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Following Fock,s let us denote the operator i)'scan;n;ci/a*;
by I., and its quantum-mechanical average by I0. Then
from Eq. (6)

cl & t' i)1p $—Ls s——It—c P P*n,
) gx, —

) dr+(go:, F;).
' ax; *( i 'ax, ).

(7)

For the case of a hydrogen atom, for example, P vanishes
at infinity, the first term on the right of (7) is zero, and
we arrive at Pock's result. However, in some cases of
physical interest other boundary conditions arise.
Einbinder, ' for example, has considered a system of
free electrons enclosed in a finite volume. He has applied
Fock's result to this case, arguing that the virial of the
pressure p is —3pv, where v is the volume. In fact,
however, Fock's result is not applicable to this problem,
whereas Eq. (7) can be used. The boundary conditions

r H. Einbinder, Phys. Rev. ?4, 803 (1948).

in this case are the periodicity conditions, and one can
evaluate the first term on the right of (7) using the
explicit wave functions of Darwin, ' representing an
electron confined in a volume v. The result is simply—3pn, thus verifying Einbinder's form of the theorem.

In this case, then, it appears that the first term on
the right of (7) can be interpreted as the contribution to
the virial arising from the forces represented through the
boundary conditions rather than through an explicit
potential in the Dirac equation.

It would be necessary to consider the 6rst term on
the right of (7) when dealing with the problem of an
electron in a spherical hole in the manner of Broch, '
and it is also clear from (7) why the result of Rose and
YVelton' cannot be applied to continuum states.

The writer wishes to thank Dr. G. L. Sewell for a
critical reading of the manuscript.

' C. G. Darwin, Proc. Roy. Soc. (London) A118, 654 (1928).' E. K. Broch, Phys. Rev. 51, 586 (1937).
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The relativistic corrections to the Lamb shift, i.e., terms of order n(Za)'nice, are calculated. For this pur-
pose, the Lamb shift is separated into one term in which the Coulomb potential acts only once, and another
term in which it acts two or more times (Sec. II). The one-potential term is shown to be equal to the ex-
pression calculated in previous papers except for corrections of order a(Zn) (Sec. III), and a method is
given by which these corrections could be evaluated if desired (Appendix). The many-potential term can
be separated into a nonrelativistic part which is again equal to the term calculated in previous papers, and
a relativistic term which can be calculated by considering the intermediate states as free (Sec. IV). The
calculation of the latter term which, of course, involves the Coulomb potential exactly twice, is described in
Sec. V. A correction to the vacuum polarization term which is of the same order, is evaluated in Sec. VI.

The result for the relativistic correction is 7.13 Mc/sec, and is in agreement with the result of Karplus,
Klein, and Schwinger which was obtained by an independent method. The result for the complete Lamb
shift has been given in a recent paper by Salpeter. The small remaining discrepancy of 0.6 Mc/sec between
theory and experiment might be due to the next order relativistic correction which should be of order
a(Zn)' 1n(Za).

I. INTRODUCTION

INCR the 6rst accurate measurement by Lamb and
Retherford' of the displacement of the 2S level of

the hydrogen atom now known as the "Lamb shift, "
theoretical calculations, based on quantum electro-

*Part of the material presented in this paper, in particular
Sec. V, is taken from the Ph.D. thesis of M. Baranger (Cornell
University, June, 1951).

t Partially supported by the U. S. OKce of Naval Research.
t: Now at the California Institute of Technology, Pasadena,

California.' W. E. Lamb, Jr., and R. C. Retherford, Phys. Rev. 72, 241
(194/).

dynamics and using the mass renormalization pro-
cedure, have been given by several authors. ' ' A simple

way to obtain their result is to start from the operator
for the radiative corrections to scattering' t F II, Eq.
(22)j, or more exactly its limit for small momentum

~ H. A. Bethe, Phys. Rev. 72, 339 (1947}.' N. M. Kroll and W. E. Lamb, Phys. Rev. 75, 388 (1949).
J.B.French and V. F. Weisskopf, Phys. Rev. 75, 1240 (1949).

~ R. P. Feynman, Phys. Rev. ?4, 1436 (1948), corrected by
Phys. Rev. 76, 769 (1949), reference 13 on p. 777.

6 J. Schwinger, Phys. Rev. 76, 790 (1949).
r R. P. Feynman, Phys. Rev. 76, 769 (1949), referred to as F II.
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transfer LF II, Eq. (24)j,s

4qs ) m 3y-
(qV—Vq)+ Vi ln——i,

4n. 2m 3m' ( X 8]

to) tb) (c)

where q is the 4-momentum transferred by the poten--
tial V and X a fictitious "photon mass. "The level shift
is simply the expectation value of this operator for the
state in consideration. But there is an infrared catas-
trophy, i.e., the result becomes infinite when ) goes to
0. For this reason, X is not put equal to 0, but the result
is added to the nonrelativistic Lamb shift, '

P„~p„s~'(E„—Ep) ln
IE-—Esl

(2)

which is certainly correct for very small photon energy.
p 0 is the matrix element of the electron momentum
between the state under study its and another state
f„of the hydrogen atom. Es and E„are the energies of
these two states. K is an ultraviolet cutoG. French'
has shown that the correspondence relation,

ink = ln (2Ã) —s, (3)

should be used. It is then found that ) or K disappears
from the total. To terms (1) and (2) should still be
added the so-called "vacuum polarization" term, con--
sidered here in Sec. VI. The numerical work given by
Bethe, Brown, and Stehn, ' and corrected by Salpeter"
for eGect of the finite mass of the nucleus, gives the
result 1051.0 Mc/sec for the 2S; 2Pf transit—ion in
hydrogen.

In the meantime, experimental accuracy has been
much improved. The recent experiments of Triebwasser,
Dayhoff, and Lamb" yielded 1057.77&0.10 Mc/sec
for hydrogen and 1059.00&0.10 Mc/sec for deuterium,
thus leaving room for more accurate calculations.

It can be seen )reference 2, Eq. (11)j, that the non-
relativistic term (2) is of order rr(Zn)' ln(Zrr). The ex-
pectation value of the operator. (1), called in the follow-
ing the "one-potential Lamb shift, " is of order rr(Za)4
The purpose of this paper is to evaluate all corrections
of order Zu with respect to the main term, that is terms
of order o.(Zn)' ln(Zn) or a(Zn)s. Among all terms in
n', these can be characterized as the one-photon part
of the Lamb shift, represented by the diagrams of Fig. j..

Units and notations: A=c=1. m is the electronic mass, e the
positive quantum of charge in nonrationalized units. s' =n= 1/137,
V= —Zes/r is the Coulomb potential energy. A is a 3-vector, of
components A; (i=1; 2„3) and length A. 8 is a 4-vector, of com-
ponents A„(p=0, 1, 2, 3}.The summation convention is A„B„
=A(+0—A181—A+2 —A3+3. The fundamental tensor b„, is such
that B„„A,=A„and b»=4. The conventions for Dirac matrices
are: y;= pn;, y0 ——p, A=y„AI„, V= y„t/'„= —pZe jr. Dirac's equa-
tion reads (P—m)|t = Vig. f=P*P is the relativistic adjoint of rP,
P* being the ordinary Hermitian conjugate. X is the infinitesimal
mass of the photon.

~ Bethe, Brown, and Stehn, Phys. Rev. 77, 370 (1950).' E. K. Salpeter, Phys. Rev. 87, 328 (1952); 89, 92 (1953).
"Triebwasser, DayhoG, and Lamb, Phys. Rev. 89, 98 (1953).

FIG. 1. Diagrams for the one-photon part of the Lamb shift.
In these diagrams, the electrons should not be considered as free,
but as bound electrons propagating in the 6eld of the nucleus.

Terms of order n'( Zn)', or two-photons parts, are not
considered. Terms of order n(Zn)' or rr(Zn)' 1n(Zn) are
neglected throughout. However, a method for evalu-
ating some of them is given in the appendix.

The main part of the paper is concerned with dia-
grams 1(a) and 1(b). The vacuum polarization diagram
1(c) is evaluated at the end.

II. SEPARATION OF TERMS

The energy shift contributed by diagram 1(a) is easy
to write down by a straightforward modification for a
bound particle of the argument, given in F II, p. 773.

~ h~L(gs —p)'jdsxsdsx, d (ts —tr),

where Ps(g) is the electronic wave function, normalized
by

lt'o(F)W' 4)»= ~4'o*(K)4' b)d'x=1,

E+"(p, p) is the kernel for propagation of an electron
bound in a hydrogen atom" [F I, Eq. (15)), 8~ is de-
fined in F II, and t is the time component of g.

Diagram 1(b) comes from the following cause: We
use everywhere the propagation kernel E+&~, com-
puted with the physical or measured mass nz&, and
solution of the equation"

(s+s V(Ks) ™r)++r(r» 7r) s~(jets Kr) ' (5)

But we really should use the kernel E+0~, computed
with the bare mass mo=mi —Am, and solution of the
equation

A solution of the last equation correct to first order in
5nz is

&+s'(rs, Sr)=&+r (rs rr)

+s, ' &+t'(rs, rs)~~&+r'(Zs i'r)d'Ks

'~ R. P. Feynman, Phys. Rev. 76, 749 (1949), referred to as F I.
» Here v& stands for the vector (8/W, —8/Sz, —8/Sy, —8/ss) .
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The correction gives the following contribution to the
transition amplitude from fo to Po'.

z~m 4o(K)A(F)d47,

and therefore the following energy shift:

were then fitted together. Our first aim will now be to
make a rigorous separation of (10) into one part which
is of first order in V, and another part involving the
potential twice or more often.

We can perform this separation most easily using
operator notation. The kernel E+~ may be written as:

iK+—v= (P—m)
—'+(P—m) 'V(P —m) '

+(P—m) 'V(P —m) 'V(P —m) '+ (11)
AEo= Am ~ P—o(g)fo(g)d'x. (6) where p stands for the momentum operator p=iV.

Equation (11) may be formally simplified into
In this paper, the convergence factor defined in F II,

p. 776, will be used. Therefore, we replace hm by"
iE~v=—(P—V—m) '. (12)

hm= (e'/2zr)m[3 ln(A/m)+-', 7.

The most important part of the Lamb shift is therefore
given by DE,+AEo. As usual, it is easier to work in
momentum space. Define

4o(g) =go(x) exp( —zEof),

In (12) there occur the noncommuting operators p
and V; Eq. (11) defines the order in which these opera-
tors should be applied.

