu for helpful discussions.

h ~mq-:
u &4V)' (A.1)

if there are E atoms in a volume V. By Debye's theory
there is a single characteristic temperature OD deter-
mined by a mean velocity 8 defined by

1( 1 2 ) 1 1»i pdQ
+ ~; « =——Q ~' —. (A.2)

8 3 ( vlo&g i trans i 3 4'ir A=I t'A

Thus, if the Debye function for the specific heat of X
atoms is C„(0'n/T), then Brillouin's formula for the
specific heat of an isotropic medium is

c„(o /T) = ;c„(o.../T)+ ,'c.(o„-.../T), (A.3)-
where Oi, „Ot„„,are defined in terms of the velocities
of the longitudinal and transverse vibrations. In general,
Oit as defined by Eq. (A.3) will change with tempera-
ture.

The procedure used here is the following. From the
secular equation we can calculate the velocities v(A; Lj )
for all three branches A=I, II, III, along the lines
L.1 L.3 of Eq. (5). Then we de—fine mean velocities nq

by the relations

0.2571
+ + (A.4)

Sit' [t (A; L.1)]' [t (A; L.2)]' [8(A L.3)]'

0.457

The coefhcients are derived from Houston's analysis;
they are the same as those for the corresponding r'dr/dq

APPENDIX A. BRILLOUIN'S MODEL FOR THE
SPECIFIC HEAT

Given a mode A with sound velocity vA, we may obtain
the corresponding characteristic temperature Oz by

[see Eq. (7)—the difference in the numerical factors
arises because r=V2s=V3t]. From the vq we get the
corresponding Oz by using Eq. (A.1), and then

c„(O&/T)=-', p c.(O&/T). (A.S)

we find that OD ——128'K. The frequency spectrum
corresponding to the Debye and Brillouin models is
given in Fig. 1(e), with the same normalization as for
the other G(q); the corresponding values of 0'n, Os are
given in Fig. 2.

APPENDIX B. DERIVATION OF THE SECULAR
EQUATION

For a substance containing only one kind of atom it is
frequently possible to find a lattice with a unit cell
containing only one atom on the average. Such a lattice
is called a Bravais lattice. Physically this means that
we have a lattice made up of unit cells each having just
three degrees of freedom. In a crystal these three degrees
of freedom are the so-called acoustic vibration: they
correspond to the translational motion of the individual
atoms in the gas phase. If there are two atoms in a
unit cell, then of the six degrees of freedom, three are
acoustic, corresponding to motion of the unit cell as a
whole, while the remaining three specify the motion of
one of the two atoms in the cell with respect to the
other. This corresponds to the internal molecular rota-
tion and vibration of the molecule in the gas phase. It
contributes the "optic" branch of the lattice vibrations.
(The extension to more than two atoms per unit cell is
trivial. ) In general, simple monatomic lattices have
only an acoustic vibration, just as simple monatomic
gases have only translational degrees of freedom.

It seems desirable to keep the above basic fact in

mind. In' a simple cubic lattice the unit cube is just the
unit cell of the Bravais lattice, but in a body-centered
cubic lattice, if one takes the elementary cube as basis
one again, the unit cell contains two atoms. If the cyclic
boundary conditions are applied to this cube, one
obtains a 6&6 secular equation which may be factored
into two (essentially equivalent) 3&&3 determinants.
This is basically the procedure adopted by Fine' and

by Montroll and Peaslee4 in their derivation of the
secular equation of a body-centered cubic lattice. "The
derivation is correct, but it is not clear how it should

"They made use of the fact that a body-centered cubic lattice
may be made up of two interpenetrating simple cubic lattices. By
applying the cyclic boundary conditions independently to each of
these simple cubic lattices, they got a 6&(6 secular determinant.

With the lattice elastic constants determined by the
separability condition (1), one finds that Oi ——304'K,
oii = 181'K, oii i = 93 5 'K. Defining 0& by means of
vD, where

i 1 IIE 1
)

3 &=& eq
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be generalized to a noncubic crystal structure. This
generalization is immediate if one imposes the cyclic
conditions on a minimal (i.e., Bravais) unit cell.

