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A linear theory is developed of the ac behavior of solid or liquid
materials containing charge carriers which can move freely within
the material but cannot leave it through the electrodes. The
theory applies for any degree of dissociation of neutral centers and
recombination of positive and negative charge carriers, but these
carriers are assumed to have been produced by dissociation from
only one species of neutral center. The mobile carriers may be
electrons, positive holes, positive ions, negative ions, positive ion
vacancies, or negative ion vacancies. The general solution for the
admittance of the material is obtained for an arbitrary ratio
between the mobilities of positive and negative carriers, but,
because of the complexity of the result, it is only discussed in
detail in the present paper for the following special cases: (a)
charge carriers of only one sign mobile, arbitrary recombination

time; (b) charge carriers of both signs mobile with the same
mobility, arbitrary recombination time; and (c) charge carriers of
both signs mobile with unequal mobilities and very short recom-
bination time. In case (a), two dispersion regions may appear,
with that at lower frequencies arising from recombination and
the other from the 6nite mobility of the carriers. Both regions
follow Debye dispersion curves accurately over a wide frequency
range, making it possible to represent the electrical behavior of the
material for any recombination time by means of a simple equiva-
lent circuit containing only frequency-independent elements. In
cases (b) and (c), only the motional dispersion region appears, and
it again follows Debye curves. Finally, the results of the present
theory are compared with those of other theories of ac space-charge
effects in semiconductors and plectrolytes.

I. INTRODUCTION
' POLARIZATION eBects arising from the motion of

charge carriers under the infIuence of an electric
field in materials with blocking electrodes have been
extensively investigated in the past both experimentally
and theoretically. ' JaBe has recently renewed interest
in this subject with his treatment of ac polarization
effects due to ionic motion in semiconductors' and in
electrolytic solutions. ' In this paper, we derive expres-
sions for ac polarization capacitance and conductance
applying to any material which contains mobile charge
carriers for which the electrodes are blocking. The
treatment applies for any degree of dissociation and
recombination and for any ratio between the mobilities
of positive and negative charge carriers. The mobile
carriers may be electrons, positive holes, positive ions
(including donators), negative ions (including ac-
ceptors), or positive or negative ion vacancies.

The case considered here is considerably more general
than those analyzed by Jaffe, and the solution obtained
herein is less approximate than Jaffe's. In his treatment
with Chang of electrolytes, ' he has assumed the pres-
ence of completely dissociated positive and negative
ions of equal mobility, although it seems unlikely that
the assumption of equal mobility can often be fulfilled
in actuality. In his paper on the conductivity of semi-

conductors, ' on the other hand, he discusses the equa-
tions governing charge carrier motion in a general way
but derives results for space-charge capacitance and
conductance applying only to the case where the corn-

*On leave from Armour Research Foundation of Illinois In-
stitute of Technology. Now at Texas Instruments, 6000 Lemmon
Avenue, Dallas 9, Texas.' G. JafM, Ann. Physik 16, 217, 249 (1933).

2 G. Jaffe, Phys. Rev. 85, 354 (1952).
3H. Chang and G. Jaffe, J. Chem. Phys. 20, 1071 (1952).

References to the older literature are given in this paper and in
reference 1.

pletely dissociated charge carriers are electrons or
positive holes of high mobility and positive ions and
negative ions of low mobility, respectively.

The present work was undertaken because it was felt
that previous treatments were insufFiciently applicable
to some physical situations which might be important
in practice. The impurity centers in many semicon-
ductors are not completely ionized at room or lower
temperature, and the analysis of the response of these
materials to applied 6elds must therefore take recom-
bination into account. Further, many materials, such
as photoconducting phosphors and J -centered alkali-
halide crystals, contain neutral centers whose potential
energy is so great that they can only be ionized in any
appreciable number at room temperature by the ab-
sorption of light. Since tremendously large light inten-
sities would be required to keep a large fraction of the
neutral light-absorbing centers in such materials disso-
ciated, only a small proportion of these centers would
be ionized with the usual light intensities. Finally, at
room temperatures, the mobilities of the ionized centers
(positive or negative ions, positive or negative ion
vacancies) in many materials are su%ciently small that
their motion may be neglected except for applied fre-
quencies considerably below the usual range of interest.
The theory developed herein has been used to explain the
photocapacitative effect in alkali-halide crystals in de-
tail. This effect affords a good example for comparison of
theory and experiment because the number of neutral
Ii centers is easily varied by exposure to ultraviolet light
or gamma-rays, and the number of dissociated centers
conveniently controlled by means of the incident light
intensity in the F-absorption band. The present theory
applies, in addition, to electrolytes, but it has been
necessary to postpone to a later paper a detailed dis-
cussion of the results of the theory for electrolytes and

4 J. R. Macdonald, Phys. Rev. 85, 381 (1952); 90, 364 (1953).
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other materials containing both positive and negative
carriers of unequal, nonzero mobilities and long or
infinite recombination time.

