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The Evaluation of Lattice Sums for Cubic Crystals
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A method is presented of evaluating the sums which arise in calculating the total long-range interaction
energy between a semi-infinite crystal and a particle placed above its surface. For example, if the par-
ticle is an ion and the crystal is polarizable, this method facilitates the calculation of the polarization and
Van der baal s energies. It is pointed out that many calculations within a solid can be reduced to a com-
bination of cases each of which is of the above type. As an illustration, we obtain the total interaction at
an interior lattice point for a simple-cubic structure with an individual atom-pair interaction of Xr "-.

large number of sites and integration over the remainder
of the crystal, a rather tedious and often unsatisfactory
method. Since such interactions are frequently quite
important, especially for highly polarizable materials,
it appears that a better method of treating these sums
would be useful.

In this note, the authors propose to outline a rather
simple transformation whereby series of )r " (and
other central force) interactions can usually be made
to converge more rapidly. For illustration of the appli-
cation of our method some of the results of Jones and
Ingham' are obtained.

I. INTRODUCTION

''N many problems which occur in the physics of
~ ~ solids, it is necessary to perform sums over the
lattice sites of long-range central force interactions. One
such problem is that of calculating the binding energy
per ion pair of an ionic crystal, which can be assumed
to be three-dimensionally infinite. In this case, the point
at which the interaction energy is desired is located at
a lattice site and the procedure is somewhat simplified.
These sums have been worked out by Madelung and
Kwald' for the Coulomb interaction energy using a
potential method and by Jones and Ingham' for any
interactions which can be represented by inverse powers
(greater than 3) of the center distance. It is of some
interest to note from the results of Jones and Ingham
that a direct summation over the lattice sites becomes
very inconvenient if good accuracy is desired. For
example, for an inverse power of 4, a direct summation
over the nearest 500 atom sites is in error by about 25
percent, while an error of 6 percent or less requires a
sum over at least 4000 of the nearest atom sites.

If the point at which the interaction energy is to be
evaluated is not a lattice site, the evaluation of such
sums does not appear to have been so thoughly treated,
except for the Coulomb potential. These calculations
within a solid can be reduced to a combination of cases
for each of which the point where the interaction energy
is desired is an arbitrary distance above a principal
surface of a semi-infinite crystal, so we shall discuss
this latter problem, which is, of course, interesting in
its own right. The Coulomb interaction between an ion
above the (100) surface of an ionic crystal was erst
evaluated by Lennard-Jones and Dent, s using the
potential method of Madelung. However, interactions
involving higher inverse powers of the distance seem
to have been evaluated by direct summation over a

II. SUMMING METHOD

We consider a semi-infinite perfect single crystal. l and,
aI.though we will soon specialize to a cubic crystal, we
will be more general at first. We dehne the crystal space
vectors as

r= x&a&+xsas+xsas y+xsas, —

where y is in the plane of the surface and a3 pointing
inward (not necessarily normal to the surface plane).
The position vector of any unit cell is

rl tla3+lsas+~sas yx+ sas

where l~l2la are integers, and the position vector of an
atom within the unit cell is

r,= xs'as+ xs'as+ xs'as= y,+xs'as.

The crystal space vector of the 0th atom is thus
rs= rs+ r, .

YVe also define the general reciprocal space vector as

h= ptbr+ psbs+ psbs= y+ phs,

and the reciprocal lattice vector as

h„=mtb, +m,bs+ssssbs= y„+srssb„
~ Now at Atomic Energy Research Department, North Ameri-

can Aviation, Inc. , Downey, (.alifornia.
' E. Madelung, Physik. Z. Sowjetunion 19, 524 (1918); P. P. normal to the crystal surface, but the plane formed by

Ewald, Ann. Physik 64, 253 (1921).For a review see, for example, bt and bs 1s, in general, inclined to the crvstal surface.M. Born and M. Goppert-Mayer, Handbuch der Physik (Verlag.
Julius Springer, Berlin, 1933), Vol. 24, p. 623.

'
Let the interaction energy between a particle at the

' J.E. Jones and A. E. Ingham, Proc. Roy. Soc. (I ondon) A107, position r (above the surface) and. the pth atom at rs
636 (1925). in a crystal be «(~ r—r&~), i.e., an arbitrary function
92 (1928).

' '
but with no angular dependence. The total interaction
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energy between this atom and the crystal is then

p(r)=&& e(lr r&l)=Et Z. e(lr —rl —r, l) (&)

The sum over / means all values of /J and l2 but only
lz&~0. Thus g(r) is periodic in xt and xz with period
unity and may be expanded in the double Fourier series

y(r) = -' P„yn„(x,) exp(2 sp„y),

where o ~ is the unit cell surface area
I at Xas I

in a plane
x3= constant. Then

Pp„(xz) =
~

dzytt (r) exp( 27ri—y, y),
~A

where dzy= IatXazldxrdxz is the element of surface
area. Substituting from (1),

4 nz(xz) Q Q
~

~ tgzy[exp( —2prsp„' y)j
s

Xe{I y—
y~

—y-+as(xs —4—»') I }
=Z Z 2{exp[—2xtp. (y+y.)3}

X dzy{exp[ —2~t'll. .(y —y.—y.)j}
Xe{ly —y~ —y+az(» —Js—»')