The expression (12) for E+v follows, of course,
naturally from (5). We shall use (12) essentially in
one way only. Ke know that

i(p —V m)E+v=— iE+v(p —V—m) =—1, (13)

zoo(p) = (2zr) —,
' Po(x) exp( i p —x)dzx,

V(q) = (2zr) zJ~V(x) exp( —izf. x)d'x

(Zez/2~z)P/qz (gb) AE, = —z(e'/zr)
~

Po7„exP(—z'f g)

(g ) where 1 is the unit operator. This follows directly from

(5), or from (11),by straightforward algebra.
The expression for AE is

&+'(rz, rr) = (2~) ' &+'(Pz, Pi)
~ (P—V—m) 'Y„exp(if g) y(g-zd'f. (14)

&«xp( —zP2 K2+zgl $1)d Pzif pl (9)

1~+ (P» Pi) =~(Ez Ei)++ (E Iz& Pi), (9a)

where E is the time component of l). This part of the
Lamb shift then becomes

&E +o= —(& /zr) tgo(pz)p„&+ (Eo—ei; pz —k, pi —k)

The exponentials give the space-time variation for the
emitted and absorbed photon which has been expanded
into components of momentum f. The operator p=iV
acts on everything that follows it, i.e., on po, on V
inasmuch as is required by the defining Eq. (11), and
on exp(if g). The exp(if g) commutes with all quan-
tities except p, and exp( —if g)p exp(if g)= p —k so
that (14) becomes"

—~m) o o(lz) z o(lz)d'Iz.

&o is the time component of f. d'fv means d'f/4zr' and
will make it easier to use the formulas in the appendix
of F II, where d'f is defined in this manner [see ap-
pendix of F II, second line after Eq. (1a)7.

Expression (10) is exact, for diagrams 1a and 1b,
i.e., for the part of the Lamb shift involving one virtual
photon, exclusive of vacuum polarization (diagram 1c).
The difhculty of the problem comes entirely from the
lack of a convenient expression for E+~. In previous
treatments, e.g., F II, the kernel E+~ was approximated
in the relativistic region by an expression of first order
in the Coulomb potential V, and in the nonrelativistic
region by the ordinary Schrodinger kernel; these parts

' A and X stand for P and A, ; of F II, respectively.

AE.= z(ez/zr)—
,

"pg „(P—k —V—m)-'y„z of
—zd'f. (15)

Now p=iV only acts on iso and on V as required, no
longer on exp(if g); f is a c number. The function zoo

satisfies the Dirac equation,

(p —V—m) q&o ——0.

We shall now rearrange the integrand in (15),

'~In any expression involving operators one can perform an
equivalence transformation:

gj(Q g ~ ~ o)g 1 f(g g ~ ~ r)

where''=SOS ', etc With S=exp.( ii' 1), and f—= (p —V—m) '
vie get

exp( if r)(P —V——m) ' exp(if r) = (P' —V'—m) '

V =exp( —'r. ~) V expt,"r ~)= V,

and P'=exp( —zf r)P exp(if r)=P—A.
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by use of the following lemma:

ppA+Ap, pbA+Ap,
A= (pp —m) (p.—m), (17)

which is valid for any operator A which causes the
momentum to change" from ll, to pp

The identity (17) is verified by direct algebra using
the fact that p '=ll, ' is free of Dirac operators. We
apply (17) to re-express the left hand y„ in (15a) (which
replaces A), with fib= p, p, = ll —f and obtain

1 p[(P—m)B„—B„(P—k—m)$
X (P—7t —V—m) 'y„yp, (18)

with

potential acts at least twice, once with the emission of
the virtual photon (term VBt—BtV) and once with its
absorption. In addition, the potential may also act in

the propagation kernel E+ . Thus in (21b) are con-

tained all terms in which the potential acts twice or
more, and they are cleanly separated from the terms
involving only one or no potential, thus fulfilling the
first point of our program. "

It is interesting to note that in (21b) the emission

and absorption of a virtual photon is coupled with the
action of the potential. This expresses the physical fact
that emission and absorption. can only take place when

there is an external 6eld acting on the electron.
It is convenient to introduce an abbreviation for the

expression which occurs repeatedly, vis:

(18) may be rewritten:

VB„—B„V=M„,

and M„~ correspondingly. Then we have explicitly:

(23)

2p'. —~P~.(Pr ll' —f) = V(u~ —p')
2p,"f—f'

,[(p—V m) B„—B„(p —ft V——m) j—
X (p —0—V—m)-'y„pp

+g&p(VBp B V)(p —A —V m) —'p„yp (20. ) 2pfi

, V(I f—I '), (24)
2llf f f'—The erst term vanishes because q 0 satisfies the Dirac

equation (16), and the second term is simply and

(21) 2pip ftYp~ '(g~ —
& ll)= V(11f—li)

f' —2P,"f
Po~p+p, go

In the last term of (20) we now transform the second

y„, again using the lemma (17). This time p =ll and
pb=P f and —the last term of (20) becomes

II+III
= (pp(VB„B„V)(p ft —V—m) '— —

.[(P—k—V m) B„t B—„t(P V——m)](pp —(22)
+pp(VB„B„V)(p 7t —V rN) '(—VB—,t —B„tV)y„—

with
(p &)v.+~.p 2p—. &v. —

g„t=
2 2 2 2

(19a)

The first term of (22) gives

II= pp(VB» B,V)Bpt pp — (21a,)

the second vanishes, and the last term is

III= Pp(VB„B„V)(P 0——V—nz)
—'—

X (VB„t B„tV) ~, (21—b).
The term (21b) is now the only one which still contains
the propagation kernel in the Coulomb field, EC+~. Of
the other two terms, (21) does not contain the potential
at all but is a self-energy for a free particle which will

largely cancel the mass renormalization d,m. (21a) is
the one-potential part of the Lamb shift. In (21b), the

' More generally, pt, and p, can be thought of as operators
ordered according to the rule /see R. P. Feynman, Phys. Rev. S4,
10S (1951l3 that li, precedes and pp follows the variables in A;
the y's operate in the order in which they are written.

where M„ is the operator relativistic adjoint of M„.
V(pf —p,) is the Fourier component of the Coulomb

potential corresponding to a momentum change pf —p;..
The operator M„~ corresponds to the emission of a
quantum of momentum f and polarization li; the elec-
tron has initially the momentum ll; and after emission
the momentum ll~

—f, so that the total final momentum
of electron plus quantum is ll~, the initial and final

momentum of the electron are put in evidence as the
arguments of M„~. M„corresponds to the absorption
of the same quantum; the momentum of the electron
before absorption is p;—f, after absorption llew. We shall
call M„t and M„"radiation operators" or, specjLGcally,

emission and absorption operators. "
We can now collect the various parts of the Lamb
' The same aim could have been achieved by using the more

straightforward identity:

E++=K+ —iE+o VK+o K+o yK+v yK+o

But our method presents certain advantages which will become
evident later.

' The method given here for separating the electrodynamic
shift into three terms such as {21), {21a), and {21b), has been
used previously, in connection. with the radiative corrections to
hyperfine structure, by N. M. Kroll and F. Pollock, Phys. Rev.
S6, 876 {1952).
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shift and get

»~0 = »2+~&1

»2 (e /or) 400 (p2)~ (p2 p2 fI2 f)

XE+v(E0—01; y2 —s2 —k, pl+ sl —k)

XM„t(Pl+01—f, Pl)

X 4oo(pi) f 'd'fod'pld'yod'sld's2,

»1 ~+»+»12+»»+»14)
e f 2P2}g +ok

Ell ' 400(p2) V(p2 pl)
~i~ f2—2p, f

any diBerence which way they are defined, provided it
is done consistently. One could for instance take their
principal values, but it seems easier to define them in
the same way as the others, the ones that come in the
propagation factors. Therefore when integrating over
ko we shall take the contour of integration to go below
the left-hand pole of (f2—2p f) ', and above the right-

(25) hand one, as usual. In subsequent integrations, in case
a pole still appears, we shall assume that the absolute
value of the time component of P, Eo, has a small nega-
tive imaginary part. These poles might then give
imaginary contributions. But we expect the whole
imaginary contribution from them to cancel at the end,
since they are just artificial poles. Therefore we shall
ignore it.

2p,„—ky„
0 0(yl) &'d'&~d'yld'y2,

f' —2pl f
e' 2pl„—y„k»»= —.

~
00(y2)I'(y2 —yl)

mz~ f2 —2pl I'

2p ly,
—k'ro

~ Ooo(pl) f-'d'fo'd'yld'y2, (26)
f' —2pl f'

e (' 2po —'yak»»= —.' 40(y) v, oo(p)f 'd'&~d'y,
or2& f'—2p f

»14= —
&4N) 0-0(y) 4 0(y)d'y.

In (25) and (26) the p's have time component Eo and
the 0's have time component 0. M„(P2, P2—52—f) is
obtained from Eq. (24) by replacing Pf by P2 and P;
by P2

—52', similarly M„t comes from (24a) replacing P;
by Pl and Pf by P,+51.

Of the terms in AE1, Eq. (26), »» and»» arise
from (21a) and thus contain one potential; »12
arises from (21) and contains no potential at all; »14
is the mass renormalization term, i.e., the last term of
(10). The entire term»1 will be called "one-potential
Lamb shift" and treated in Sec. III. AE1 is identical
with the term evaluated in references 3 to 6, except for
the fact that, here, the momenta are not free particle
ones: Pl', P2', P'N2242, and po20/222q 0. »2 will be called
"many-potential Lamb shift. "It arises from (21b) and
it contains the nonrelativistic Lamb shift (2); it will

be treated in Secs. IV and V. It should be noted that
Eqs. (25) and (26) are still exact, and approximations
will only be made in the evaluation.

The poles that appear in the propagation factors
(p—222)

' and f-2 will be defined in the usual way by
giving to the masses of electron and photon a small
negative imaginary part. But, in Eqs. (17), (24), (24a)
above, a new kind of pole, (f2—2p. f) ', has been intro-
duced, and has to be defined in some way. Since these
poles are spurious, i.e., disappear when the two terms
in the right side of Eq. (17) are added, it does not make

III. THE ONE-POTENTIAL LAMB SHIFT

The integration over f in (26) can be performed by
using the methods of the appendix of F II. First define
Il and I2, functions of yl and p~, and I3, function of y, by

»»= (e'/or) ~ po (y2) Ilooo (pl) d'yld'y2,

»12 (e /or) 020(p2)I2po(pi)d pld p2

»»+»14=(e'/~) 00(y)I20 0(y)d'p

Il, for instance, can be written

1
t

2p2„—y„k 2pl„—fry„C(f')
Il i V d4fo,

i~ f2—2p2 f f' —. 2pl f

where C(f') is a convergence factor, which will enable
the integral to be performed at the limits of both small
and lar e f. S ecificall we takeg p

I 'C(f')=(f' —ll') '—(f'—A') '= —
~ dL(f' —L) '.

dgs

Next we define three expressions Jo, J, and J„by
1

t (1;k„k.k,) C(f2)
J(o;.;.,)=- ' d4fo.

i~ (f'-2p2 f)(f'-2p, f) f'

These integrals are easily evaluated by the usual tech-
nique of combining denominators with auxiliary vari-
ables I F II, Eq. (14a)]. The result is

1

Jo ————~t (dx/p ') in(p, 2/X2),

1 t' p .p„B., ( h.2J„=——, dx ——)ln—-(,
8~0 p,' 2 I p.' 2)
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where
p~=xp2+ (1—x)pi, (27) Id= —(V/2) t dxt (pi pq/p, ') —1) In(p, ~/Eo'), (29d)

and it has been assumed that A and X are, respectively,
very large and very small, compared to all momenta
involved. I& is given in terms of Jp, J„and J, by

Ii= 4p~, Vpi, jo—2 (p~, Vv.v,+y,v.Vpi.)&.
+VPVKVYTVlk JIFT'

I.=l ~ (d /'p')(p Vp Eo—VP*),
~p

I~ (3m——/4) ln(m'/p') P (p2 —yi)+3 V/2.