In the following section, the applicable equations of
the problem are solved on the basis of certain reasonable
approximations. In Sec. III the resulting expressions for
conductance and capacitance are plotted and tabulated
wersls frequency for the three cases (a) equal mobilities
of the charge carriers, (b) zero recombination time and
different mobilities, and (c) either positive or negative
carriers immobile, any recombination time. Finally, in
Sec. IV, the results of the analysis are compared, par-
ticularly in regard to frequency dependence, with those
of several other space-charge polarization theories and
with the Fuoss-Kirkwood theory of dielectric dispersion
in materials having a distribution of relaxation times. '
In addition, the methods of analysis of experimental
data allowing most simple comparison of theory and
experiment are discussed.

IL SOLUTION OF THE EQUATIONS OF DETAILED
BALANCE

Let LV denote the initial concentration of immobile
neutral centers before any dissociation takes place; p
the concentration of positive charge carriers of mobility
p, , diGusion coefIicient D; and e the concentration of
negative carriers of mobility p, and coefficient of dif-
fusion O'. ' Assume that the two electrodes are at x=0
and a=I. and are blocking for both positive and nega-
tive carriers. Both n and p will, in general, be functions
of x as well as time, both because of the motion of the
charges and because of the presence of continuous dis-
sociation and recombination throughout the layer. On
dissociation, a neutral center produces a mobile negative
carrier and a mobile positive carrier. The number of
carriers produced per second at a position x will be
proportional to the product of the concentration of
neutral centers at x and a rate constant k~. This constant
k& will depend on temperature and will also be directly
proportional to light intensity if dissociation can be
induced by absorption of light. It is assumed that in the
case where the negative carriers are electrons, the elec-
tron concentration in the conduction band is suKciently
small that the influence of the Boltzmann factor for the
conduction band levels may be neglected.

To simplify the treatment, the concentration of any
extraneous traps for charge carriers will be taken van-
ishingly small and all carriers present will be assumed
to have come from the E neutral centers. Under this
assumption, the total number of negative carriers in the
layer I must be equal to the total number of positive
carriers. At any given time and position within the
layer, p need not equal n, however. Finally, the initial
distribution of neutral centers will be assumed to be
uniform throughout the layer before any dissociation
occurs. After some dissociation has taken place, the

~ J. R. Macdonald, J. Chem. Phys. 20, 1107 (1952).' A glossary of principal symbols is given at the end of this paper.

concentration of neutral centers may be a function of x
and time and will be denoted by e,.

If recombination takes place, the number per cc of
positive and negative carriers recombining to form
neutral centers per sec will be given by k,np, where ks
is another rate constant which will not depend directly
on light intensity and may depend on temperature less
strongly than k&. The use of the term ksn(x, t)p(x, t)'is
an approximation since it specifies that the recombina-
tion rate is proportional to the concentration of positive
centers and negative carriers present at the same
position at the same time. In actuality, recombination
can take place whenever a negative carrier approaches
within a sphere of infI.uence surrounding a positive
carrier defined by specifying a capture probability
distribution function. A treatment of diGusion taking
the sphere of influence into account has been given by
Chandrasekhar. ' This analysis might possibly be
modified and incorporated into the present treatment,
but it would add considerable complexity without a
very large increase in accuracy. Therefore, the simple
bimolecular k&pn term will be employed in the present
work. It should also be mentioned that when holes and
electrons are simultaneously present, their recombina-
tion may take place through the medium of traps. ' The
ksnp recombination term will no longer be appropriate
in this case for all carrier densities.

Kith these preliminaries, the equations of detailed
balance including the eGects of diffusion and motion
under the infIuence of an applied electric field E may be
written as' '

Bp/Bt=ktn. ksnp+DB'p—/Bx' lJB(pE)/Bx,— (I)

Bn/N=k, n, ksnp+D'B'n—/Bx'+g'B(nE)/Bx, (2)

Bn,/Bl = —k n,+rksnp,

where it has been assumed that the di6usion coefFicient
for the neutral centers is negligibly small.

