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Data on the heat capacity of niobium in the normal and superconducting phases are presented in the
temperature interval 2.5'K to 11'K. The normal heat capacity c was found to be given by the usual
relation: c„=y2'+464T'/0', where y=20.4X10 4 cal/M deg' and 0=252'K. The zero-Geld transition
temperature To was found to be 8.70'K~0.10', and the heat capacity discontinuity Ac at this temperature
to be 0.0368 cal/M deg. The heat capacity in the superconducting phase was found to depart from a 2'
dependence below 5'K. The entire curve could not be represented by either the Koppe relation or the
a model. The Hz es T curve deduced from the heat capacity data was found to be very nearly parabolic,
with the value of Ho =2000 gauss and der/d 2' at the zero-Geld transition temperature equal to 453 gauss/deg.

I. INTRODUCTION

HEN a pure superconducting element undergoes
a reversible isothermal transition from the

superconducting phase s to the normal phase n at
temperature T and magnetic field Bz, the change in
the molar heat capacity c is given by

vT d ( dHr)
~H, (1)

4wdTE dT)
Although there have been direct calorimetric determina-
tions of c„and c, for several of the soft superconductors
and for a few of the hard superconductors, much of the
heat capacity data listed in the literature has been
calculated with the aid of Eq. (1) from the experimental
determinations of the relation between Hr and T (the
so-called Hr zs T curves).

The recent discovery of the isotope eGect among
superconducting isotopes has stimulated very accurate
measurements of the B~ vs T curves. In the case of the
soft superconductors, various investigations on different
samples of any given element have yielded substan-
tially the same results, whereas in the case of the hard
superconductors this has not been true. The following
reasons may be given: (1) different samples of a hard
superconductor vary in purity and internal stress, to
which the magnetic behavior seems to be very sensi-
tive; (2) the magnetic field necessary to destroy super-
conductivity at a given temperature depends on the
method used to detect the onset and completion of the
phase transition. In the case of niobium, whose zero-
6eld transition temperature has been variously re-
ported between 5'K and 9.6'K, ' ' the Bz es T curves
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were measured in only three of these investigations' ' '
and serious disagreement was found among them. Since
no reliable heat capacity data can be inferred from them„
direct calorimetric determinations of c and c, were
therefore desirable.

Many measurements of the heat capacity of pure
elements (mostly nonsuperconductors) have been made
in recent years, the principal object being to examine the
validity of the Debye-Sommerfeld relation which ex-
presses the molar heat capacity as the sum of a term
linear in T attributable to the free electrons, and a T'
term arising from the lattice, ~is. ,

c =yT+(464/0')T'. (2)

This formulation has recieved ample con6rmation from
many experimental studies on nonsuperconducting
elements. In addition the experimental results thus far
available support the fact that the behavior of the
superconducting elements mrhers maintained in the
normal phase by a suitable magnetic field also follows
the relation expressed by Eq. (2).

Until recently, direct calorimetric measurements of
the heat capacity in the superconducting phase were
were interpreted to indicate a T' dependence, as though
a superconductor had only a lattice heat capacity.
Application of the Debye T' equation in conjunction
with these measurements yielded values of a Debye
0 smaller than that appropriate to the normal phase.
A T' dependence of the heat capacity in the supercon-
ducting phase can be derived from Eqs. (1) and (2)
provided a parabolic relation between Bz and T is
assumed. Since many of the measured B& es T curves
are nearly parabolic, there seemed to be a satisfactory
consistency between magnetic and calorimetric proper-
ties in the superconducting phase, although the low
values of the Debye 0 had no theoretical signilcance
whatever. In recent years, however, much more careful
measurements of the Bp es T curves and of supercon-
ducting heat capacities have been made, with the result
that both the parabolic law and the T' dependence in
the superconducting phase have turned out to be only
approximations.
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A recent theory due to Koppe' postulates that the
lattice heat capacity in the superconducting phase is
identical with that in the normal phase. The remainder
of the heat capacity arises from the electrons and is
expressible as a function of the reduced temperature
T/Ts, this function being the same for all supercon-
ductors. This theory can be tested most favorably
using an element which (1) has a large Debye character-
istic temperature, since in this case the heat capacity
will be primarily due to the electrons, and which (2)
possesses a high transition temperature To since this
circumstance makes experimentally available a wider
range of reduced temperatures without resorting to the
adiabatic demagnetization technique.