I }.
Noting that exp( —2prip„yl, )=1 and that summing
over X is then equivalent to extending the integration
over the entire surface x3——constant, we Anally obtain

p(r) =o~ ' +[exp(2triy y))g +[exp( 2prift„—y.)$

' dzte{ I t+as(xs —la —xs') I }exp( 2tri pa—t), (4)

where t=at$r+az$z is a dummy variable and the inte-
gration is over the entire surface A. In .the particular
case of the Coulomb potential, the happ term diverges
and must be considered separately by a limiting tech-
nique such as that of Ewald and Juretschke. ' This term
is the average Coulomb potential and is zero in a neutral
cubic structure. It may be noted in passing that the
above is a logical extension to two dimensions of the
usual Poisson sum formula. '

4P. P. Kwald and H. Juretschke, paper .presented at the
National Research Council Conference on the Structure and
Properties of Solid Surfaces, Lake Geneva, VVisconsin, September,
1952 (unpublished).

~ The Poisson summation formula says that, for f(x) a decent
function,

Z f(g+n) = Z f f(y) expl 2nim(g y)gdy-
By letting f(x) =exp( —~tx~), the "Poisson identity" is obtained
Lace, for example, H. Hateman, Partiat Differential Eqnatipns
(Dover Publications, New York, 1944)g. It may be noted that
the method presented here for a Ar " interaction is analogous, in
one-dimension, to Lerch's theorem given there (p. 405).

For cubic lattices with
I ar I

=
I az I

=
I az I

=a and with
a (100) surface, we obtain (where tt stands for the pair
of integers nttmz), for a simple cubic,

p(r) = p{exp[2pri(nt&x&+ntzx..))}g Ep, lz(0); (5)
laM

and for a face-centered cubic with basis

we obtain

CS 8 8 CC
000; ——0; —0 —;0-—,

2 2 2 2 2.2

TAal, F. I. The double Fourier transform, E~ p(i), for an individual
interaction energy ~=Xr ".

4 Pa 4m@~

5 )a ~3m.s '

6 )a pj'ms 4

7 )a ~fgs 5

Pa '-'ms '

&,,.(o)

Xa 42se(mP+mp) &z 'ICgL2nz(mP+mp)&g

Xa '-,'nz 'L1+27rz(mP+mp)&j
Xexp L

—2grz (mP+ mp) &j
1 a 'naz~(mP+mp)E, (2-nz(mP+m ') &g

Xa '-,'nz '(1+27rz(mP+mzz)&
+ (4/3)n z'(mp+mp) j

XexpL —2s z(mP+mzz) &j
ha z-'n4z '(mP+mzz) tXat 2nz(mP+mp)&g

'G. A. Foster and R. .M. Campbell, Bell Telephone System,
Tech. Pubis. (1942). Monograph B 584.

y(r) =2 P P {exp[2tri(nt&x&+ntzxz)]}
4=0 mlm2

even

X[Ea, tz(0)+Ep, tz(zr) j
+ P {exp[2zri(rnrxt+ntzxz)j}

yg $7ff 2

odd

X [Ey, .lz(0) —En, ls(zr)j, (6)

where
lO (OD

Ep, lz(xz') =
J ) , dg&dbe{a{ $p+$z'+ (s+lz+xs )'jr}

Xexp[ —2tri(ttt&p&+tttz(z) j.
Here z= —x3 is the normal distance of the particle
above the surface and this is valid only for z &~ 0. Note
that Enp(0) is the double Fourier transform of the
individual energy and can frequently be obtained from
tables such as those of Foster and Campbell. e An im-
portant case is that in which ~=Xr " with e integral.
For convenience we shalt. list in Table I some values of
E„,p(0) for such cases. To get Ez,tz(xs') from these, one
merely replaces s by (s+lz+xz').

In Table I, E„ is the Ressed' function of the second
kind for imaginary argument. For large z, E„ is ex-
ponentially decreasing, so that the leading term in the
series is the term which falls oG algebraically. %hen z is
replaced by (z+fz+»') and the sum over /z performed
(these sums are generalized Riemann zeta functions and
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can be evaluated exactly; this is brieQy discussed at the
end of this section), this term is, of course, just the
asymptotic value of p for large s and essentially includes
the contribution of a continuous distribution of force
centers in the crystal. The advantage of the present
formulation lies in the rapid decay of the coefficients
E„with increasing p; thus series of the form (5) and (6)
converge rapidly, even if 2' is as small as half a lattice
constant.