In addition, we have specified that

~L ~I
p(x, t)dx= n(x, t)dx

4p 4p

must hold for all time. The charge densities must also
satisfy the Poisson equation,

BE/Bx=P(P —n),

where P=4xe/e; e is the dielectric constant of the
material at the frequency considered;" and e is the

' S. Chandrasekhar, Revs. Modern Phys. 15, 61 (1943).
W. Shockley and W. T. Read, Jr., Phys. Rev. 87, 835 (1952).' W. Van Roosbroek, Bell System Tech. J.29, 560 (1950).Some

further discussion of the equations is given in this reference.' Here e includes the usual contributions of the lattice and
bound charges and is thus the dielectric constant of the material
in the absence of free charges. If there is dispersion in the ordinary
dielectric response of the material in the frequency range con-
sidered, r(f) will be complex for a given frequency f within this
range. e will, however, be taken as real in this paper.



J. ROSS MACDONALD

charge of a carrier. " If the voltage between the elec-
trodes is V(t), we also require that

V(t)=
~ E(x, t)dx.

Jp
(6)

P'(() P' Civet (9)

Since the equations are nonlinear, the current through
the medium will contain all harmonics of the forcing
voltage, and accurate solutions for s, P, and E would
show that they would all involve zero frequency (static)
components together with the fundamental and all its
overtones. By taking V» suSciently small, the ratio of
higher harmonic components to the fundamental com-
ponent in s, P, and E may be made negligible, however.
In a later paper on the photocapacitative effect, it will

be shown experimentally that a value of V» so large
that the distribution of e is extremely inhomogeneous
still leads to only very small harmonic generation. It is
therefore valid here to follow Jaffep and assume that
all harmonics above the fundamental may be neglected.
Then, s, P, s„andE may all be written in the form

s(x, t) =so(x)+sl(x)e'"t. (10)

The last approximation which we shall need to make
to simplify the solution of the equations is the assump-
tion that the static concentrations sp and pp are equal.
Let their mutual value be cp. It then follows from Eqs.
(1) to (10) that Ep ——0 and that cp is homogeneous and
frequency-independent. This assumption cannot be
completely correct because it leads to expressions for
~sl~ and. ~P1( which may be larger than cp near the
boundaries for large applied ac voltage. Physically,
however, it is obvious that pp and sp must be equal to
or greater than )Pi) and (si(, respectively, at every

"We shall assume that each elementary carrier has a single
electronic charge; the results of the theory are readily generalized
to the cases of carriers of different charges and/or more than one
electronic charge.

Finally, since it has been assumed that both electrodes
are blocking for both positive and negative carriers, no
conduction current arising from the motion of either
type of carrier can Row across the electrodes, and the
pertinent boundary conditions are

ypE DBp—/Bx=01
~ at x=0, I,.

p'sE+ D'Bs/Bx= 0 I

Equations (1) to (8) are the fundamental equations
of the problem. They tacitly neglect the image force
which acts on the carriers when they are near the elec-
trodes. The neglect of this force is valid unless the
thickness of polarization layers set up at the electrodes
is less than about j.0 ' cm. In practice, the layers are
almost always thicker than this.

We shall now solve these equations for s, p, and E
for a simple sinusoidal forcing voltage

0= —kl (E cp)+ kpcp, — (13)

t'ipS. ,= k,S.,+—k, (S,+pl)C p, (14)

(S1
—pl) dx =0,

dE,/dx =p(pl S1), —
~L

V»= E»dx,
~p

pcpE1 Ddp, /dx=0 l-
x—0 I

p cpE1+D dsl/dx= 0 j

(16)

(18)

(19)

Equation (13) may be solved for cp and yields

c,= L(k,/2k, )'+ (k,/k, )X):—k,/2k, .

For the case of small dissociation, this reduces to

Cp=L (kl/k2)1V)*',

(20)

(21)

whereas for complete dissociation cp is equal to E.These
results are just the field-free equilibrium values which,
according to our second approximation, are assumed

"The assumption that n0 equals p0 is restrictive of the class
of physical situations to which the theory will apply, especially
for semiconductors where it excludes all but completely intrinsic
or completely impurity types. When e0 and p0 are unequal but
may, to an. adequate approximation, be assumed homogeneous,
it is found that the general form of the present solution remains
unchanged. Therefore, this solution is a useful first step in the
treatment of more complex physical situations.