(29e)

(29f)

After summing over repeated indices, and making some
algebraic manipulation in order to bring P2 to the left
and Pi to the right of V, we find

1

I,= —
e V—-', p, p, V " (Ch/p. ') ln(p '/a')

~p

+-,' V Cx in(A'/p ')+-'J (Ch/p. ')
0 p

.f/(1 —x)pi'+xp2+2pI'pl]V+p2Vpl EOVPx}

(28)

= VL-,' In(P'/X') —In(A'/P')). (28a)

In I2, p has been written instead of p, , since the result
is symmetric between pi and p2. One can, for instance,
use I2/2 with p replaced by pi, plus I2/2 with p re-
placed by p2. For I3 we find, after using Eq. (7),

1 t 2p„y„k C(—f') vr

Ia= — y„— d4f p ——hm
i~ P—2p f f' e'

= ~$(p —m) (In(A'/p')+ i)+m In(m'/p')) (28b)

I2 is computed in a similar fashion. The J s are the
same as for Ii, with the additional simplification that
the two momenta are the same and that there is no
auxiliary variable x.

1 ( 2p„—p„k 2p„—ky„C(f')
Ig= ——V ~ d'fp

f2—2p. f f' —2p f

I = Vln— dx
E,J,

[2x(1—x) —1]q'+ (1—2x) (P22—Pim)

X (30)

Since the most important Oiomenta in the hydrogen
atom are of order net, the main contribution can be ob-
tained by replacing p,2=ED' —p,' by E0'. Also ED
=m(1 —order n') can be replaced by m. After integra-
tion over x, we obtain

I.=,'(q'/m') V ln(m/X). (30a)

It is shown in the appendix that the error is actually of
order n(Zn)' InZcx. The same reasoning can be applied to

V ~' L3x(1—x) —1)q'+ (1—2x) (p,'—p,')
Ip= — dx- (31)

It will now be shown that, except for a non-gauge-
invariant part discussed later and which is canceled
by a similar term in the many-potential Lamb shift,
the terms of order n(Zn)' in AEi are given by the ex-
pectation value of the operator (1). Moreover, as dis-
cussed in the appendix, there are no corrections of order
n(Zn)' to that. " Therefore, to the approximation de-
sired, the 6rst-order Lamb shift is just equal to what
has already been calculated in references 3 to 6.

First, let us examine I,. p,' can be replaced by
x'Pp'+(1 —x)'Pi'+2x(1 —x)Pi P2 and Pi P&

———,'(P2'+P'P
—q'), where q=p, —pi, so that

In Ia, we can replace P—m by V, since it operates
on q p, solution of Dirac's equation. %hen I~, I2, and I3
are added together, we find that A. disappears, as ex-
pected. After some rearranging, the result is

hE& ——(e'/~) po(p2) (I + +I&)po(pi)d'pid'p2, (29)

—-', (q'/m') V.

For I., we write

(Eo'—pP) (Eo'—p2')
I,= —' dxln

8 g (E2 p '2)2

(31a)

(32)

and we can keep only the first term of an expansion in
powers of p'/E, ':29'I.= V In(X/Eo) (pi p2/p. ')Ch —1,

0 1

I~~(3V/8) "dx(2y. '—pi2 —yP)/E02.
0I =(v/2)

J (c*/p.')L(1-h)p"
0

+xp22+2pi. p2) 3V/2 (29b) ABer replacing Eo by m, and integrating over x, we
obtain

I.= (3V/8) ChinLp, -'pp/(p 2)2)
dp

(29c)
I ='(q'/m') V. (32a)

"This fact was 6rst pointed out to the authors by N. M. Kroll.
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That this is true including order n(Zn)o, and also that
I~ does not contribute in the same order, is shown in
the appendix.

I, can be transformed by writing its numerator

(po m—) V(p, m—)+m[(po m—) V+ V(pi —m)]
—EoV(p, —m)+m' V—Eom U,

the integrand in If can be written

2x(P —m) (P' —m') (P—m)'

m[p'x+m'(1 —x)) y'x+m'(1 —x)
f

2x[2m(P —m)'+ (P—m)']

m[y'x+m'(1 —x)]

(p—m)'

p'x+m'(1 —x)

3m p' (4x—1)(P—m)'
If ~ (P& Pi)

4 "o P'x+m'(1 —x)
= (e/~) ooo(yo)I. po(pi)d'yo&yif-

2x(p —m)'
dx. (35)

m[y'x+m'(1 —x)]'

~1
= (e'/2~) ) d'pfd'p'd'pod'pi

~ (dx/0*')
~0 The first term in the bracket of (35) can be approxi-

mated by replacing its denominator by nz'. The error
involved in this and in neglecting the second term is of
order n(Zn)o 1nZn, as shown in the appendix. Therefore,
using Dirac's equation for the erst term,

o o(yi) QV(y~ —yo) U(p2 —pi) U(pi —p') (33)

+(m —EoxP) U(yf —yo) U(p —p )~'(yi —p')

+ (m Eo(1 x)P) V(P2 pl) V(pl p')5 (pf P2)

+m(Pm —Eo) V(po —pi)~'(pf p~)~'(yi —p')]ooo(p*)

DEii (3e'/4mm)(ooo*
i P V'

i po). (36)

However, such a term cannot contribute on physical
grounds, because its value depends on the gauge and
would be changed if a constant were added to the po-
tential. Indeed, it will be shown that this term is can-
celed by an equal and opposite one arising in themany-
potential Lamb shift. This term being omitted, the
first-order Lamb shift (29) is equal, within the accuracy
desired, to the expectation value of e'/or times the sum
of the operators (30a), (31a), (32a), (34), that is exactly
the expectation value of (1), so that no corrections of
order n(Zn)' have been found here.

The term with 3V's is of order n(Zn)o lnZa, since it
involves essentially n(Za)' times the expectation value
of r ', with a cuto6 for radii of the order of the Comp-
ton wavelength. For the other terms, we shall use again
the approximation, justi6ed in the appendix, of re-
placing P,' by m'. For brevity, we write the result in
operator form:

DEi, (e'/2m m)( ohio*~(2mP
—Eo)U'

+m(m —PEo) Ul ohio). (33a)

and using Dirac's equation to replace the p mop—era- Fi»lly
tors by V operators:

This can be transformed, by use of the equations

(o o*lP(~.PV—V~ y)l o o)= (o o*l~ PP—V+IV~ yl o o)
= —(go*i (Eo—Pm —V)PV+PV(E, Pm V) i

g&o)— —
=2(vo*lPU'+(m PEo)V l o o).—

IV. THE MANY-POTENTIAL LAMB SHIFT

The many-potential Lamb shift is expression (25),
where K and Kt are given by (24) and (24a). It is
interesting to note that the transversality condition

(37)

Mo=k M/oo.

(mP —Eo) V' is negligible, within the accuracy desired,
The emission operator (24a) can be transformed by
using the identity

(34) f, =2 —2g P+P (39)

Therefore
is satisfied, so that the time component of a radiation

hE, (e'/2orm') (goo*
~

(mP Eo)V'— operator can be written in terms of its space compo-

+(m/2)p(e PU —Un y) ~ &o)
nents by

(38)

By repeated use of the formula

y'x+m'(1 —x)

y' —m'= (P—m)'+2m(P —m),

Finally, If can be replaced by

2(P—m)
If=-',mP(yo —yi) i dx

in its first term. One obtains

M„t=M„i'+M„t",
~ '*=[»'./(f'-21 ' f) —»~ /(f' —21f f)

+Ay ((f'—2pf f)—'

(&' 2P" &) ')]ToV(yf P )
M„'"= 2[(bo„k—io'r„)/(f' —2y, f)]V(pr —p,). (40)
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Ro ——k R/lo. (42)

Similarly, the nonrelativistic limit for K" is simply

M 11 M tlr
212

—'y V(pt p ) Q (43)

where again the transversality condition can be used
to obtain Qo.

The major obstacle to the evaluation of (25) is still
the lack of a convenient expression for E+~. However,
the splitting of the radiation operator into Kr and
Krr will be very helpful: In fact, only in the part
(93PE+vK') will it be necessary to use the kernel in
the Coulomb field, E+~, in all other contributions, it
will be sufhcient to replace E+~ by the propagation
kernel for free electrons, K+'. Moreover, it will be shown
that the main contribution to (K'E+~K') arises from
intermediate states of the electron with nonrelativistic
energy so that both E+~ and 932 can be replaced by
their nonrelativistic approximations which are simple.
We thus get a separation into two main parts; in the
6rst, the radiation operator is very simple and rela-
tivity can be neglected but the effect of the Coulomb
held on the electron in the intermediate state must be
taken into account. This part reduces essentially to the
nonrelativistic Lamb shift; in the second part, the
radiation operator is more complicated and must be
treated relativistically, but the electrons may be con-
sidered as free in the intermediate state.

This section will serve two purposes. The first is to
show that the separation into these two parts, non-
relativistic Coulomb and relativistic-free, is actually
possible. In particular, it will be shown (in Subsection
A) that (K"E+vK") can be evaluated with free inter-

The erst two terms of M„t' are essentially the Schrod-
inger expression for the current, the last term is related
to the contribution of the magnetic moment to the cur-
rent. In a similar fashion we get

M„=M„'+M„",
M.'=voL —2P./(&' —20' &)+2Pt./(& —20& &)

—v.&((f'—2Pt &)
'

—(&—2P' &) ')jl'(yt —p'),

M."=25(t'op& —~vs)/Y' —20/ &)jl'(pf —y') (40a)

It is easy to see that M„t" and M„" taken alone satisfy
also the transversality condition (37) or (38). The
same is therefore true of M„t' and M„.