These criteria are best fulfilled by the metals niobium,
vanadium, and tantalum. ' This paper presents heat
capacity data for the first metal of this group, niobium,
in both the normal and superconducting phases. The
related study on vanadium and tantalum is now in
progress, preliminary data having already been re-
ported for vanadium. ' The present measurements were
made on a single sample of niobium supplied by the
Fansteel Metallurgical Corporation, and speci6ed as
annealed, strain-free, and of the purest grade available.
Previous experience in this laboratory' with Fansteel
niobium indicates a purity of 99.8 percent.

II. EXPERIMENTAL METHOD

The calorimeter used in these determinations is
shown in Fig. 1. A cylindrical specimen of niobium of
diameter 1.26 cm, height 4.75 cm, mass 50.76 g (0.55
mole) was suspended by a fine Nylon thread in the
experimental space S. A carbon resistance thermometer
was mounted in a transverse hole through the center
of the specimen. Heat could be supplied electrically
by means of a coil of constantan wire (No. 40 BRS
gauge) wound noninductively around the outside of
the specimen. The heater wire was thermally bonded to
and electrically insulated from the niobium by means
of several layers of clear Glyptal lacquer each about 0.5
mil thick. Each layer was thoroughly baked before
the next was applied. The thermometer and heater
leads each consisting of about a meter of No. 40 BRS
gauge enameled copper wire were led from the specimen
to a StupakoG seal B. Connections to the other side
of the seal were brought down into the helium bath and
then out of the cryostat. The experimental space S
could be evacuated through a one-inch tube which had
an offset in the helium bath to insure that all radiation
to the specimen came from surfaces at helium tempera-
tures. The liquid helium container C (capacity 1.5
liters) was equipped with a 0.5-inch diameter tube for
pumping on the helium bath, and a 0.125-inch diameter
tube which extended below the surface of the liquid
helium, the function of which was to measure the

7 H. Koppe, Ann. Physik 1, 405 (1947).
P. L. Bender and C. J. Gorter, Physica 18, 597 (1952).

'Worley, Zemansky, and Boorse, Phys. Rev. S7, 1142 (1952).

FrG. 1.Simplified sche-
matic diagram of the
adiabatic calorimeter.

vapor pressure. The liquid helium bath was separated
from the liquid nitrogen space E by a highly evacuated
space D.

The thermometer consisted of an Allen-Bradley
carbon composition radio resistor rated at 0.5 watt and
56 ohms at room temperature. It was prepared and

,mounted as described by us in a previous publication
in this journal. ' The thermometer was calibrated in
the liquid helium range (2'-4.2'K) and in the liquid
hydrogen range (14'—20'K). A total of ninety calibra-
tion points was taken in the course of eight runs ex-
tending over a period of five months (June through
October 1951). It was found that the data could be
represented with high accuracy by a modification of
the semiconductor equation in the form

logR=A+BT '+C1 ' KT', — —

where, for this particular resistor, 3= j..90554, 8=
5.22291, C= 12.14932, and K=0.000068. A few typical
values are given in Table I. The agreement between
experimental calibration points and the empiric equa-
tion was such that over 90 percent of the points in the
helium range diGered by less than 0.002' from the
equation.

The molar heat capacity c is given by the equation

1 dQ 1 (ilr)sRIrhr
C= —'

e dT Je AT

where e is the number of moles, J is the mechanical
equivalent of heat, i~ is the heater current, E~ is the
heater resistance, d,r is the time interval during which
iII is applied, and AT is the temperature change brought
about by the e1ectrical energy input. The mass of the
thermometer, Glyptal, and heater amounted to only
0.9 percent of the mass of the niobium. Corrections for
the heat capacity of these parts of the system were used

@Brown, Zemansky, and Boorse, Phys. Rev. 84, 1050 (1951).
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TAsLE I. Typical thermometer calibration and sensitivity.