IIL SUMMATION OVER A HALF-PLANE

In passing, we note that the same method can be
applied to calculate the interaction energy at a point
near the edge of a semi-in6nite plane of atoms if this
point is also in the plane. Consider a plane of atoms
located at x2——0 and extending from x3=0 to in6nity.
In a similar fashion to the above treatment for a semi-
infinite solid, we ean fi.nd the interaction enery with an
atom at the point x~, x2=0, s= —xa. For a Xr " inter-
action, the normal lattice. sum for a square lattice with

0-(»~ z) =~a "Z Z L(»—&)'+(z+l)sj *'"~ (7)
l=O X~

and by the use of the present method, this may be
expressed as

ys(xi, s) =ha e(2 +(s+l) '+8~ + Q m(s+l) '
l=o &=o m=i

Xcos(2~mxi)Ei$2xm(s+l) J), (8)

&4(xi, z) =Ra ' —g (s+l)'
2 lM

+n Q g $1+2~m(s+l)g(s+l) —'
L=O m=1

for computations. It should be noted that the 6rst
series in (8) and (9) are tabulated functions. The
generalized Riemann zeta function

can be expressed in terms of the logarithmic derivative
of the gamma function for non-negative integer values
of e greater than unity. ' Thus, if

then
P(s) =(d/ds):lnr(s),

( 1)n dn —1

«(z, n) = 0(s)
(e—1)!dz" i

and the first few derivatives of P are tabulated. '

IV. EXAMPLES

1.The Coulomb interaction with a semi-in6nite ionic
crystal having the NaCl structure ean be readily ob-
tained from (6) since such a structure can be considered
as two interlaced face-centered cubic lattices. The result
is the same as that given in reference 3.

2. Lattice potentials at a lattice site in the interior of
an infinite crystal.

Here we want to show brieQy how sums of the type
evaluated by Jones and Ingham' can be found by the
above method. Prinripally this is intended to show the
rate of convergence of the various series used above,
since the numerical results of reference 2 are exact to
within speei6ed limits. We will consider, for simplicity,
only the case of a simple cubic lattice and we want to
sum terms like )r " over a three-dimensionally un-
bounded crystal to find the total interaction at a lattice
point. For any value of n, this total interaction can be
expressed as

&=a A,

Xcos(2xmxi) exp[—2~m(z+1) J, '

(9) where A is a Pure number. To use the above method,
we break A „up into two parts:

where 2' and x~ are defined as before. Higher powers of
n may be obtained as follows:

If we define &f „' such that

~.(x, s) =Z ~-',

we see from Eq. (7) that

A =28„+C„,
where 8„ is the contribution of a semi-infinite crystal
whose (100) face is a distance s=1 away from the
lattice point in question, and C„is the contribution from
the 100 plane containing the lattice point. 8„ is ob-
tained from (5), and C„ is further broken up into

C =2D„+F„,

and thus

s= n'a '(s+—l) 'By '/Bs where D„ is from the semi-in6nite plane a distance s=, 1
away )and obtained from Eqs. (7) or (8) or one of
their derivativesf and F„is from the (1,0) line contain-

x & =-n-I~-2 s t -'a ' a..In+2( 4 ) 2 (+) & /
lM s See E. Jahnke and F. Kmde, Tables of Fnnclions (Dover

Publications, New York, 1945), and references therein, particu-
lar1y H. T. Davis, Tables of Higher Malhemaeicai Fnndions
(Principia Press, BloomIngton, 1935), Vol. 2. Note that Jahnke

give a closed form, but this is not usually convenient »d Kmde de6ne p somewhat differently.
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4 2.165
5 2.074
6 2.035
7 2.017
8 2.008

1.931 6.027 5.253
1.510 5.094 2.643
1.311 4.657 1.871
1.203 4.422 1.420
1.134 4.276 1.330

A~
(reference 2)

16.53 16.5323
10.38 10.3775
8.40 8.4019
7.46 7.4671
6.94 6.9458

ing the lattice point. F„simply equals

F„=2+s—",
s=l

which is tabulated in Jahnke and Emde. ~ The results
of the calculations are presented in Table II, which
also includes the values given in reference 2.

All the values calculated above were obtained by
using only the zero and erst order terms of our series.
The values given by Jahnke and Kmde~ for P„are
carried to three decimal places only. Since in addition

TABLE II. Terms in the evaluation of the total interaction at a
lattice point inside an infinite crystal, for an individual interaction
energy ~=)r ".

the numerical work was done with a slide rule, the above
calculated numbers are only good to two decimal places.
To this accuracy, our values agree with the values of
reference 2. It may be mentioned that the computations
take little time to perform; for the above, the value for
each n required about twenty minutes to obtain.

V. SUMMARY

A method of increasing the rate of convergence of
sums of central-force interactions over a rigid cubic
lattice is presented. We feel that the example con-
sidered in Sec.- 3 shows that the method is convenient
and practical to employ. Since the point at which the
interaction energy is to be found need not necessarily
be at a lattice point, it is possible, for example, to use
this procedure conveniently to obtain the long-range
contributions to the energy of an interstitial ion.
Probably its greatest usefulness lies in the problem of
evaluating the energy of atoms above the surfaces of
solids, since the distance of the atom above the surface
is usually great enough (about one lattice spacing) so
that only the erst periodic term in the series of Sec. 2

need be retained.