One advantage of- the separation into two parts is
that both Kr and K" reduce to very simple (but very
different) expressions in the nonrelativistic limit. We
have for the spatial components of K'.
Ml = (P' Ps1) I'—(yt y')/222 —=&(j—= &, 2, 3),

(4&)M"= (Pr P' )I'(y—t y~)/~—=
(Hermitian conjugate),

and the zero-component can be calculated by using the
transversality condition,

mediate states, and it will be indicated (in D) that the
same is true of the mixed term (9JPE+vKr'). It will

further be shown (in D) that even in (KrE+~K') the
Coulomb potential needs to be taken into account
only in nonrelativistic intermediate states, and that it
is never required to take into account Coulomb poten-
tial and relativity simultaneously.

The second purpose is to evaluate those parts of the
many-potential Lamb shift which are of order n(Zn)4.
They arise from (9JP'E+~Krr) (Subsection A) and from
(K'E ~K') (Subsection 3)& but not from the mixed
term. The K" contribution will cancel the non-gauge-
invariant term (36) from the one-potential Lamb shift,
the Kr contribution provides the "nonrelativistic
Lamb shift. "In Subsection C, the relativistic correction
to the Lamb shift, is finally separated explicitly from
the nonrelativistic terms: It is shown that the many-
potential Lamb shift can be separated into terms of
order n(Zn)4 and terms of order n(Zn)', the former are
the nonrelativistic terms evaluated in Subsections A
and 8; the latter represent the desired relativistic
corrections and can be calculated with free inter-
mediate states, and will be actually evaluated in Sec. V.

For our investigations, it will obviously be necessary
to examine the propagation kernel E+~. For this
purpose, we note that E+~ can be built up of the wave
functions q„of the electron in the Coulomb field. For
instance, in the nonrelativistic case, F I Eq. (3) gives

ENR ($2 $1)=pdp (x2)f (xl) expL —2E (t2—tl)]
for t2 —tl) 0, (44)

=0 for t~ —ti&0,

the summation being extended over all stationary
states of the aton, with energies 8„.Going to momen-
tum space,

ENR %0 lo j p4) yo)

= (22r) expL —iy4 x2+iyo. Xl+i(Eo—oo) (t2—tl) $

'ENR ($2q $1)d X2d Xld(t2 tl)

= —iP„q (p4)q„*(po)(E„—Eo+oo)—',

where q„ is a momentum wave function and E„ is
considered as having a small negative imaginary part.
We shall refer to the states e as "intermediate states. "

A. The Contribution (K"E+vK")
We shall 6rst merely examine the intermediate states

for the radiation operator K";and for this purpose we
shall replace 93P' by the approximation Q, , Eq. (43),
with j= I, 2, 3. We shall disregard for the moment Qo
and we shall use the nonrelativistic expression (45) for
E+~. Later on (Eq. (50) 8.) we shall actually catc24lute

(K"E ~SP'), to order n(Zn)', and this will be done
with the full expression for gJP' and with the relativistic
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The integration over ~ is carried out by giving a small
negative imaginary part to both X, the mass of the
photon, and E„, the energy of the intermediate state.
Then

e'
t V(sl) V(s2) k'dkd'pld'P2d'sld's2

(3P'}=
2rm2 & (k2+X2)*LE„—E0+(k2+X2)lj

020(p2)'Y„y„(P2—s2 —k) 02„(pi+ sl —k)y„020(PI). (47)

Clearly, ) can be replaced by zero, and the main con-
tribution comes from large values of k. This in turn
means that the momentum of the electron in the inter-
mediate state is essentially —k because k is in general
much larger than those values of s and p for which qp
and V(s) are large; these are both" of order Znm. The
energy E„is then nearly (m-'+k')'*.

The matrix element

is then of order

(0 -(Pi+ sl —k)v, ~0(PI) )

(4/m) (0 -~0)

if k&(m, and of order (p 000) if k) m. Since

s (p s k)'p (p +si k)
= 8 (P1+s1+s2 —P,), (47a)

we get approximately

fn 00

fM }~(e'/lrm2) I (k2/m2) dk+ t dk

r
' V(») V(II sl) P0(P2) 020(PI)d'Pid'P2d'sl| (4g)

'I

with q=p2 —pl= sl+s2. The main contribution comes
clearly from the relativistic region. "

Having now shown that the important intermediate
states are all of high energy, we may in hrst approxima-
tion regard them as free. (See below for further proof. )

"What matters is actually
0

X(I 3) = ~0(PI) ~(P3—P~)~'Pi,

with p3=p&+s&, and this can be shown to be large only for p3
of order Znm.

~'In fact, the integral (48) diverges for large k. However, we
shall show presently that when the full expression (40) for M I
is used rather than (43), the integrand is su%ciently reduced for
large k to make the integral converge.

propagation kernel E+'. Finally, we shall prove that
the use of E+' rather than E+~ is justified.

With the approximations mentioned, the contribu-
tion of @PI, or rather Q, to (25) becomes

t V(sl) V(s2)k dkd0ld pld P2d sld s2
pf II}-

~2m2 ~ J (~2 k2 g2) (+ + +~)
' p0(P2)7yge(P2 s2 k) 02m(pl+ sl k)7@010(pl) (46)

This enables us to go back to the full expression (40)
for K" (including the component @=0), and to evalu-
ate its contribution to (25) by the techniques of F II.
To simplify this evaluation, P; and PI in the denomina-
tors of (40) and (40a) are replaced by the momentum
vector for an electron at rest, p= (m, 0, 0, 0), (but in the

arguments of V(pr —p, ), the correct momenta are re-
tained); the error due to this approximation will be
discussed below. We use the usual expression for the
propagation kernel of free electrons:

E~ (E0 01; p2 ——s2 —k, pl+ sl —k)

2P (Pl+ Sl+ S2—P2)
(48a)

A

where t denotes the common value of the vectors
(E0, pl+ sl) and (E0, P2 —s2) that is the intermediate
4-momentum. We replace Ep simply by m, and call the
intermediate 3-momentum s. Therefore

Pl+ Sl=. P2 S2 Sq

r=(m, s).

Then, the contribution of Kll becomes

(gg»}=—(PP'E 'PP')=(e'/lr) d'Pd'Pd's

with

4 t.(b0„k 0'„)(r k+—m) (bo, A' ——01',)
d4f p. (49a)

(f'—2P f)'(f' —2r f—s)f'

The integral in (49a) is to be evaluated with p= (m, 0).
The integral (49a) can be evalua, ted for any s, using

the methods of Sec. V. The result can be expanded in a
power series in s, starting with a constant term and
continuing with a term proportional to s'. If the con-
stant term is inserted into (49), one obtains a result of
order n(ZI2)', while the term in s2 (and the higher
terms) give results of order a(Zn)' or less. Moreover,
the latter terms get their main contribution from large
values of s, of order m, while the constant term comes
mostly from small values of s, of order mes. Therefore
the exact momenta y~ and yg contained in qp and pp
will matter for the constant term but not for the higher
ones; for the latter terms, only the integral J'020(pl)d pl
matters. This is the approximation which will be made
in Sec. V, and this approximation is thus shown to be
sufhcient for all but the constant term.

YVe shall therefore need to evaluate here only the
constant term, whose contribution to (49) will be de-
noted by {+pi}0.This term is obtained by setting a= 0
in (49a), which simplifies this expression greatly and
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makes it into

&(), 0)

4 t (bo,& oy—,)(P &—arri)(So„te ~y„)
d'f p

j.J (f'—2y f)'f'

=4(V.~o.—&o.V.) (P+~) (V.~o.—~"V.)J'-
—4(v.~..-~..v.)v.(v,~,-~.,v.)~'...,

(49b)

where J „and J'„„are two tensors given by the
following integrals:

= —i (k.k, . k,k k )(f'—2p f)—'f—'d'fp. (49c)

Integrals of this sort will be calculated later, in Sec. V,
and J'(„, ,„~ is seen to be a particular case of J(,, „„)
given by Eq. (75), where s is'set equal to 0 snd therefore
r replaced by p. From formulas (75a; 75b) for J~„,„„&,
one obtains immediately

Xo.,=-,'~-'(S,.S„——,'S.,),
go.bor neo

——',. (~o.~,.+~o.~..+~o.~.,)3 (49d)

exactly the term (36) from the one-potential Lamb shift
and thus removes the lack of gauge invariance which
that term introduced.

We have made two errors in this evaluation of K",
namely (a) the replacement of p, and pr by p, corre-
sponding to a free electron at rest, in the evaluation
of the integral over f, and (b) the neglect of the potential
in the intermediate sta, tes. Concerning (a), we note that
the functions po(pi) and V(si) are large only if pi and
si are of order Zn. (See also footnote 20.) Therefore P;
and p~ in (40) differ from p by an amount of order Zn
in the spatial components, and (Zn)' in the time com-
ponent. Clearly, the relative error introduced by this
can only be of order:

(Correction to spatial momentum/
undisturbed momentum in intermediate state)'

or

(Correction to energy/
unperturbed energy in intermediate state),

both of which are of order (Zn)'/k' Sinc.e the contribu-
tion of a given k to (49) goes as k'dk for k(rri, the error
will be proportional to

(54)

1V(p, 0) = —3/4m.

Thus the result for {Kr')o is

{gJP')o
———(3n/4irnz)

(50)

o o(p2) v o(pi) V(po —s) V(s—pi)d'pid'pod's (51)

Carrying these values back in (49b) and taking the
expectation value for the state of rest of the electron,
which in this case amounts simply to replacing po by
1, one finds

Since the main term (53) is of order n(Zn)', an error
of relative order (Zn)' will be of absolute order n(Zn)o
which has been consistently neglected in this paper.

To evaluate the error due to the neglect of the po-
tential energy in the intermediate state, ,

we imagine
that one extra potential V(s3) acts between 93P't and
PP'. This introduces an extra factor of order

I d'soZe'/so'k,

To evaluate (51) we note that
where k represents the additional energy denominator.
Now so must again be of order nZ, in order that pi+ si
and y~ —s2 be of that'order, and therefore we get a
correctioil of order

d'sV(p2 —s) V(s—pi) = (2ir) ' V'(x)e 'o'*d!x, (52)
(Zn)' Mk (Zn)', (56)

which is the Fourier component q of the sqlurt, of the
spatial potential where q=po —pi= si+S2 Changing
(51) back to an integral in coordinate space, one obtains
easily

{")o= —(3 /4ir )Jr A( )0o( )V'( )d'

(53)

This is a complete evaluation of {I")o, subject to the
justification of our approximations which we shall give
presently. It will be noted that our result, (53), cancels

which is again negligible.
We have thus shown that, in the evaluation of Kr',

the intermediate state may indeed be regarded as free,
which justifies the result (53).