Room
temperature

20
14
9
4.2
3
2

R, ohms

56
136.2
179.6
284.3

1061.8
2553
9537

dR/d T,
ohms/deg K

~ ~ ~

4.941
11.16
39.15

583.4
2478

16 880

to provide an effective value for e which was estimated
to be in error by no more than 0,25 percent. The magni-
tude of iII was computed from the potential difference
across a 10-ohm WolB standard resistance in series
with the heater. This potential diRerence was measured
during each of the individual heat capacity deter-
minations by means of a Leeds and Northrup Type K
potentiometer. The potential difference across the
heater itself was also measured with a Leeds and
Northrup Type K potentiometer, and XII was found
to be constant at the value 96.9 ohms within 0.1 percent
over the range of temperature in which heat capacity
measurements were made. The time interval 67. was
measured by a standard electric timer which could
be read to the nearest 0.01 second. The same switch
that controlled the heater current aIso controlled the
electric timer so that the period during which heater
current was supplied was known to a few hundredths
of a second. The percentage error introduced by this
uncertainty was of the order of 0.1 percent, which, as
will appear, is not significant.

The temperature interval AT was determined as
follows. The current through the resistance thermometer
was kept constant at',',:10 microamperes by reading the
potentiaI difference across a 100-ohm Wold standard
resistance in series with the thermometer. Separate
potential leads were brought out of the cryostat from
the StupakoA' seal 8 to a Leeds and Northrup Wenner
potentiometer which was used to measure the potential
difference across the thermometer. The resistance of
the thermometer was measured at intervals of approxi-
mately ten seconds for about one minute both before
and after energy was supplied to the heater. A typical
plot of resistance vs time is shown in Fig. 2. Such a
graph was made for each of the heat capacity determina-
tions. In most of these, the fore and after period plots
were linear or only very slightly curved. Measurements
made during the heating period showed a 1inear resis-
tance variation with time as indicated in the figure.
The fore and after period curves were extrapolated
to the center of the heating interval h7-. The graph was
then used to determine RA, and AR. When the method
Keesom and Kok" was used to analyze some typical
curves the result in every case was identical with that

"W. H. Keesom and J. A. Kok, Leiden Comm. No. 219 c, re-
printed from Proc. Koninkl. Akad. K'etenschap. Amsterdam 35,
294 (1932).

obtained by measuring AE. at the center of the heating
interval as shown. The temperature appropriate to a
determination of the heat capacity was obtained from
RA„and the calibration curve. The temperature in-
terval hT was determined from the relation

AT =AE/(dR/d T),

IIL EXPERIMENTAL RESULTS

The normal and superconducting molar heat capa-
cities of the niobium specimen are plotted against
temperature in Fig. 3. The curves are constructed from
over 220 separate heat capacity determinations, each
calculated from data obtained from a graph similar to
that in Fig. 2. The value of To at which the discon-

700
I I I

HEAT CAPACITY DETERMINATION
RUN S-25 JULY I6, 195l

R„=HEATER RESISTANCE*97.0 OHMS—
HEATER CURRENT N0.900 MA.

x 690

~ 680

m 670

5
3+ 660

—650

l

6R =25.0 OHMS
i, |QT =O. IOI')

R~~ 666.7 OH
(T =5.22

I

; 5,7 67.

HEATER ON HEATER OFF

500 550 600 650 700
7 (TIME IN SECONDS)

450

Fxo. 2. Typical heating curve arith fore and after periods.

where dR/dT was computed (at the temperature corre-
sponding to RA,) from the empirical relation, Eq. (3),
for the thermometer calibration curve. In order to pre-
sent a more detailed picure of the experimental data
entering into the evaluation of the heat capacity, the
raw data appropriate to eleven typical points are listed
in Table II.

To measure the heat capacity in the normal state at
temperatures below To, a constant transverse magnetic
field of approximately 5000 oersteds was applied to the
specimen by means of an electromagnet. This 6eld was
found to be sufhcient to maintain the niobium in the
normal state down to the lowest temperatures. Although
it was recognized that a larger sample would yield better
data, the 0.55-mole specimen was the largest size that
could be used in view of the limited space over which
the 6eld was uniform.

