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Multiple Production of Pions in Nucleon-Nucleon Collisions at Cosmotron Energies~
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The statistical theory of multiple pion production is applied in some detail to the discussion of nucleon-
nucleon collisions for primary energies of 1.75 Bev and 2,2 Bev. Probabilities are given for single and multiple
productions of pions and nucleons with diGerent charges.

HE availability of high-energy nucleons from the
Srookhaven cosmotron makes it now possible to

compare the results of the statistical theory' of multiple
pion production with experiment. ' In Table I of A, a
tentative estimate of the relative probabilities that in
a nucleon-nucleon collision various numbers e of pions
are emitted together with two nucleons was given.
According to formula (22) of A, these probabilities for
for bombarding energies of a few Bev should be pro-
portional to
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In this formula m is the total energy of the two colliding
nucleons in the center-of-mass system including their
rest energy. The nucleon rest energy is taken as unit
of energy. A number of crude simplifying approxima-
tions have been introduced in A in deriving the pre-
ceding formula. One of them was to neglect the eGects
of the diferent possible charges of the nucleons and of
the pions. tA"e propose to improve the earlier results by
a consideration of this factor. This will be done for low
multiplicity production up to a maximum number of
pions I=3. In doing this we shall make use of the con-
servation of isotopic spin as a limitation to the possible
types of transitions.

The fundamental hypothesis of the statistical calcu-
lation of high-energy nuclear events is that in a colli-
sion process, all possible final states are formed with a
probability proportional to the statistical weight of the
anal state. In listing all the possible final states, how-

ever, one should. exclude all those that cannot be
reached from the ground state because of conservation
theorems. In addition to the classical conservation
theorems of energy, momentum, and angular momen-

Tsar.z I. Number of states of isotopic spin 1 and 0
for a system of two nucleons and n pions.

turn, one should include in the present discussion also
the conservation of isotopic spin and, of course, of
charge. To be sure, the conservation of isotopic spiv is
not exact. It is believed, however, that only weak
transitions are possible between states of diferent
isotopic spin, Therefore, the statistical equilibrium
postulated in A will normally not have time to be
established except for states of equal isotopic spin.

In a collision of two nucleons, the initial state may
have either isotopic spin T=1 or T=O. In computing
the final states, only those with isotopic spin 1 or 0
shall have to be counted. For each final state character-
ized, for example, by the momenta of its particles,
there are a number of diferent charge possibilities.
Let p„be the number of such possibilities for states of
isotopic spin 1 with the given total charge, and q„ the
similar number for isotopic spin 0. In Table I, we list
the numbers p„and q„ for states of two nucleons and I
pions.

For example, in the collision of two high-energy
protons, the isotopic spin of the initial state is T= 1. A
final state will be formed abundantly only when its
isotopic spin is also 1 and we may assume that the
probability of its formation will be proportional tof (to)
given by Eq. (1).In computing the relative probabilities
for the formation of e pions, we shall take into account,
however, that there are p states of isotopic spin 1.
Therefore, the probabilities to form n.pions will be
proportional to p„f„and be given by

&-=p-f-/Zp-f-. (2)

If the two colliding nucleons are a neutron and a
proton, the initial state is a mixture of 50 percent
isotopic spin 1, and 50 percent isotopic spin 0. If the
initial state has T= 1, the probability to form n pions
will. again be given by Eq. (2). For T=O, the prob-
ability will be given by a similar expression with p„
replaced by q:

Q.=q-f-/Zq-f-
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The resultant probability will be, therefore, the arith-
metic average of Eqs. (2) and (3).

In discussing the comparison of these figures with
experiment, it is important to give not only the number
of pions that accompany the two nucleons in the final

state, but also their charges. In order to do this, we
must subdivide the numbers p„and q„of states with rt

pions into numbers of states corresponding to the
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different possible charges of the particles emitted. For
example, according to Table I there are two states of
isotopic spin 1 containing two nucleons and one pion.
If we are discussing the collision of two protons (total
charge=2) the two states can be written as follows:

Final
state 2" =1 T =0

Probabilities foi
umber Number Primaries of energy

of pions of prongs 1.75 Bev 2.2 Bev

TABLE III. Weights for difFerent 6nal states in a coIli'sion of a
proton and a neutron for the cases T= 1 and T=0.

and
(-1/~)(W»)+(1/2)(p +)+(1/2)(.p+) (4)

(1/~) (Pm+) (1/A—(+P+) (5)
pp-
pno
nn+

12.3

15.7
22.8
15.7

6.0

12.9
18.5
12.9

where, for example, (pe+) means a state in which the
first nucleon is a proton, the second a neutron, and the
pion is a positive pion. If the final state were Eq. (4),
the probability would be —,'that in the final state there
is a proton, a neutron, and a positive pion and -', that
there are two protons and a neutral pion. If the final
state were Eq. (5), the only possible final state would
be a neutron, a proton, and a positive pion. In this
case, therefore, the number P&=2 is divided in a part
3/2 for the formation of a neutron, a proton and
positive pion, and a part 1/2 corresponding to the

TABLE II. Weights for diferent final states in a collision
of two protons.