B. The Contribution (%'%+rgb't)

The contribution of 93P from relativistic intermediate
states is only of order n(Zn)'. That SP for relativistic
states is less important than SP~, is easily seen for the
main part, g, of K' as follows: If we choose oo of order
m in (41), then R differs from Q, Eq. (43), by a factor



BARANGER, BETHE, AND FEYNMAN

&po I
R

I iop& is found from (41);

&p. lRI p p&= (~~) '&p -I yl' —1'yl v o&

= (mto) '(v
I p& IIyl v'p&

= —(~) '(E-—Eo)&~-I pl p o&,

II being the Hamiltonian,

H = y'/2ns+ V.

&'If''&) = (e'/i~'~')2 (E-—Eo)'I (p -I p I «& I'
+" (1—k'/3a') d(o

~ k'dk
'

(6o)
tp'(aP —k' —X') (a)+E„—Ep)

The integration over co is performed by giving a small
negative imaginary part to both X, the mass of the
photon, and E„, the energy of the intermediate state.
The imaginary part of &RE~s R& gives the lifetime
of the state po for decay into p„by real photon emis-
sion, if there is a state E„&EOwhich combines optically
with state po. Only the real part is wanted here. Inte-
gration over ~ gives for the P integral

pri t k'~o '(too+E~ —Eo) '(1—k'/3~o')dk, (60a)
0

where &op ——(k'+X')r. The further integration over k

yields, in the limit A. very small:

2e

, ZI&p-I pip p&I'
3%m'-

( X Si
X (E„—Ep) I

ln +—
I, (61)

i 2IE„—El
22 The pole at co=0 is slightly disturbing, However, if the com-

plete denominator in (40) had been used, the 2m' of the denomi-
nator in (41) would be replaced by

2p f—f'=2Ega) —2p. k—co'+k'

resulting in two poles, located at
~=z0~(R2 —2P k+z,2».

According to the convention made at the end of Sec. II, we are
supposed to integrate on a contour passing below the left-hand
pole (corresponding to the minus sign) and above the right-hand
one. When we make our nonrelativistic approximation of con-
sidering p, k, and co small compared to E0, the left-hand pole is
the one that tends toward co =0, while we neglect the contribution
from the right-hand one. This shows that the pole co=0, arising
from the first factor ar' in the denominator of (60), must be con-
sidered as lying above the contour of integration. Therefore, if
the integral is carried out around the negative-imaginary half-
plane (which is convenient anyway, since it also avoids getting a
contribution from co=E0—E„), no contribution arises from this
pole.

There remains the last term in (60), k~/3'~, arising from the
elimination of the longitudinal waves by means of (42). The
nature of the pole there can be understood if one uses for M„~,
(40), an approximation slightly better than 5', (41), namely

(P;„/y; f Pr„/yr t)V(Pr —y—;). (p=0, 1, 2, 3).
This satisfies the transversality condition (37), and the 0 com-
ponent is

+0(P' Pf) '~(+0 P''~) (+0~ Pf'~) T (Pf=P )
which reduces to k R/ca for p very small. But in this form it is
evident that the pole in the last term of (60) is of the same nature
as the one treated in the erst part of this footnote, and therefore
gives no contribution for the contour chosen.

e' d4f~dsytdsppd'std'ss
&&I~xa'&&= ——E i

vari ~ & (f'—X')((o+E„—Ep)

(ps)E (ss) po„(ps —ss)

p (pl+ si)R„(st) pop(pi)

" ( d'f~
(57a)

vari fs —X' ~ co+E„Ep—
According to (42), we can replace P„l (p„lE„I pp) I

' by

~ 'l&p-IRlp &
kl' —l&p-IRlpo&l' (»b)

The integral on the angles of k will introduce a factor
~3 in the erst term.

e' r" t+" d~
&Rg~~v%&

'i~ p

Rl ~o&I'(
xP I

1———I. (5g)
n &g+E„Ep E 3(v')—

(py —y,)/m which is small (of order Za). The second
part of 93P, Eq. (40), is similarly small.

On the other hand, R contains the factor co in its
denominator and can therefore be expected to be large
in the eoerelativisHc region. Here the potential must
be taken into account in the intermediate states p„.
However, for all intermediate states for which V
matters, nonrelativistic wave functions may be used,
and moreover, PQ' may be replaced by its nonrela-
tivistic limit, Q. The validity of this approximation
will be proved in Subsection D.

We can make the further approximation of neglecting
the recoil of the electron due to the emission of the
virtual quantum. That is, we shall take the momentum
of the electron in the intermediate state to be pi+ st or
ps —ss, rather than yi+ si —k or ps —ss —k. This
amounts to leaving out the retardation factor, e'"', in
the spatial integral. The justification for this is that
the momentum of the quantum, k, is generally small
compared with the other part of the electron momen-
tum, s= pi+ st. To see this, consider Eq. (60a), below:
For a given energy - E„of the intermediate state, the
main contribution comes from quanta whose energy k
is of the order of E„—Eo. But for nonrelativistic states,
E —Ep is of the order of magnitude of s'/2', where s
is the predominant electron momentum in the inter-
mediate state e. The quantum momentum k is therefore
of the order of s'/2m, which is small compared with the
electron momentum s for nonrelativistic states, for
which s((m by definition. We are therefore justified in
neglecting retardation, along with relativity, in our
present first approximation.

Using the nonrelativistic kernel in the Coulomb
field, (45), and neglecting retardation, the contribution
of 5, Eq. (41), to the many-potential Lamb shift
(25) becomes:
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that is, precisely the nonrelativistic Lamb shift (2),
the relationship between K and X being given by (3).

C. Explicit Separation of Relativistic Lamb Shift

We have now evaluated the contributions of order
n(Zn)4, arising from the interactions R and ger. We
shall now consider the difference between the full con-
tribution from K, Eq. (40), and the contributions from
R and gP" as calculated in Subsections A and B. This
difference is of order u(Zn)' because it consists of the
relativistic contributions to K' and SP' which were
shown to be of this order in Subsections B and A, and
of the interference term between 9P' and K" which
will be discussed at the end of D. Both types of terms
arise mainly from intermediate states of relativistic
energy. For such states, the inhuence of the Coulomb
potential may be neglected, being of relative order Zo.
and hence absolute order u(Zn)P (F.or further dis-
cussion, see Subsection D.) It is therefore permissible
to calculate the difference

D= (RK K—)—(RK "R)—{K"K'K") (62)

by replacing the kernel E~ by E, the propagation
kernel for free electrons, thus:

D= (KK 'K)—(RK 'R)—(K"K %P')o. (62a)

Thus, at last, we have realized the purpose of our
separation of the L'amb shift into various parts: The
difference D can be calculated using the usual methods
of F II.

Our aim is, of course, to calculate the total many-
potential Lamb shift, which may be written:

(KK+vK) = (RK+rR)+ (K"K+"K")o+D. (62b)

Of the terms on the right-hand side, D will be calculated
later on the basis of Eq. (62a). The second term on the
right has been evaluated in (53); the subscript 0 in this
term denotes, as it did in (51) to (53), that only the
leading term (first term), (50), of the expansion of
(49a) in powers of s' is being considered. The 6rst
term in (62b), however, has not been actually evaluated
in Subsection B because-we have used there nonrela-
tivistic rather than relativistic intermediate states in
the Coulomb 6eld. However, we shall show in Subsec-
tion D that the Coulomb field and the relativity cor-
rection need not be taken into account simlltaeeously
for the same intermediate state; therefore we may
write

(RK~rR) = (RKivii'R)+ (RK+'R) —(RKivii'R). (63)

Here (RKivavR) denotes the contribution of R as
evaluated in Subsection 8, i.e., with the intermediate
states treated in the Coulomb field but nonrelativ-
istically. (RK+R) is evaluated with free relativistic
intermediate states, and (RKNiioR) with free non-
relativistic intermediate states. Inserting (63) and (62a)

J
qp(pi)d'pi= (2v.) ihip(0), (66)

i.e., the wave function in coordinate space at the origin,
and from (8b),

V(a s) = —Ze'/2m s'. (66a)

Thus the approximation to (51) for pi ——po ——0 becomes

C= 6n—(Ze)'(v-m) 'imp'(0) )"ds/s' (67)

This integral clearly diverges at s=0, but this is just
what will be needed to cancel a similar divergence in
term A (see Sec. V).

Next we must calculate 8, i.e., the 'contribution of
R, evaluated with free nonrelativistic intermediate
states and with initial and final state having momentum
zero. To do this, we replace in Eq. (57) (E„Ep)by-
s'/2m; then the summation over n can be carried out
and gives h(pi+ si—po+. sp), which permits evaluation

3 This is fortunate because this term would diverge for large
energy of the intermediate state.

into (62b), the term (RK+'R) cancels" and we obtain

(KK~rK) = (K"K+ R")o+(RKiva R)+D', (64)

D'= (KKp'K) —(RKiv iioR) —(K"K PK")o
8 C—. —(65)

The first term in (64) cancels (36), as was remarked
after (53); the second is the ordinary nonrelativistic
Lamb shift (61);both terms are strictly of order n(Zo. )'
and do not contain any component of order n(Zn)'.
Therefore D' represents the relativistic correction iotuch is
now completely separated from the nonrelativistic parts.
From our previous discussion it follows that D is of
order n(Zo. )'. It can be evaluated by taking exclusively
free intermediate states, i.e., the relativistic correction
has been reduced to an expression in which the poten-
tial acts twice and only twice, once with the emission
and once with the absorption of the virtual quantum.

Since D arises entirely from high-energy inter-
mediate states, a further simplification is possible,
namely D' can be evaluated with the initial and 6nal
state of the electron assumed to be free states of
momentum zero. Indeed, using the same argument as
for error (a) in Subsection A, we find that the error due
to this assumption is expected to be only of relative
order (Zn)'.

We shall understand from now on that all three
terms in (65) are to be evaluated with zero momentum
in initial and final state. The first term in (65), A, will
be evaluated in Sec. V. In this section, we shall still
calculate the last two terms in (65). The contribution
of PP', with initial and final momentum set equal to
zero, is obtained from (51) by considering p, and p,
small compared to s. Now, from the definition (8a),
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of J'd's2. Further, since y2 = y~ =0, we may set s2 ———s&

in E„; we also drop the subscript in s~. From (41),—R= R*= sV(s)/(mrs), and we obtain:

order Zn/s which therefore amounts to

. B. Z'n' ds/s'. (70)

2 ( V2(s)[s2—(s k)2/~27d4fpdas
i~ so(n)d'u

zxm2 J J M2(N+s /2m) (f g )

8n(Zn)'
I
"ds 4 ( mX Si

I+o(0) I' —
I
» +-

I

'7r Jo s~3m( s' 6)
(68)

To obtain the last line, the integration over co and k
has been carried out in analogy with that leading from
(60) to (61). The integral (68), just as (67), diverges
for s=0, but just as in that case, this divergent term
will exactly cancel a similar divergence in contribution
A of (65).