With the exception of the quantity DT, the error in
the measurement of each of the quantities needed to
compute the heat capacity is of the order of 0.1 percent
or smaller. The error in dT depends on the accuracy
with which b,E. can be derived from the graphs of the
type shown in Fig. 2. Since the resistance thermometer
has greater sensitivity below 5'K, the value of hR and
thus hT in this range could be determined to 3 percent
or better in almost every case. Data above 5'K show
a greater scatter.
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TABLE II. Raw data for eleven typical heat capacity determinations.

Run
number

S-133
S-136
S-144
S-194
S-23
5-29
E-88
E-97
E-64
E-69
S-120

Magnet

off
off
off
off
off
off
on
on
on
on
off

R
ohms

4130
2303
1015.6
837.2
666.6
368

2066
1193.8
496.8
299.8
238.5

2.563
3.110
4.282
4.675
5.228
7.42
3.233
3.996
6.144
8.63

10.475

b,R
ohms

204
83.5
18.7
13.1
25.3

7.55
26.8
42.1
18.3
5.65
3.40

(R~= 96.9

dR/d T AT
ohms/deg deg

5180 0.0394
2095 0.03986
549.5 0.03403
380.7 0.03441
249 0.1016

72.3 0.1072
1768 0.01516
715 0.05888
138.2 0.1324
44.62 0.1266
24.87 0.1367

ohms, t/Jr=0. 435)

sec

27.29
57.07
27.52
34.81
50.00
50,00
40.00
40.00
60.00
50.00
40.00

&H
ma

0.200
0.200
0.500
0.500
0.900
1,500
0.25
0.600
1.000
1.500
2.100

C~
cal

M deg

0.001168
0.002414
0.008520
0.01066
0.01680
0.04424
0.006951
0.01031
0.01910
0.03746
0.05439

tinuity in the heat capacity occurs was found to be
g.'/0'K&0. 10' by a careful analysis of the AT values
associated with the individual points in the transition
region. This is in agreement with the value found
previously by another method in this laboratory. '

Expressing the heat capacity in the normal phase,
at low temperatures, as the sum of an electronic term
and a lattice term, as given by Eq. (2),

c =yT+ (464/O~')T',

the values of y and O~ may be conveniently found by
plotting c„/T ws T'. Such a graph for values of T up
to 10'K is shown in Fig. 4. It is seen, as would be ex-
pected, that the points immediately above To both
with and without a magnetic Geld lie on the same
straight line as those with a field below To. Extrapola-
tion of this straight line yields a value of y equal to

20.4)&10 4 cal/M deg2. The slope of this straight line

yields a value for the Debye0~ equal to 252'K. Measure-
ments of the heat capacity were made up to 20'K and
a plot of these data was published previously in"', .this
journal. '2 Inspection of this plot shows that, above
12'K, the experimental points fall below the straight
line, indicating an increase in 0 in this temperature
iange.

According to present theoretical ideas, the molar
heat capacity ie the supercomdztcting phase is also con-
sidered to be the sum of two terms, one due to the
lattice vibrations represented by the usual Debye T'
term with the morat Debye 0, and a remainder at-
tributed to the electrons. This electronic contribution,
denoted by c,", is therefore obtained by subtracting
the lattice term from the measured superconducting
heat capacity. For comparison with the current theories

Fxc. 3. Temperature depend-
ence of the heat capacities of
niobium.

.08

.07

.06

l~
O

.04-
(3

.02

.OI

0'---

NIOBIUM

MOLAR HEAT CAPACIT IES

MAGNETIC FIELD ON

MAGNETIC FIELD OFF

NQRMAI LINE

CN = 0.00204 T +,T'
(2S2 )'

~O
Q

~Q

5 6 7 8
T (TEMP ERATURE IN 'K )

I

I

I

I

I

Io
lo

I

I

I

I

I

To =I 8.7'K
I

I

I

I

I

I

I

I

~ Brown, Zemansky, and Boorse, Phys. Rev. 86, 134 (1952).The values of p and Q~ reported in this reference were preliminary

and are superceded by those in the present paper.
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Fro. 4. c/1' vs P' plot of the heat capacity
of niobium in the normal phase.

discussed in the following section, the variation in c,"
with temperature is most conventiently represented by
plotting c,"/yT against the reduced temperature T//TG.