Consider a body-centered cubic lattice with cube
length 2u, and take an ion at the point u(l, m, rs) as
central, where l, m, e are integers. The nearest neighbors
of the central ion are at u(1&1, m&1, n&1) (for any
choice of the & signs), and its second-nearest neighbors
are at u(i&2m, r4); u(l, m&2, r4); u(l, m, , r4&2) Th. is
description in terms of the conventional unit cube may
be called the C system; the unit cell contains two
atoms. The Bravais or minimal unit cell (in the
I3 system) is defined by the central ion and any three
of its eight nearest neighbors. I-et

~'=u( —1, 1, 1) ~'=u(1 —1 1)) ~' ——u(1, 1, —1),

be the unit vectors defining the 8 system. Then, in the
8 system the position of a point is defined by the
relation

u(X, u, 4) =X~'+u~'+v~'.

The detailed correspondence between the naming in
the C and the 8 system is given in Table II. With the
uniform notation given there, if we use a shorthand
notation of the type

u(u —2) =u(u)+u(u) —2u(0), etc. ,

the equations of motion are

F,(0) =nu, (u+b+c+d 8)+yu—,(e 2)—
+Kuy (—u —b+c+d) +Kug (—u+ b —c+d) ~

F„(0)=nu„(u+b+c+d 8)+yu„(f—2)—
(A.6)

+Kug(u —b c+d)+Kug( —u —b+c+d),
F,(0) =nu, (u+b+c+d 8)+yu, (g 2—)—

+Ku, ( u+ b c+—d) +Ku„—(u b c+d)——

These are just Eq. (4) of Montroll and Peaslee, 4 apart
from the notation; the Cauchy condition will give ~=0..

The classical macroscopic equations of motion are

a'u ( a' a'
q

pu =crt +c44~ + ~u
ax' E ay' as')

(a u„a u, )+ (c»+C44) (
— +

axy axg

etc., and if we identify these I's, which are small but
macroscopic displacements, with the previous u(0),
u(u), , which are displacements of individual lattice
points, and use results of the kind

au/dx= (1/u)Lu(iy1, m, u) —u(l, m, u)],

then we get the identification

TABLE II. Correspondence between the labeling of lattice points
in C (cube) and 8 (Bravais) systems.

C system

Central lattice point:
(l, m, n)

Nearest neighbors:
(la1, ma1, na1)
(l~1, m~1, n~1)
(l&1, m&1, n&1)
(l+1,

'
m~1', na1)

Second-nearest neighbors:
(l&2 m n)
(l, ma2', n)
(l, m, n&2)

Uniform notation

e, e

f, f
g) g

B system

(P, IJ,, v)

(X~1, p, , v)
(x, pa1, v)
(), p, , v~1)
('A~1, p,&1, v&1)

P, ~a1, va1)
1, p, , va1)

(4+1,p&1, r)

'x' '0
1

.8

1 1
0 1 ~ X2)

0.
and the condition

'Q= MN2

for harmonic vibrations, one obtains the secular Eq. (2),
which is just Montroll and Peaslee's Eq. (11a).

The derivation sketched here can readily be adapted
to other lattices; in particular, I.eighton s expression
for a face-centered cubic lattice' can be derived quite
similarly, whereas the method of Montroll and Peaslee' "
would entail setting up a 12X12 secular determinant,
which can then be factored into four 3)&3 deter-
minants.

APPENDIX C. THE ROOTS OF THE SECULAR EQ. (2)

(C.1) We wish to solve the secular equation along
the three lines I.1—I..3 of Eq. (5). Along I.1, the
secular Eq. (2) is

1—cosr —q2

0
0

0
1—cosr —

g
0

0
0 =0

1—cosr+g sin'r —q'

because x=y=0, s=r, along 1..1.
The third factor along the diagonal gives the single

root (u),

Now we apply the cyclic boundary conditions as
follows:

(A.7)
u(), p, 4) =u(0, 0, 0) exp/ifx'+py'+4ys)),

y' =~X'/I. '; ),&' integers: I.' ~& ) '—&&I.'; j= 1, 2, 3;
considering a macroscopic tetrahedron with 1.&' ions in
the ~& directio'n. The (y&') are vectors in a space recipro-
cal to the 8 system. In terms of them,

u(u) =u(0) exp(iy'),

u(u —2) = —2u(0) (1—cosx'), etc.

One now transforms the (x') into (x, y, s), which
form a vector in a space reciprocal to the C system.
Using the relation

et+= (n+y)/u; erg= c44c=n/u=K/u. (4) cosr = (Q—1)/2g: Q'= (1+2g)'—4gq',
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and the other two factors give a double root, denoted
by (b) and (c),

q/K2= sin (r/2) .