B Z'n') ds/s'. (69)

The Coulomb effect on the intermediate state wave
function gives, as we have seen, a correction of relative

D. Further Discussion of Approximations

We shall now show (1) that the potential has been
taken into account in all intermediate states for which
this is required, and (2) that it is not necessary for any
intermediate state to consider potential and relativity
simultaneously.

We have already shown in Subsection A that the
potential in the intermediate states need not be taken
into account for (Kr'E~vK"). The mixed terms,
(93P'E rK') and (K'E rK") will be discussed briefly
at the end of this Subsection. We shall therefore now
take up once more the term (SPX~rK') (see also Sub-
section 8) and shall examine in detail how strongly the
contribution of intermediate states of various energies
is influenced by the Coulomb potential in the inter-
m.ediate state.

As has been shown already above, Kq. (57), for any
given nonrelativistic intermediate state E„, the main
contribution comes from quanta k which are of order
E„—Eo and are therefore small compared to the pre-
dominant momentum in the intermediate state; since

p& is mostly of order Zn, it follows that y„ is essentially
equal to s1, i.e., the momentum in the intermediate
state comes mainly from the potential acting in 8„.

The relative effect of the potential V on the wave
function p„of the intermediate state is measured by the
well-known quantity Ze/hv which, in our units, is
Zn/p„=Zn/s. The contribution of % for free inter-
media, te states is given by (68); and since P(0) = (Zn)'
(see end of Sec. V), the order of magnitude of (68) is

given by

B„Z'n'jt ds/s Z'n' lnZn, (71)

which is negligible in our approximation.
In Subsection 3, retardation was left out along with

relativity. We must therefore show that also retarda-
tion does not need to be considered simultaneously with
the potential. Retardation changes the momentum of
the electron by k s'/2m, and since the "unretarded"
electron momentum is s, the relative change is of order
s/m. Since the vector k may have any direction rela-
tive to s, the effect of retardation will be of order
k'/s'~(s/m)'. This is exactly the same order as the
relativistic correction, and is therefore negligible for all
those intermediate states for which the potential must
be taken into account.

We now examine whether it was justified to replace
gJV by 5 for the evaluation of the effect of the Coulomb
potential in the intermediate state. The difference
PP —g is of order

Ay„(yf —P;) fV/(2m'oP),

and its ratio to E„is therefore about

ky„k/(mes) 0„/m, (72)

because k =co. Since we have already seen that the im-
portant values of k are of order E„—Eo~s2, the con-
tribution of K'—R, for intermediate states for which
the Coulomb forces matter, is of the same order as the
relativistic correction to % and hence negligible.

Finally, it can be shown by direct evaluation that the
cross term between 93P and Kn does not give a con-
tribution for low-energy intermediate states. This is

We are considering in this paper contributions of the
order Z'0, '. In order to get a contribution of this order
or greater from (70), we must consider values of s
smaller than (Zn)'*, or excitation energies less than
-', Zom=137 Rydberg, which is intermediate between
the Rydberg energy ', (Z—n)'m and the rest mass of the
electron. We thus find that, in our order of approxima-
tion, the Coulomb potential needs to be taken into
account only for intermediate states of less energy than
137Z Rydberg; in particular, it does not need to be
considered for states of relativistic energy.

This consideration already shows that it is pre-
sumably unnecessary to apply a relativity correction
simultaneously with a Coulomb correction. To put this
argument in quantitative form, we note that the rela-
tivity correction for an intermediate state of momen-
tum p„ is of relative order (p„/m)', or in our case about
s'/m. '. Therefore the relativity correction to the Cou-
lomb effect (70) is
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where r is de6ned by (48c). Therefore

due to the fact that the matrix elements of K" to non- state, that is K+r is replaced by the free kernel (48a)
relativistic states are extremely small. The cross term
gives altogether a result of order aeZ'. The potential i (r—k—m)

—'ho(s2+ sg),
correction to the cross term can again be shown to be
of order Z'n' logZO. .

V. RELATIVISTIC CORRECTIONS TO THE
MANY-POTENTIAL LAMB SHIFT

According to (65) and other discussions in the pre-
ceding section, the corrections of order a(Za)' to the
Lamb shift are given by A 8 C—. 8—is given by (68)
and C by (67). A is given by (25) where the electron is
assumed at rest initially and finally, Eo is replaced by
m, and the intermediate state is taken to be a free

A=82ro[f(0) ['— d's ~ M»~i~, J "r-k-m
d4 f

3E„~

where o( )p means that the expectation value is taken
for the state of rest of the electron. Using for M„t ex-
pression (24a), with p;= (m, 0) = p, pr= r, and using for
M» expression (24) with p, =r, py= p, this can also be
written

F00

J
A 8a(Za)22r '[$(0) [' ds(Ti+T2+To)/s2, (73)

1 (2p„y»k) p(r—k+m) p—(2p» ky»)—T— d4f

p i& (f'—2p f)'(f' —2r f—s')(f' —l%2)
1~

~

~t

1 [.P (2r„—y„k) (r—k+ m) (2r„—ky„)P
T — d4f

2J (f2 2r. f)2(f2 2r'. f s2) (f2 y2)

1 t.p(2r„y»k) (r k—+m) p(2—p„—ky»)+ (2p„y»k) p(r —k+m) (2r—„ky»)p—
~2 d'f p

0 t~

~
(f2—2p ' f) (f2 2r ' f) (f2 2r ' f s2) (f2 ) 2)

All poles are to be resolved by giving rn and X small
negative imaginar'y parts. The integrals can be evalu-
ated by using the methods in the appendix of F II. As
an illustration, we consider 1'1 in some detail.

T,= p(4m2P(r+m)PJ, 2[y„y,P(r+—m)PP„

+pA(r+m)Pv v»+2m'Pv P3J-+Pv»v.Pv.PP»

+ 2p„W,W .y„+y„y.p (r+m) &,y„)J.,
-y.v.~v,~v.v.J...)., (74)

with the definitions

1 p (1;k„k,k„k,k,k„)d'fr

i" (f'—2p f)2(f' —2r f—s')(f' —g')

6 p'

t~o 40

of the appendix of F II, and also the following one:

24
I

k.k,k.d4f& p.p,p. 1 p.8,„+p,8.„+p„g.,
2" (f'—2p f—A)' (p'+a)' 2

/

The result is

~1 ~1 X2

Jo=- (1—y)dy d*
4Jo J p [ xpp '+xys'+(1 —x)yoj2

/

XP»»J.=- (1—y)dy dx
4d, (xp 2+ys2)2

*Po»P2~J„—(1—y)dy I dx
4y0 .(xp 2+ys2)2

x8,
(75a)

2 xp„'+ys'.

(1;k. ; k.k, ; k.k,k„)d4fr 1 p' t' x'p„.p„,p„„
X ~ —, (75) J., =— ' (1—y)dy ' d*" Lfo —2xp„ f—xys' —(1—x)X2$4 4& "o (xp '+ys')'

p.=yr+(1 —y)p= (m, ys),

p '=m' —y's'.

x P„8,„+P„,8 „+Po„o„
2 xP2 +ys

(75b)

X has been put equal to 0 whenever this does not intro-
The integral over f is performed using formula (13a) duce a divergence. For all J's, except Jp, the integral
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4 ( X 1+o'
mTi ———

f
In —+ ln(1+ o') —Ino.

m.(1—y) dy

over x is easy to perform. For J0, we can first compute The result is, for T1.
an easier integral, where we replace p„' by m':

where

1 X 1+o'
ln —+

F0-' m 0-'
ln(1+o') —lno', (76)

o =s/m, (77)

[x'm'+ xys'+ (1—*)~']'
p 1 y3

+ i' (1—y)dye
f Ly+ (1—y)u'](y+u')

1 u' —5u' 2 u'+Su' y+ (1—y)u'
+ +- ln

(1 u2)2 y (1 n2)P y2 (1 u2)4 n2

and X/m«1 has been assumed. In the difference be-
tween this and J0,

1 1

(1—y)dy f x'dx[{x'y„'+xys'+(1 —x)X') '
0 0

—{x'm'+xys'+ (1—x)X') '],

A, can be put equal to 0, yielding

1

f (1—y)dy(ys') '[(p„'+ys') ' —(m'+ys') ']
0

9—u' u'(3 —u') 1 u' —5u4 .
1

+ y +2 +-
1 —.u' (1—u')' y (1—u')', y+ (1 —y)u'

3u' —1 1 3u4+5uP
(79)

(1—u')' y (1—n')'

where g is defined by (77) and u=yo. Although powers
of (1—u') =P„'/m' appear in the denominators, this is
only an apparent pole and the whole expression stays
finite for u= i.

Ts is similar to T1, only simpler. The denominators
are combined according to

1

y(1 —y)dy(I1„'+ys') '(m'+ys') '. (78) (V 2r f)—'(f' —2r f—s') '(f' —X') '

The sum of (76) and (78) is 4Jp. The J's have the co-
efficients appearing in formula (74), and the expecta-
tion value for the rest state of the electron has to be
taken. For this, the following formulas are useful, in
addition to those in the appendix of F II:

p(pMp)p ——p(Mp&p
——p(pM)p ——p(M &p,

3II being any operator.

o(P&o= p(pu&p= o(r&o= m,

p p„=l1 r=mp,

r P„=m' ys', —
ABC+CBA=2(g QC+8 gA 5KB), —

ABA=25.8A 5'B. —

Take for instance the coef6cient of J0'.

p(4m'P(r+m)P) p 4m' p(r+——m&p= Sm'.

Coefficient of J,/p„:

1 1

=6 t (1—y)dy I x'dx[f' —2xr f—xys' —(1—x)X'] 4.

4 ) 4 7 1 1
2mTp= ——ln —+ —+-

gP m, gP 2 1—gP 2 (1—gP)P
lno-'

1t6 3l . 2 1 1
f

—+-
f
»

f
I—'

f ,
'——— (80)

g' (gp 0 2 1—0

[(f'—2p. f) (f'—2r f) (f'—2r. f—s') (f' —X')] '

Here again, the powers of (1—o') =r'/m' in the de-
nominators do not constitute a pole. Poles arise in the
integrations over the auxiliary variables x and y, and
the way of going around them is defined by giving m a
small negative imaginary part. Only the real contribu-
tion from these integrations is written above. For each
integration, the imaginary contribution can be dropped
after we have made sure that no real term can arise
in it from a pole in subsequent integrations.