The plot using these coordinates is shown in Fig. 5
and was obtained in the following way. A smooth curve
was drawn through all the points appropriate to the
superconducting phase. At half-degree intervals, the
value of the T' term in Eq. (2) was subtracted from the
value of the superconducting heat capacity as deter-
mined. from the smooth curve. These diGerences were
then divided by the appropriate- values of yT. Table
III lists the numerical values involved.

At T= To this reduces to Rutger's equation,

IV. DISCUSSION

The numerical values obtained experimentally for
the heat capacities may be utilized in two ways: (1) to
calculate the Hr vs T curve appropriate to a sample of
niobium which is capable of undergoing&reversible
magnetic transitions between the normal and super-
conducting phases, and (2) to test the predictions of
theories of superconductivity.

A. Calculation of the H~ vs T Curve

If a superconducting element undergoes a reversible
transition between the normal and superconducting
phases at any temperature T and magnetic Geld Hr, the
difference of the heat capacities is given by Eq. (1),
namely,

VT d ( dHT)
!hc=c„—c,= ——

I Hs
4r dT t. dT )

~r c„c, — v (Hr)'
8T sT= —— = -)

T 4

from which it is possible to compute Hz for all values of
T from O'K up to To. This integration was performed
graphically by planimeter using a plot of

pT
L(c-—c.)/T jdT

do

vs T. The data computed in this manner were used to
construct a plot of Hz vs T', which is shown in Fig. 6.
The critical magnetic field Bo necessary to destroy
superconductivity at absolute zero was found to be
2000 gauss. The points plotted in Fig. 6 are very close
to the straight line, so that the Bz —T curve is approxi-

3.0
gael5

In order to evaluate the left-hand member, c /T and
c,/T were plotted against T. The plot for c,/T was ex-
trapolated to zero at absolute zero by means of a smooth
curve. The uncertainty introduced by this extrapola-
tion was found to be negligible because the area under
this extrapolated portion is such a small fraction of
the area under the c„/T curve in this temperature
range. It can be seen from Eq. (7) that when T is equal
to TG, Hr is zero, thus the left-hand member vanishes.
A plot of the left-hand member (which is the entropy
difference) against T rises from zero at absolute zero
to a maximum, and then descends sharply, cutting the
temperature axis at To. This provides a sensitive means
for determining the zero-6eld transition temperature To.
The value of To obtained in this way was found to be
8.70'K (in exact agreement with the value found in the
preceding section by analyzing the zero-field experi-
mental points in the neighborhood of TII). There is very
little leeway in determining To in this manner since the
sharp intersection point is determined by the shapes
of the c„/T and c,/T curves throughout their entire
range. Changes in the shapes of these curves within the
limits of experimental error would produce a change
in To of only a few hundredths of a degree.

A second integration of Eq. (7) from T to TG yields

VTII fdHT t
(hc) r=r.= ——

L dT) r=r.
' (6)

which may be used to compute (dHT/dT)T=TG. For
the sample of niobium used in this experiment (Ac) T =TV

equals 0.0368 cal/M deg and TG equals 8.70'K, whence
(dHT/dT) T TG equals 453 gauss/deg.

Integrating Eq. (1) between O'K and T, we get

&n &s v ding
d T= ——Bz.-

dT

o NIOBIUM—KOPPE'S THEORY
—-—d. MODEL ((1=0.4
----cL MODEL (+=0.5)

a.0.5

O~- I I I I

0 j 2 3 4 5 .6 7 3 g I 0
REDUCED TEMPERATURE PT,

Fxo. 5. Ratio of the
superconducting to the
normal electronic heat
capacity of niobium
vs reduced temperature
Circles represent experi-
mental points; solid
curve, Koppe's theory;
dashed curves, a model.
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mately parabolic. A rigorously parabolic curve would
have been obtained if c, had been strictly proportional
to T'. The departure from T' dependance exhibited
by the experimental c, results is clearly beyond the
limit of experimental error, as shown in a previous
publication. "This departure is still not large enough
to give rise to an By—T curve that differs appreciably
from a parabola.