point in the material; otherwise, the over-all concen-
trations p and s would go negative during part of each
cycle. Near the electrodes, then, pp and sp will actually
be neither equal nor homogeneous. Since the polariza-
tion capacity and conductance are directly determined
by sl, Pl, and El and only indirectly by the coupling
of these quantities to sp, Pp, and Ep, it appears reason-
able to assume that the ac capacitance and conductance
will not be greatly aGected by the neglect of the fre-
quency and x dependence of the latter static quantities.
This assumption has been verified by measurements on
the photocapacitative eBect, where it was found that
ac capacitance and conductance are not appreciably
affected by applying a dc bias Geld to the material many
times greater than the small ac measuring Geld strength,
even though such a bias must certainly alter the de-
pendence of sp, Pp and Ep on x greatly from the normal
zero-bias condition. "

Since sp and pp are assumed equal and homogeneous,
the static concentration of neutral centers ecp will be
simply (N —cp), which is also homogeneous. Using this
value and sp'=pp=cp we find, on substituting ex-

pressions of the form of (10) into the earlier equations,

ptppl klScl k2(pl+Sl)CO+ Dd pl/dx JJCpdE1/dx, (11)

ptpS1= klSc1—k2 (pl+ Sl)Cp

+D'd'sl/dx'+ p'cpdE1/dx, (12)
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Ncl= X(Pl+221),
where

I (k,/kpco)+zv„]
(23).

to apply to the present case as well. Solving Eq. (14)
for wc~, one 6nds

(22)

There are thus four roots, and nl and Pl will be given
by the sum of four terms each of the form exp[px].
Considerable simplidcation is produced, however, when
the symmetry of the problem is taken into account.
From symmetry considerations it is obvious that n& and
pl must be odd functions of x about the center of the
slab at L/2. They may therefore be written as

an v" is a imension ess requency varia le given y =~+ i hI- +(* L/2)]+~ i~L (* L/2)] (35)
v„=cp/—k 2Cp

=Ql T—
„ (24)

The quantity kl/kpcp appearing in (23) is just cp/E in
the case of small dissociation and thus is then small
compared to unity. The time constant r, in (24) is the
mean lifetime of an excess carrier for volume recom-
bination. The recombination constant k2 is usually less
than 10 2 cm'/sec. The dimensionless, frequency-
dependent quantity X is, from (22), the ratio of the
fundamental frequency component of charge bound in
the neutral centers to the fundamental component of
free charge arising from such centers.

In order to solve for the x dependence of 221 and Pl,
one can now substitute Eqs. (16) and (22) into (11)
and (12). After collecting', terms, the'results may be
written

pl 8+ sinh——Lp+(x —I/2) ]+8 sinhI p (x—L/2)]. (36)

The four A's and 8's may now be determined through
the use of Eqs. (16), (17), (18), (19), (25), and (26).
It is easy to see that these six equations do not over-
determine the four unknowns. The results are

and

A+ y+p (1+y ) cosh'
=+A

A —
y p+(1+y+) cosh'+

(39)

~+/&+= v+= —a»II:(p+)' a»]=—I:(p+)' a»]/—a» (37)

~ /& =V= a—»IL(p )' a»]=—E(p )' a»]l—a» (3g)

where

and

d Pl/dx al 1Pl+ a12221

d '+1/dx a21Pl+a22221

all ——2(M/L)2I 1+io(1+X)v],

a„=2(3f/L)2I —1+iko v],

a21——2 (M/L)2I —1+iXv],

a„=2 (M/L)'L1+i(1+X) v],

(25)

(26)

(27)

(2g)

(29)

(30)

2D'A

P C0

p1 y(L
I

—1 II I
+1 ti+ cosh'+

Ey+ ) (v2M)

1 )(Lp l'
I +1~ «»~

) (vr~) I

»nb&+
Ey+ ) &v2M)

o =I2'/p=D'/D, (32)

v= pp/p cpP= cf/2p ecp. (33) where

(M/L)'= I2'cpP/2D'= 22cecpI2'/cD'= 22ce'cp/ekT, (31) r'+ I

——1
I I I sinhti, (40)

) &~2m)

The Einstein relation" p/D=p'/D'=e/kT has been
used in (31) and (32). v is another dimensionless fre-
quency variable connected with the motion of the
charge carriers.

The characteristic equation associated with Eqs.
(25) and (26) is easily solved. After simplification, its
roots are

(M q
' |'1+o )

Lp~] =2I —
I 1+'(1+~)I

(L i &2)
0+15 2 't'o —1)
&2), &2)

—iX(1+o)v . (34)

'2 A. Einstein, Ann. Physik 17, 549 (1905).

li+= Lp"/2. (41)

8E dP1 dll
jl(x) =— +e pcpE1 D+I2'coEa+D' (—42)

4x Bt dx dS

The total current density Qowing into the layer can be
obtained by taking a space average of jl(x) over the

These dimensionless quantities p+ largely determine
the frequency dependence of the admittance of the
material between the electrodes.