For T2, an additional auxiliary variable s has to be
introduced:

1 1 1

=6jc ydyJ( x'dxJI ds
0 0 0

—2 o(PP„P(r+m)+ (r+m)PP„P+2m'P„)o
= —2m p(P„Pr+ rPP„)p 2m' p(P„P+PP—„&p

4m'—
= —2m p(2mr+2mP„2Pp rP&p 8m'— —
= —16m'+4m (m' —ys') = —4m (3m'+ys')

X[['—2'„.f'—xyss' —(1—x)V] 4.

If the integration over s is performed immediately
The other coefFicients are computed in the same way. after integrating on f, we get expressions very similar
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tO Tl'.

4 (' -dx xa+ Lx'+ (1—x)'A'/eP)i
2mT2=- ln

o'" a fx'j(1—x)X'/ns')*'
~

xa.—fx'+ (1—x)X'/m'j2
~

Sy' 12y 4u' 2u'(1+u') y+ (1—y) u'
+ dy + — — ln

u2(1 u2) (1 u2)2 (1 um)2 y(1 u2)3 u2

+4u'(1 —u') '+2~ ' »I (I+y(1—y) a')/~ 1—y'a'l 3 (81)

pl
dyu'(12y' —2y —2) (1—u') ', (82)

This is only the real part. The imaginary part has been
dropped, because it cannot give any real term in sub-
sequent integrations. There is a real pole, this time, for
I=ya = 1. But if one subtracts from 2mT2 the following
expression:

and the contribution to (83) is then

o 'do (2mT~ —small-o. limit) = —(11/8)w', (85)J,
by making use of the integrals:

dot'a Sin~-1 a2~ —ya 4+i-~ 2j=-O

one cancels the principal part of the pole. Moreover the
contribution of the subtracted part (82) in later in-
tegrations is 0.

The last step is to compute p.v.
4 p

da(1 —a') '=0

daE~-4 inl1 —a'I+ ~ 2j=O,

~ 'do2m(Ti+T2+Ta)
dp

(83)

j

�do.
(1—o') ' lno'= —7r'/2

0

according to (73). But, since this integral is divergent
for small r, its "small-0. limit" will be subtracted from
each term before integrating. By small-0. limit is meant
the terms in 0. ', 0=', 0=. ' lno', 0=' lno=', in the expansion
for small o, after (79), (80), (81) have been divided by
cr2. The integral is then convergent. It will be seen at
the end that the small-a limit cancels with terms 8
and C of (65).

We 6nd for instance, for 2mT3, from (80), in the
small-r limit:

—4o 41n(X/m)+4o. 4lno' —4o 4—2a. 2;

and the contribution to (83) is then

Sm/15.

(86)

(87)

(p.v. means principal value). In the same way the
first line of (79) gives, in the small-o limit:

—4o 'ln(X/m)+4a 'lna'+3o 'lna' —4a '—5a
—' (84) The 6rst term of (81) gives for the small-o limit.

4 (' dx 2$0 2+-
a'~ a Lx'+ (1—x)V/eP)'* $x'+ (1—x)X'/nP]& 3 I x'+ (1—x)X'/m'i&

= 8(a 4+ i3o ')in(X/tn)+(4/3)a ' (assuming X/m((i) (88)

and no contribution to (83), by virtue of

p" do 1+ha—lnj a o' )1—hat
—2tto- —~k'0-' =0.

2 ~0' (89)

%e note that A. appears only in the small-0. limit, which
is to be canceled against 8 and C, and this supports
the consistency of our calculation. For the last term in
the. curly bracket of (81), we 6nd, in the small-o limit:

and the contribution to (83) is then
—~'/2'. (90)

For the remainder of (79) and (81), the small-o. limit is

—8o 4 lno' —(3+8/3) o-' lno'
+Sa '+ (5+7/18)o '. (91)

The contribution to (83) of this last part is easily
evaluated by using y and N=yo- as new variables of
integration, so that

00 1t';d. I'dy
J, J,
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becomes
oo ~1

Q dN
~0 ~0

taking the expectation value is straightforward, if one
does not integrate over u until the end, and yields the
result:

This change of variables presents no difhculty since
there is no pole in the integrand for either 0.=0 or
yo = 1, after subtraction of the small-0 limit and of (82).
One can first transform the term containing 1nL(y
+ (1—y)u')/u'j by an integra, tion by parts, such as

~l y+ (1 y)u2 (1 u2) ~l 1 ye+i
' y"dyln

v+1 ~p y+(1—y)u'

(for N&0).

Then the integration over I is carried on erst, by taking
a contour running along the real axis and closed by an
infinite semicircle above. The only singularities are
poles inside the contour, for u= iLy/(1 —y))& and u=iy&
Then the residues are integrated. over y. We 6nd

—g~/15+ w'(5/2 —3/128 —
piln2) (92)

as the contribution of that part to (83).
The reader can now check that the sum of the various

parts, (84), (86), (88), (89), (91), of the small-o limit
is equal to 8+C. Adding the contributions (85), (87),
(90), (92), we obtain the corrections to the many-
potential Lamb sift:

D'= 4n(Zn)'prm —'
i f (0) i

'(1+11/128——', ln2) (93)

which is the result previously reported. '4 For the 25
state, ~p(0) j'= (Znm)p/gpr. For the 2I' state, it is 0, in
this approximation.

VI. VACUUM POLARIZATION TERM

To the desired approximation, the electrons forming
the loop in diagram 1(c) can be considered free. This is
because, due to Furry's theorem, the next correction
to this is a diagram which contains a loop with 4
vertices, which is expected to be of order n(Zn)'. Dia-
gram 1(c) with free electrons in the loop is known'p to
be equivalent to the potential

e' r' u'(1 —u'/3) q'

V(q) du
4prm' "p 1+(1—u') q'/4nP

where q is the magnitude of the 3-momentum trans-
ferred. This is after charge has been renormalized. To
get the shift due to vacuum polarization sects, we

just have to take the expectation value of this potential.
Moreover, we can use the Schrodinger approximation
to the wavefunction, which is, for the 25 state,

(Znm)" p' —-', (Zam)'

LP'+-', (Znm)')P

That this is correct can be easily shorn by the methods
developed in the appendix. The integration involved in

'4 M. Baranger, Phys. Rev. 84, 866 (1951).
~s For instance, see E. A. Uehling, Phys. Rev. 48, 55 (1935),

Eq. (14), and integrate by parts over e.

a(Zn)' p' ( u'y 1+-', (Zn)'(1 —u')

8~ & p ~ 3 & L1+~Zn(1 —' ')~34

Expounding in powers of Zo., we first find

—(1/30') n (Zn) 4m,

which is the well-known contribution of about —27
megacycles. The next term is

(5/384)n(Zn)Pm. (94)

The same calculation for the 2I' state gives a result of
order n(Zn)', which we do not consider.

VII. RESULT AND DISCUSSION

Adding (93) and (94), we find all n(Zn)' corrections
to the Lamb shiftP'

-', n (Zn) 'm (1+11/128—
2 ln2+ 5/192).

There is a question of determining whether we should
use the mass of the free electron neo, or the reduced mass
in the hydrogen atom, m„= mp (1+mp/3E) '. This ques-
tion is of no consequence with the present accuracy
(theoretical and experimental). However, it could be
settled after the very small corrections of order Znm/M
with respect. to the main Lamb shift, coming from the
2-body aspect of the problem, have been calculated. "
At the present time, the most logical course to take is
to use nz, in ~f(0) ~' and mp everywhere. else. This has
also proved to be the best way for the main term of the
Lamb shift. Therefore, we write the n(Zn)' corrections
in the form

ipn(Zn)'(m, /mp') (1+11/12g—pi ln2+5/192)
= n(Zn)'Ey&[1 —mp/(M+mp)]'

&& (1+11/128—pi ln2+5/192)
= 7.130 Mc/sec.

The result for the whole Lamb shift, and the com-
parison with experiment, has been given in a recent
paper by Salpeter. "The discrepancy between theory
and experiment has now been reduced to 0.6 Mc/sec,
with the experimental value still higher than the theo-
retical. With the discrepancy reduced to such a small
amount, there can no longer be any doubt that the
general principles of quantum eIectrodynamics, espe-
cially the idea. of renormalization, are correct. In pr-a
ticular, it can now be considered as experimentally
established that the vacuum polarization term (—27
M%ec) must be included.

It is also interesting to compare the remaining dis-
crepancy of 0.6 Mc/sec with the total energy of the

2 state, 8X10P Mc/sec. This means that there
2' The same result has been obtained by Karplus, Klein, and

Schwinger, Phys. Rev. 86, 288 (1952).
"See E. E. Salpeter, Phys. Rev. 89, 92 (1953).We are indebted

to Professor Salpeter for the remarks of this paragraph.
'8 See reference in footnote 27.
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cannot be an over-all deviation from the Coulomb 6eld
between proton and electron of as much as 1 part in
a billion.

It is very unlikely that the small remaining dis-

crepancy of 0.6 Mc/sec can be attributed to experi-
mental error since the given experimental accuracy is
0.1 Mc/sec. In principle, the discrepancy could be
attributed to a small deviation from the Coulomb field
at small distances, due to the mesonic structure of the
proton; a repulsion of 80 kev over a sphere of radius
e'/mc' would give the desired effect. However, it is

known that the neutron-electron interaction amounts
to only 4 kev (attractive) over this radius, and it is
reasonable to assume that the proton-electron inter-
action (apart from the Coulomb force) has about the
same magnitude. Moreover, if the discrepancy was of
nuclear origin, one would expect it to have di6erent
values for hydrogen and deuterium. But the experi-
mental value of the diRerence between the hydrogen
and deuterium Lamb shifts is in good agreement with
the present theoretical value. '

On the other hand, it does not seem to us unreason-
able that the discrepancy could be explained by the
relativistic correction of next order. %e have shown in
Sec. IV that the ratio of this correction to the correction
calculated in this paper, is of order nZln(nZ), i.e.',
1/28. Since our result is 7 Mc/sec, the next order is
expected to be about 0.25 Mc/sec. Our result in this

paper has also shown that higher order e8ects are apt
to have a larger numerical coefficient, and only twice
the coefficient is needed to give 0.5 Mc/sec.

The authors are happy to acknowledge several
illuminating discussions with Professor N. M. Kroll.