B. Tests of Theories of Superconductivity

On the basis of Heisenberg's theory" of supercon-
ductivity, Koppe' calculated the ratio of the super-
cor1ducting electronic heat capacity c," to the normal
electronic heat capacity pT to be a universal function
of the reduced temperature T/To, thus

2000

I 600-

i%00

lROO- ~
9

l000- ~&-

&

8'00- g

400

200

1

N1QBIUM

~HT VS T
(FROM CALORIMETRIC DATA)

D LINE

H, =200G I-(8—7}g

+

c," f(T/To)

T/T p
lO P.O 40 50 60 70 80

The right-hand member was recalculated for various
reduced temperatures by R. D. Worley of this labora-
tory, and the results are listed in the last column of
Table III. The value c,"/yT as determined from
Kopp's theory is plotted against T/To as the solid curve
in Fig. 5. It is seen that the experimental points do not
agree with Koppe's theory. Similar graphs of the ex-
perimental results on tin and indium, and of tentative
data on vanadium and tantalum9 also indicate a rough
agreement with the shape of Koppe's curve, but no
real agreement in detail. It may be concluded that ex-
perimental measurements of c," do not support the
contention that c,"/yT is a universal function of T/To.
In other words, it may be suspected that Koppe's
theory, although qualitatively correct, is too inQexible

TABLF III. Smoothed data giving the ratio of the superconducting
to the normal electronic heat capacity of niobium.

Fn. 6, IIT es T curve for niobium calculated
from calorimetric data.

and might be made to agree more closely with experi-
ment by introducing an adjustable parameter, different
for each superconductor.

In an attempt to explain the slight departure from the
parabolic relation between the critical magnetic field
and temperature displayed by the precise experimental
measurements of Maxwell on tin, thallium, and indium,
Marcus and Maxwell" have recently extended the two-
Quid theory of Gorter and Casimir. '5 According to this
theory, the electrons in a superconducting metal are
assumed to undergo a sort of condensation below the
transition temperature To. The fraction m of the elec-
trons that are in the superconducting state is assumed
to be a function of T/To. The number of normal elec-
trons E(~) was assumed by Gorter and Casimir to
depend on co according to

0
0.5
1'.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6,0
6.5
7.0
7.5
8.0
8.5
8.7 (To)

cal

M deg

0
f0.00001)a
f0.00005j
fO.OOO17 j
f0.00044j
0.00103
0.00216
0.00403
0.00668
0.01004
0.01410
0.0190
0.0247
0.0313
0.0389
0.0475
0.0576
0.0690
0.0738

C (lattice}
cal

M deg

0
0.000004
0.00003
0.00010
0.00023
0.00046
0.00079
0.00125
0.00187
0.00266
0.00365
0.00486
0.00631
0.00802
0.01001
0.01232
0.01495
0.01793
0.01923

0
0.000006
0.00002
0.00007
0.00021
0.00057
0.00137
0.00278
0.00481
0.00738
0.01045
0.0141
0.0184
0,0233
0.0288
0.0352
0.0427
0.0511
0.0546

0
0.058
0.115
0.172
0.230
0.288
0.345
0.402
0.460
0.517
0.575
0.632
0.690
0.747
0.805
0.862
0.919
0.977
1.000

C el

cal
l'/I'o

M deg (Tp =8.70'K)

Csel

vT

0
0.0059
0.0098
0.0229
0.0512
0.1118
0.2239
0.389
0.589
0.804
1,024
1.257
1.496
1.753
2.02
2.29
2.61
2.95
3.07

C„el

vT
(Koppe's
theory)

0
0

0.0012
0.016
0.078
0.184
0.330
0.500
0.700
0.905
1.12
1.32
1.54
1.76
1.99
2.21
2.42
2.63
2.71

E(co)= (1—co) &.

On this assumption it was possible to derive the para-
bolic law for the threshold field curve and with it a T'
dependence of c,". Marcus and Maxwell made the
assumption that

K(rv) = (1—a))"

where n is a constant less than ~ and different for
different elements. It was found. that the resulting form
of the threshold field curves agreed well with Maxwell's
experiments when values of e were chosen between 0.50
and 0.38. On the basis of this "n" model, it was found

Brackets indicate extrapolated values.
' P. M. Marcus and E. Maxwell, National Bureau of Standards

'3 W. Heisenberg, Z. Naturforsch. 2a, 185 (1947); Ann. Physik Report 2496 (unpublished).
3, 289 (1948). '5 C. J. Gorter and H. Casimir, Physik. Z. 35, 963 (1934).
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that

ca 1+@
(T/T )2a((1—a)

QT 1 tx

The dashed curves in Fig. 5 are plots of this equation
for two diGerent values of n. It may be seen that the

niobium data do not fit any of the o, curves, so that
it may be concluded that there is as yet no theory of the
heat capacity of superconductors which is in satis-
factory agreement with these experiments.