Now, the current entering and. leaving the layer of
thickness L can be computed and from it the complex
admittance of the whole layer considered as a lumped
circuit element. The current density within the layer
will be given by the sum of a displacement term and
two convection terms arising from the motion of positive
and negative charges. It is
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whole layer. '4 One obtains

io)e Vg e—+—L(t +t ')eel'r
4mL L

Ji= ~x~x=

—D(P (L)—P (o))+D'(~ (L)—~ (0))3 (43)

The admittance/cm', Fr, is made up of a term arising

from the normal capacitance/cm2, Cg, of the layer in
the absence of macroscopic charge motion and terms
coming from the space-charge parallel capacitance/cm'
and conductance/cm', Ct and G&, respectively. Let F&
be the admittance/cm' due to space-charge effects
alone. If we now substitute the preceding expressions
for er and pr in (43) using (37) to (40), we find

e(tt+tt')co ecett'

L L

11 ( 11
(

sinh&+ —
(

1—
)

sinh&-
oy+) (. oy-)

1y ~Lp+p
—'

1——
I I I

(rt+ coshrt+ —sinhrt+) —gart+ coshrt+
&+) (vrm)

=G~+iteCr, (44)

(~ co»~ —»nhn )+~ coshn-
~-) (.v2m)

and
C, =e/4 L. (45)

This is a very complicated, complex formula for C~
and G&, and in the present paper we shall only consider
the reductions of this formula in various limiting cases,
reserving a discussion of the general formula (44) for a
later paper.

Before considering the reductions of (44), it appears
to be of interest to compare the present result and mode
of attack with that of Chang and Jaffe in their paper on
polarization eGects in electrolytic solutions. ' The case
considered by them was that of complete dissociation
with no recombination, and the positive and negative
carriers were assumed to be of equal mobility. Rather
than determine E& from the equations of the problem in
such a manner that Poisson's equation is satisfied, as is
done in the present work, they used an expression for
E& determined from an earlier solution for the dc case. '
Their expression does not satisfy Poisson's equation,
nor is it complex as the true ac field must be. Further,
the field inhomogeneity does not depend on frequency
as physical reasoning shows it must. In an eft'ort to
remove some of these inconsistencies, Chang and Jaffe
applied their solution to a "polarization layer" of
thickness l(~&L) only. They then split this layer in
half, put the halves at the electrodes, and assumed that
there were no polarization sects in a bulk layer located
between the l/2-thick layers. By satisfying boundary
conditions at the junction of polarization and bulk
layers, they were able to determine an approximate de-
pendence of /, and thus of field inhomogeneity, on
frequency. These difficulties are automatically avoided
i' the present treatment, which is, in addition, more
general. Here, the solution applies to the entire slab of

"It is worth noting that since the convection current is zero
at the boundaries, the total current J1 entering the layer must be
purely displacement current. Thus J& may alternatively be
derived from J~——(e/4w) (BE/Bt) 0= (icac/4m)Er(0) The lack of.
a negative sign in this equation arises from our choice of the sign
of Vr or Et in Eqs. (6) and (9).

thickness L, and there is never (except a,t infinite
frequency) any bulk layer in the middle of the slab
where polarization effects are absolutely zero, although
they are usually negligibly small near the center of the
slab. There is thus no uniquely defined polarization
layer, although the inhomogeneity of e and E increases
rapidly near the boundaries.

Now let us consider the reduction of (44) for various
limiting cases. It will prove convenient to introduce
another dimensionless frequency variable v* given by:toCg/G~ = toe/4r0g& =

td TD')— (46)

where 6„is the limiting value of G~ at very high fre-
quencies and will, in all cases, be found to be the normal
ohmic conductance/cm' of the slab which would obtain
at all frequencies were the electrodes not blocking.
Similarly, cr„—=Lo„is the limiting conductivity of the
material. Thus, the time constant vD is the ordinary
dielectric relaxation time for conductivity 0- . It is too
short to be measured electrically for metals and some
highly conductive semiconductors, but corresponds to
measurable frequencies for less conductive semicon-
ductors, and for photoconductors and high resistivity
electrolytes. For example, it is of the order of a micro-
second for distilled water. In order to deal with a single
frequency variable, we shall-"also define the ratio of
recombination time to dielectric relaxation time P as

$= v„/p = rt/rg&=4tra~/ek2cp, (47)

and use this relation to express v„in terms of v*. Sinceo„is proportional to ce, P is independent of carrier con-
centration. $ will be infinite in the case of zero recom-
bination (complete dissociation) and very small for
rapid recombination.