Along L.3 we have to solve a cubic equation. By
putting

x= l —eosst+g sinst —q'; A = sin't cost,

Along L,.2 we find, similarly, three roots (d), (e), (f), the secular equation reduces to the form
root (d): g

= sins.
g

root (e): q/Eg= sins. x 3=0
root (f): q/(2+g) l = sins. x

q MAX.

1.2

0.8

0,4

1.0 2.0
r

(a)

0 0 I.Q

(c)

2.0
t

$,0m

20—

10—

0
0 0.8

a

0 0.5 1.0

qi q MAX.

l

1.5

FIG. 3. The roots of the secular equation. {a) Frequency q as a function of wave number r for root {d), actually any root of type {1)
or (2) of Appendix C shows similar behavior; (b) the density function rsdr/dq as a function of q for root (d); (c) frequency q as a
function of wave number t for root (g); and (d) the density function Pdt/dq as a function of q for root (g).
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which has the single root (g), x= —2A, and the double
root (k), (k) given by x=A. Explicitly,

q'= 1+g+2 cost —g cos't —3 cos't

for root (g); this is rather a curious function. For roots
(k) and (k),

Root
Branch
Type
q(max)

u b=c d e f g h=k
I II, III II III I I II, III

(ll) (1) (1) (1) (1) (11)
V2 v2 I 0.3535 1.458 V2 V2

TAsi.z III. The roots of the secular Eq. (2), for the case g= 1/8.

+ Root g is anomalous: see Figs. 3(c) and 3(d). For g =1/8, qua =0,683;
qI =1.314; t I = 1.095 t2 =2.08; t20 =0.36; t Io =2.81.

r'dr 2q (cos '[(Q—1)/2g])'

Q(1—L(Q—1)/2g]s}'

for roots (a), (k), (k).
For roots of type (1) or (2), q increases monotonically

with r up to a maximum value which corresponds to
r=s-/28 for type (1), and to r=7r for type (2); beyond
this maximum the whole curve of q=q(r) is just
repeated with a suitable inversion. The general form of
q(r) and of r'dr/dq for this case is shown in Figs. 3(a)
and (b); the area under the curve of r'dr/dq is, of course,
just 3f'

The behavior of root (g) is peculiar: q(t) is shown in
Fig. 3(c), and t dt/dq is shown in Fig. 3(d). Explicitly,
Pdt/dq is given by the following expression:

-'(1+~')+g~'
—q'/k'

=O. (A.8)

s (I+~')+g—q'/k'

Consider the single root of Eq. (A.8)

q=k[-,'(I+a'))&.
Along L.1, k=r, @=0; q=r/v2 —root (b) or (c)

Along L 2, k=s, . @=1; q=s —root (d).
One proceeds similarly for the other two roots of (A.8),
and also for the planes dered by L.2 and L.3, and L.3
and L.1. This method of linking up roots is justified
because all three branches of the solution are regular
near the origin. The final result is displayed in Eq. (6);
the labeling of the branches I, II, III is of course
arbitrary.

(C.3) The character of most of the roots is very
simple, namely, (See Table I)
Type (1):q/A =sin(Br),

't'dt/dq
~
„[read: t'dt/dq in the region a of Fig.

3 (d)) for 0 & q & q, ; 0 & t, & tss.

t'dt/dq=' t'dt/dq ~.+Pdt/dq
~
p+t'dt/dq ~, for q, &~q (~ q„.

t2 &f&t].
.Pdt/dq

~ ~ for qi & q & q . ; tr' ~& t & s.

Along L.1, the turning point of q(r) is r=m; along
L.2, it is s=rc/2, and along L.3, t=~. The turning
point must of course be the same for all roots along a
given line; it may be identified with the boundary of
the 6rst Brillouin zone along the line in question. The
curves of q as a function of r are just the usual ones of
frequency as a function of wave number.

r'dr [sin—'(q/A))'

dq BsA [1—(q/A)']I

cost = (Q —1)/2g;

[see root (u), above].
(C.2) Now we must link up the nine roots (a) . (k) for roots ($) (c) (d) (e) (f). and

into three branches I, II, III. To link up the solutions
along L.1 with those along I..2, we solve the secular Type (2): cosr= (Q—1)/2g,
equation in the plane

(0, ak, k): 0&~a~&1; k small.

In this plane, cosg= 1; sin@= 0; cosy = 1—-,'g'k';
siny=uk; etc. , so the secular Eq. (2) becomes

'

s (1.+~') 0 0
qs/k2

0 6