APPENDIX

In this appendix, we give a method for -computing
the corrections to the one-potential Lamb shift, in
order e(Zn)' Because .these corrections contain many
non-gauge-invariant terms, and an infrared catastrophy,
which are supposed to cancel against contributions from
the many-potential Lamb shift, they are rather unin-
teresting as long as similar corrections for the many-
potential part are not available. For this reason, we
shall not carry out the calculations, but limit ourselves
to showing that terms of order n(Zn)' do not arise.

We can consider two kinds of corrections: (1) Cor-
rections arising when (29) is evaluated exactly, but
with the approximate nonrelativistic Schrodinger wave-
function in place of pp(y) (2) Corrections arising from
the use of the exact Dirac wave function.

The 6rst kind can be obtained 'in closed form, by
using integrals such as

d P1d P2
E,y= N,

(p 2+a2) (p 2+b2) q2(+2 p 2)

2m4 (E'+a') (E'+b')
ln

E'+(1—x)a'+xb' (a+b)'(E+ ((1—x)a+xb)'j

where (R means the real part, and

6= p2 p&)

p.=*p.+(1-.).
From these two integrals and a similar one, J,~~, one
can, by diQerentiating with respect to c and 6 and
taking various combinations, obtain the values of all
other integrals of this sort. In particular, we shall need

d P1d P2
K21= N,

(p 2+a2)2(p 2+g2) i12(E2 p 9)

2n4(1 x) —E'+a' 2s' ( 1 x
+

(E'+a')' 4a' E'+a' E2a E'+a )

E12= N.
J

d P1d P2

(pi2+a2) (p22+a2)2@2(E2 p 2)

2~4x E'+a' 2n4 ( 1 1—x q
In +

(E'+ a')' 4a' E'+a' E 2a' E2+a')

d pgPp2E„=N.
J (y 2+a2)2(y 2+a2)2il2(+2 P 2)

2x(1—x) p E'+a'
=~4

~

2» +3
~(E'+a')' E 4a' )

1—x(1—x)

(E2+g2) 8 a2 (E2+a2) 2 4a4 (E2+g2)

d P1d P2 .2'
N. '-

J (p 2+a2)2ri2(E2 p 2) x E'+a'

d P1d P2

J (y 2+ate)2(p 2+a2) (E2 p 2)

d P1d P2S
J (pi2+a2) (p 2+a2)2(+2 y 2)

2~4

x E'+a'

2x4

1—x E'+a'

~ P1~ Pa E"—e'
N. '

(p 2+g2)2(y 2+a2)2(E2 p 2) g2 (E2+a2)2

For the sake of simplicity, let us consider the shift of
the 15 level. The treatment of the 25 level is quite
similar. For the 1S level, we have the normalized
Schrodinger wave function

ir '(8Z'n'm') '*(y'+Z'n'nP) '.

d Pid P2
Ja's= N

(yiQ+a2)2(y22+b2) (E2 y 2)

2m 4 (1 x—)a+ xb

ax E'+P(1—x)a+xb1'
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Taking for instance Ib, Eq. (31), and using (Sb),

ZnP t' 1—3x(1—x) (1—2x) (P33—p13) ',

dx
43r2 J 1)

3
p 3412

we obtain for the corresponding energy-shift:

AEld= —Or-bn(Zn)omb ~ dx d(E')

[1—2x(1—x)) (J33(EO)—J33(E))
jV02

I)'Elb= (n/3r) J «(P2)Ibppo(pl)d p2d pl
J'33(Ep) (1—2x) (Epl(EO) Elp(EO)

g2 Q2

= —2~ 'n(Zn)'m' dx[(1—3x(1—x))J22(E0 Znm)
E21(E)+E12(E)) (Ep 1 (E0) E12 (E0))

(a=Saon)

—(1—2x) (Ep1—Elp) (Ep;zam)),

where J22(E0 Znm) means that, in the expression for
J», we replace E by Ep and a by Zo.m. The 6rst term
of the expansion of DE1b in powers of Ze is of order
n(Zn)', and the next one is of order n(Zn)' ln(Zn). No
term of order n(Zn)' occurs, due to the fact that J33,
E», E», etc. . . are functions of a' only, not of a. I
can be dealt with in the same way, while I, can be
written

~1
I,=OOV dx d(E')[2(E' —y ') '

0 ago
(Ep y 2)

—1 (E2 y 2)
—1)

giving an energy shift

~El.= (n/~), 0 0(P3)I.O 0(yl)d'yld'yp

1

= —33r—'n(Zn)omb I dx ~ d(E')
p gp2

X [2E33(E,Znm) —E33'(E, Znm) —E33'(E, Znm)),

where x has been put equal to 0 and 1, respectively, in
E22' and E22'. The bracket is equal to

2 ( E'+lb'
24r4x(1 —x) i

21n +3
i

(E2+G2)3 E 482

13'(Ep+43')3. (.=z~)

and there again no term of order n(Zn)' is found. For
the next term I~, we write

1 00

I.= l V ~ d [(P 1) i&*')—1) I" [(E' P')-'—
4p 0 —E—')d(E')

(Z Pig ' ') —d d(E')([1—2 (1—)) '
J,

—(1—2x)(pp' —pl)}((E E0) [(Eo P )
—(E'—y.') ')—E '(Eo' —y') '},

~«(yo)PA(1)1 i 1)3 i 9 ) (0y 0)d 1Pld Ppi (A1)

where A. is a function containing no Dirac operator.
(A1) is equal to

(44r)
—'J "dppld'POA(yl', 1)3', q') [G(pp)G(pl)

+ (P1' yp/P 1P3)f(P3)f(P1))i (A2)

E,l —Elp is of order 1na, while the 1/a' factor in J33
actually disappears, so that DElz is of order n(Zn)'
)&ln(Zn), in the Schrodinger approximation.

Before investigating J„we consider the second type
of corrections, coming from the use of the Dirac wave
function. For the 154 state, and m=+31, the four com-
ponents of the Dirac wave function are

«1= —&00(e, 30)G(p),

'@02 0y

oo, =(1/~~)1' (t), o)f(p),
«4= —(~/v3) V»(e, 3)f(p),

where the Y's are normalized spherical harmonics in
momentum space,

P po = (-,'Or)'*,

Vlp = (433r) & COSH,

F'll ———(333r) & single'&,

and G(p) and f(p) are obtained from the corresponding
functions in ordinary space by a Fourier-Bessel trans-
formation. G(p), the large component, is proportional to

p 1[1+(pp/Z'npmp)) —n+i)&3 sin[(1+0) tg 1(p/Znm))

where 0 is the energy of the level (including rest energy)
divided by m [0= (1—n'Zp)&). G(p) can be expanded
in powers of Zn and one finds that, if one neglects
terms of order (Zn)' with respect to the main term, a
good approximation for almost all p's is given by

G(p) [32(Z m)'/ )'*(p'+Z' 'm')-'(1+ Z p/Bm);

while, for the small component f(p), it is enough to
keep only the main term

f(p)~ [8(Zn) bmp/Or)—&p(p'+Z'n'm') '.
AE1 inVOlVeS expreSSiOnS Of the fOrm
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the difference between the integrands in (Al) and (A2)
giving 0 in the integration. Since y~ y2 can be expressed
in terms of p&'-, y22, q' by

2pi'po= pi+po —il

the corrections involving the small component, f(p),
in I, Ib, I„can be immediately evaluated as combina-
tions of the integrals E, J, etc.-, again, . and it is
seen that, due to the fact that these integrals depend
on a2 only, and not on u, there is no term of order
n(Zn)' "A. s for the correction involving a first power
of p in G(p), we can transform it by use of the formula

(~/2) p= (p'/p'+b')db,

so that

G(p)~Schrodinger wave function

+$27r '( Zn) im']* p'(p'+b') '(p'+Z'n'm') 'db

and we obtain combinations of the more general in-
tegrals, E b, J 2b, etc. ~ ~, followed by an integration
over b. In all cases, Dirac corrections prove to be of
order n(Zn)' ln(Zn) or higher.

Going back to I, now, we can erst perform the in-
tegral over p, and p~ in (33). Define 4 new functions by

o o.'(p) = 11'(p—p') ~o.(p')d'p' (~=1, 2, 3, 4).

go,
' has the same angular dependence as q 0,. This is

a consequence of Dirac's equation itself, which can be
written (for an S state):

~1'(p —p')f(p') ~1-(0', o ')d'p'

= 1'1-(e ~)Lo+m)f(p)+PG(p)]=— 1'i-(~, v)f'(p),

defining two new functions G'(p) and f'(p). Approxima-
tions for G'(p'1 and f'(p) are given by

Zn (32(Znm)')
*

I
d'p'

G'(p)=
2~2 I ~ j J (p pI)2LP/o+. (Znm)2]2

(8(Zn)'m' ) *' 1

) p'+ (Znm)'

Zn (8(Zn)'m') l p p'Yi„(8', Oo')d'p'

(p p )'Lp '+ (Z )']'
(8(Zn)'m') l

t
" pdb

l
1"1-(e, ~)"z. (p'+ b')'

We can now evaluate the term with 3V's in (33), and
find a result of order n(Zn)' ln(Zn). The other terms
of (33) have already been evaluated with p,' replaced
by m2; we now want the difference, involving

(1/p ')—(1/m') = (m' —& '+ p ')/m'(& '—p ')

Always by the same methods, this can be shown to
yield linear combinations of integrals E, J, etc. that
depend only on a', and therefore there cannot be any
term of order n(Zn)'.

We complete the investigation of the one-potential
Lamb shift by looking at Ir, given in (35), from which
we subtract

—,'mb'(p —p ) I (4x—1)(p—m)'m —'dx,

j already evaluated in (36). The difference gives for the
= I"oo(0, y)[(Eo m)G(p)+p—f(p)]= 1 oo(g, q)G—'(p), energy shift:

3 e' t- t-' -
(P—m)'(m' —y') (p —m)'

——' go(p) dx x(4x—1)— +2x o o(p)d p
mLP'x+mo(1 —x)] P'x+mo(1 x)—

g2 m' —P' p —m
po(pf)1 (pf p) ~ xdx (4x 1) +2 ~(p p&)'po(p&)+pd pfd p~

ml p'x+m'(1 —x)] p'x+m'(1 —x)

g2 ao ~1 — m2 + o+p2
p'd p xdx (4x—1), fl:G'(P)]'—Lf'(p)]')

mLy'x+m'(1 —x)]
2

+ f (&o—m) LG'(P) 1'+4o+m) Lf'(P)]' —2PG'(P)f'(P) } .
p'x+ m'(1 —x)

The integration can be performed with the help of

pdp 8
8,

(p'+a')Lp'x+m'(1 —x)] 2 (E'o'+a')x+m'(1 —x)

and other formulas obtained by taking derivatives with respect to u. No term of order n(Zn) is found

' A similar procedure shows that there is no e(Zn) term in the one-potential shift for the 2P state.