We shall 6rst consider the reduction of (44) in the
limiting case of negative carriers alone mobile. Then
p, =0 and o = . Let

iI=X/(1+) )= [1+kr/k2cp+i fv*] '. (48)

I'"rom the definition of X $Eq. (22)j, 5 is thus
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zzci/(zzct+pt+Nt), i.e., the ratio of the fundamental
frequency component of charge bound in neutral
centers to the fundamental component of total charge,
free and bound. Expansion of (34) gives

L~+js="

Lp $'= 2(M/L)'(1+6) (1+iv*), (50)

where we have used the expression for G„,below, to
convert v to v*. In this particular limiting case they are
identical. Thus

~-=M)-;(1+&)(1+i"))&. (51)

For complete dissociation 8=0, whereas for small dis-
sociation, the ki/kzcp term in 8 may be neglected com-
pared to unity, and one 6nds

zi =M((1+i)v*/2) (1+zv*)/(1+i/v*))& .(52)

For arbitrary dissociation the expressions for C~ and
Gv resulting from (44) are

(1+ki/2ksco l eep'co k

!Co—zlo C,=
E 1+ki/ksco ) 8zcD'

(59)

then Co——(r—1)C,. Since C, appears in parallel with
C~, r is the ratio of the measured parallel capacitance
including space-charge polarization eGects to that
without such eBects, in the limit of low frequencies. If
this ratio can be conveniently measured directly, po

may be immediately determined. In the interesting case
of small dissociation, M is thus obtained and from it co
if e is known. For r values greater than 3, po is closely
equal to r, whereas for r ~& 1.005, po may be found from
the limiting formula zip

——L3(r—1)]'. In the inter-
mediate region, the relation between go and r has been
determined graphically and is presented in Table I.
It is of particular interest to note that within the
accuracy of the present approximation, the zero-fre-
quency capacitance Co is independent of slab thickness
L provided r)&1. In this case.

Cp=
Co g —tanhg

Re
zip cothtio —1 tanhzi +ivies

(53)
Since C, is inversely proportional to L, r may be made
as large as desired by increasing L. For small dissoci-

where

"
g —tanhg

GI ———vG„Im-
.tanhzi +ivy

TARSI.K I. The dependence of the dimensionless constant g0 on
z=ep cothgo = iCp+Cz}/Cz.

Co= (tio cothzip —1)Cz,

G„=ep'cp/L,

(55)

(56)

and zi is given by (51), Cz by (45). zip is the value of
when v*=0. It is equal to M for small dissociation.

Co is the zero-frequency limit of C&. It should be men-
tioned that exactly the same expressions for C& and G&
are obtained in the case of only positive carriers mobile
with mobility p,

' instead of p.
The quantity 3II is of especial interest. In the present

limiting case, M may be written

M =L/(2D'rD)'= L/LD. (57)

r =go cothgo, . (58)
"The Debye length may be dered analogously to the recom-

bination diffusion length (D'~„)&as (D'7.D)&. It is the average
distance an excess carrier must travel to establish space-charge
neutrality. The rms Debye length is (2D'vD)&. In the present
case, the Debye length may be written as t kT/4ze c gz& zbypusing
the Einstein relation. When there are many species of carriers of
different mobilities and valencies s;, the Debye length is
pzkT/4zz'Z;n;zzj& In theories . of electrolytes, it is called the
thickness of the ionic atmosphere.

M is thus the number of rms Debye lengths LD con-
tained in the thickness L between electrodes. "Further,
the distance from the electrodes over which the concen-
trations tzi and pi drop by a factor of e ' is approxi-
mately L/ R2e( z)ias long as this is much less than L.
For zero frequency and small dissociation, this distance
is LD/2. At room temperature, the rms Debye length
for a material of dielectric constant 10 and charge
density co——10"/cm' is 5.3&(10 cm.

At zero frequency, G&=0. Let us define

3
2.5
2
1.8
1.6
1.5
14

2.985
2.47
1.92
1.68
1.42
1.29
1.14

1.3
1.2
1.1
1.05
1.02
1.01
1.005
1.002

0.972
0.791
0.557
0.388
0.244
0.174
0.1225
0.0774

ation and rapid recombination

Co MC, = feeIz—'co/8zrD' j'= e/4n Ln, (60)

whereas for complete dissociation (ks ——0),
Cp—MCp/K2= fee@'cp/16zrD'j&= e/4zr&2Lg& (61).