State

Probabilities for
Number Number Primaries of energy

Weight of pions of prongs 1.75 Bev 2.2 Bev

4.0

pp +
pp00
pn+0
en++

1.2
0.4
1.8
0.6

2
2

14.1
42.3

9.1
3.0

13.6
4.6

11.3
32.7

12.2
4.0

18.2
6.0

PP+ —O 154/60
pp000 18/60
pn++ —175/60
pn+00 121/60
nn++O 72)60

1.4
0.2
1.5
1.0
0.6

3.2
0.4
3.7
2.5
1.5

formation of two protons and a neutral pion. The
weights computed in this manner for the various cases
are listed in Tables II and III.

Table II illustrates the case of a collision between
two protons. The 6rst column gives the di6'erent types
of particles that may appear in the 6nal state com-
patible with charge conservation. The second coIumn
gives the weight of the state, the third is the number n
of pions emitted and the fourth column is the number
of charged particles emitted. The fifth and sixth
columns will be discussed later.

Table III gives similar data for a neutron-proton
collision. In this case two isotopic spins, T=1 and
T=O, are possible, and therefore, two weights are
given for each case in columns 2 and 3. Columns 4 and
5 give respectively the number of pions and the number
of charged particles emitted. Again, the last two
columns will be discussed later.

In order to show the use of the tables, we consider

PP—o
Pn00
pn+—
nn+O

pp —00
pp~ ~+
pn000
pn+ —0
nn+OO
nn++—

0.8
0.6
1.8
0.8

0.9 0.4
1.2 0.6
0.6 0.2
4.2 1.8
0.9 0.4
1.2 0.6

3
3
3
3
3
3

3
5

3

5.3
4.6

13.8
5.3

0.4
0.6
0.2
2.0
0.4
0.6

7.3
6.3

18.9
7.3

1.0
1.5
0.6
4.6
1.0
1.5

first the collisions of 1.75-3ev and 2.2-8ev protons
against a proton at rest. One 6nds in this case m= 2.781
for 1.75 Bev and w= 2.948 for 2.2 Bev. The correspond-
ing values of f„are
f0= 1; fi=3.28; f2=0 88; f.3 ——0.062; for 1.75 Bev.
f0=1; fi=5.53; f2=2.49; fs ——0.30; for 2.2 Bev

The probability that the collision gives rise to an event
of the type listed in the first column of Table IZ is
given by the product of the weight listed in column 2 of
the same table times the appropriate f„The p.

rob-
abilities calculated in this manner and normalized to 1
are listed in columns 5 and 6.

A similar calculation can be carried out for a collision
of 1.75-Bev and 2.2-Bev neutrons with a proton. In
this case, one should 6rst compute in a similar manner
the probabilities corresponding to isotopic spin 1 and 0,
and then take the average of the results. These averages
are given in columns 6 and 7 of Table III. For example,
one can see from Table III that the probabilities of
having a'star with 1, 3, or 5 prongs in a neutron-proton
collision of 1.75 Bev are 61.3, 37.8, 0.6 percent, and for
a 2.2-3ev neutron are 52.6, 46.2, 1.5 percent. In par-
ticular, notice the very low probability of 5-pronged
stars at these energies.

In statistics of 3-pronged stars, one will expect the
probabilities of events in which a single negative pion,
or at least a negative and a neutral pion, or a positive
and a negative pion: are produced shouM be 42, 15, 43
percent at 1.75 Bev and 28, 18, 54 percent at 2.2 Bev.

It should be stressed. that all these 6gures are at
best indicative of orders of magnitude. Obviously, a
statistical theory of the type under discussion can, at
best, yield qualitative results. In addition, in deriving
formula (1) in A, many features like statistical corre-
lation of the various particles and conservation of
angular momentum have been neglected and it is to be
expected that some sizeable error may be introduced
thereby in the results.