The authors gratefully acknowledge the assistance of
Mr. L. Lesensky, Mr. B. Smith, and Mr. R. Worley
in carrying out the measurements.
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The Vibrational Spectrum and Specific Heat of Sodium
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The frequency spectrum of the normal vibrations of a body-centered cubic crystal lattice is derived by a
method suggested by Houston, in which the secular equation is solved along three lines in the reciprocal
lattice and the result is interpolated by means of suitably chosen spherical harmonics. Some corrections are
applied to the high-frequency part of the spectrum, and the lattice part of the specific heat of metallic sodium
is calculated as a function of temperature.

I. THE PROBLEM

' 'N the theory of ideal metals one considers eGectively
~ ~ free conduction electrons moving in the field of a
lattice of positive ions. These conduction electrons
move very fast compared with the ions of the lattice,
and are relatively weakly coupled to them, so that an
"adiabatic" separation is always made as follows. In
considering properties of the conduction electrons one
regards the ions as at rest or at most vibrating as a
perturbation (to give the thermal part of the resis-
tivity); conversely, in the study of lattice properties
such as the specific heat at intermediate temperatures
and a large part of the elastic constants, the lattice is
regarded as held together by the "smeared-out" field
of the electrons.

Here we are interested in calculating the specific heat
of metallic sodium at moderately low temperatures,
i.e., between about 10'K and 100'K, and in this region
the only effective contribution comes from the lattice
of ions. At extremely low temperatures, the electronic
contribution to the specific heat becomes important,
while at high temperatures the specific heat has ap-
proximately the value predicted by classical equipar-
tition, but with some disturbing eQects believed to be
due to the large amplitude of the lattice vibrations and
consequent anharmonicity and also due to the electrons.
There is an additional disturbing eGect in the case of
sodium giving a peak in the specific heat at about
7'K.' Such eGects are known to occur in a number of

*National Research Laboratories Postdoctorate Fellow. Present
address: Mathematics Research Group, New York University,
New York, ¹wYork.

G. L. Pickard and F. E. Simon, Proc. Phys. Soc. (London) 61,
1 (1948). The speci6c heat of sodium up to 300'K has been
measured by F. E. Simon and W. Zeidler, Z. physik. Chem.
8123, 383 (1926).

the crystal. Then, to get physical results, we apply
substances: they may arise because of changes in
crystal structure, but in any case they cannot be
accounted for in terms of lattice vibrations.

To calculate the specific heat we just have a statis-
tical knowledge of the degrees of freedom of the ions.
For this purpose it is convenient to regard the ions as
making up a lattice and to study the frequency spectrum
of the lattice vibrations, which are the normal modes of
the system. The reason for doing this statistically is
that in a macroscopic crystal there are 1023 ions, i.e.

3)&10"degrees of freedom.
The best method that gas been developed so far for

obtaining the frequency spectrum is that of Born and
v. Karman, ' who set up the classical equations of motion
of an ion interacting with its close neighbors, with given
force constants as parameters. These parameters are to
be determined from the elastic constants of the lattice.
With the use of Born's cyclic boundary conditions, the
condition that the equations of motion have a non-
vanishing solution corresponding to small harmonic
vibrations of the ions about their equilibrium positions
gives the secular equations. Thus, if there are 2V atoms
in a three-dimensional lattice, there are E distinct
3X3 secular determinants in the simplest case; these
have 3S roots, the frequencies of the normal modes of
vibration. We are interested in finding the frequency
spectrum of these 3E vibrations, i.e., finding how many
of them lie in any given frequency range. This frequency
distribution is obtained by solving a suitable number
of the X( 10") secu1ar equations.

Thus we obtain a frequency spectrum by setting up
classical equations of motion in terms of certain force
constants which are related to the elastic properties of

s M. Born and T. v. Karman, Physik. Z. 13, 297 (1912); 14, 15
(1913).