In the two above cases, the zero-frequency space-charge
capacitance/cm' is formed from the geometrical capaci-
tance/cm' by using the rms Debye length (or &2LD) in
place of the normal electrode separation L.

All the foregoing expressions for Co, the low frequency
limiting capacitance/cm', apply also to the zero fre-
quency or dc case. The expressions for Co are, in fact,
somewhat more exact than other quantities such as' C~
appearing in the ac theory because the neglect of higher
harmonics is not an approximation in the dc case as it
is for finite frequencies.

Another case of interest is that of equal mobilities.
Then a= 1, and we obtain

zl+ =M/1+i v/2g'= M )1+iv*j',
G„=2p'eco/L,

Cp ——(M cothM 1)C„—
Cp —MCz ——Peecov, '/8zrD'j* '= e/4nV2L~,
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where (65) holds only for M))1. Note that the rms
Debye length in this equation is 1/K2 less than that
appearing in (60) and (61) because here both positive
and negative carriers are mobile. The expressions for C~
and G& obtained for this case are exactly the same as
those above but with g+ replacing q and& replacingqo .
Further, the dependence on v* is also the same as the
previous case for 8= 1 (zero recombination time). Since
g does not appear in the equations of the present case,
recombination has no effect. Note that Eqs. (64) and
(55) give the same result for Cp, in the case of rapid
recombination and small dissociation, even though in
one instance both types of carriers are mobile, in the
other only carriers of one sign.

It is of interest to compare our results for G„andCo
given by (63) and (64) with the results of Chang and
Jaffe' for the same case of equal mobilities. Agreement
is obtained for G„,but Chang and Jaffe' find the ex-
pression (65) for Cp. This is approximately correct
when M))1 but is a very poor approximation to the
more correct result (64) when M(1.5. Since Chang
and Jaffe applied their results to the interpretation of
experiments on electrolytes for which M))1, the
approximate result was adequate for their purposes.
In a later paper on the photocapacitative eGect, we
shall 6nd experimentally that M may sometimes be
less than unity, and the more correct result must be
used.

Finally, let us consider the case of zero recombination
time and unequal mobilities. In this case 'A and k2 are
infinite and g is zero. We find

g
—=M 1+i~ ~v =ML1+iv*$l.

&1+0 I
(66)

Again, the same expressions are obtained for C~, G~,
and C(} as in the previous case. The expression for G„
now becomes

G„=ecp(p+y, ')/L, (67)

however, as one would expect. For the results obtained
in this case to apply, the recombination time does not,
of course, have to be zero but only short compared to
the dielectric relaxation time of the moving charge
carriers.

In the three limiting cases which we have considered,
we have found that the shape of the curves is the same
and that the cases differ only in values of Co, G„,and v."
Because of the correspondence between the diferent
limiting cases, we may restrict attention to one of these
cases only. We shall consider curve shape in detail only
for the erst case, that of mobile negative carriers, since
it is this case which applies most closely to the photo-
capacitative e8ect and to many space-charge eGects in
solids. The results will include the eftect of different

' Since v*=v in the case of charges of only one sign mobile,
for the sake of simplicity we shall use n rather than v* in the suc-
ceeding work.

recombination rates and will apply, both to small dis-
sociation and to complete dissociation.

Before considering C~ and G~ curve shape in detail,
it is of interest to give the expressions for Ei, ni, and pi
in the case 0-= ~."The results are

Ei {cosh' (1—2x/L)}/{cosh'
—}+iv

=21
(Vi/L) tanhg +ivy

n, Vi p' (1+iv) sinhg (1—2x/L)

cp 2 D' sinhg +ivi1 cosh'

Pi= —8ni,

(68)

(69)

where p is given by (51) and 8 by (48). These expres-
sions show clearly how the inhomogeneity of e& and E&
depends on x. For large M and small v, the inhomo-
geneity of 8& can be exceedingly large near the elec-
trodes. The inhomogeneity of n, the total concentration
of negative carriers, will not be appreciable, however,
unless Vi is large enough that ~ni~ is approximately
equal to co.

III. RESULTS OF THE THEORY IN THE CASE OF
CHARGE CARRIERS OF ONLY ONE SIGN MOBILE

Ke shall now investigate the dependence of the
normalized quantities Cv/Cp and Gv/G„on frequency
for various values of $ and M for the case of small dis-
sociation. The results will also hold for the case of
complete dissociation. However, there may be a region
of incomplete but large dissociation where the neglect,
compared to unity, of the ki/k&cp term in 8 may not be
permissible. Since this situation will occur only in the
physically unlikely case of fast recombination and large
dissociation, this term will be omitted in the following
work. Since the expressions for the frequency de-
pendence of Cv/Cp and Gv/G„are complicated, complex
functions, an IBM card programmed calculator has
been employed to compute this dependence for selected
values of M and P~

The results of many calculations show that the dis-
persion curve shapes depend critically upon the ratio
g/M. When g/M is less than about 0.1, the curves are
little altered from their shape for )=0. On the other
hand, when $/M is greater than about 30, a double dis-
persion phenomenon appears. In the intermediate
region, the shoulders of the curves are rounded com-
pared with the )=0 curves.

We shall erst consider the case of zero recombination
time, corresponding to )=0. When M is greater than
about 10, it is found that the Cv/Cp and Gv/G„curves
may be approximated over a wide frequency range by

"Material supplementary to this article has been deposited as
Document number 4052 with the ADI Auxiliary Publications
Project, Photoduplication Service, Library of Congress, Wash-
ington 25, D. C. A copy may be secured by citing the Document
number and by remitting $1.25 for photoprints, or $1.25 for 35-
mm micro6lm. Advance payment is required. Make checks or
money orders payable to: Chief, Photoduplication Service, l ibrary
of Congress.



THEORY OF AC SPACE —CHARGE POLARIZATION EFFECTS

simple Debye curves involving a single relaxation time,
r . The larger the value of M, the wider the range over
which the approximation is valid. " Some implications
of this result have already been discussed. "The cor-
respondence of the space-charge dispersion curves to
Debye curves is best demonstrated by converting the
parallel quantities C&/Cs and Gp/G„ to their equivalent
series circuit values Cs/Ce and Gs/G„. If Cv/Cp and
Gv/G„satisfy Debye curves for all frequencies, the
series values, similarly normalized, will be unity for all
frequencies. Therefore, any deviations of Cs/Cs and
Gs/G„ from unity will be a measure of the lack of
agreement of Cp/Cs and Gv/G„with Debye curves.
Conversion to series values shows that for frequencies
corresponding to err &Sr, Cs/Cs is accurately unity
but drops o6 toward zero for higher frequencies. Thus,
the larger the value of M, the wider the range over
which Cs is a constant. Similarly, Gs/G„ is found to be
unity for very high frequencies but drops to a low-
frequency limiting value Ge/G„as the frequency
decreases. This limiting value is

Gp (M cothM 1)s—
(71)

G„(3/2)M cothM (M cothM —1)—M'/2

and approaches unity as M increases.
Physically, the reason for the drop in C8 at high

frequencies is associated with the finite mobility of the
free charges. For small M, the space charge layers at
the electrodes are relatively thick, and at high fre-
quencies insufhcient time is available for the layers to
be completely established during a half cycle. Therefore,
Cz begins to decrease as the frequency increases. The
larger the value of M, however, the thinner the bound-
ary layers and the quicker they can be established. It
should be noted that although C8 eventually approaches
zero for any value of 3f, its reactance nevertheless also
approaches zero in the limit.

As a practical matter, it is probably impossible in
general to determine C& accurately for frequencies
above which it has decreased to 0.1 or 0.01 of C„since
C& is determined experimentally from the difference
between the measured value and C,. Thus, in Table II
the values of Cs/Cs and Gs/G„are given for various M
values at the frequencies for which Cv/Cv =0.1 and 0.01.
The corresponding values of Cy/Cp at these frequencies
are also given. For M equal to or greater than 100, the
deviations from unity are small for both Cv/Cv values.
For the less stringent condition Cp/C, =0.1, the devi-
ations are small even for 3E= 1. The final column gives
Gs/G for the various M values.

The motional relaxation time v is readily determined
from the dissipation factor D, arising from space-
charge eGects when this factor is expressed in terms of

' This result may also be found by expanding the rigorous
expressions for Cz and Gz. Because of the complexity of the
resulting formulas, their correspondence to Debye curves is,
however, better demonstrated by graphical comparison."J.R. Macdonald, Phys. Rev. 91, 412 (1953).

P'i SxcpkT
(73)

For comparison of curves corresponding to di8erent M
values, it will be convenient to introduce another
dimensionless frequency variable given by

v =cov' =(r 1)v. — (74)

We shall actually plot C&/Cs and G&/G„curves nersls
gv instead of v both in order to reduce the number of
decades necessary and to correspond with the work. of
Chang and Iaffe. ' It is found that curve shape does not
depend very strongly on the value of M. Figure 1 is a
doubly logarithmic plot of Cv/Ce and G~/G„versls gv
for M=0.1 and 100. In addition, (1—Cv/Cp) and

TABLE II. Dependence of Cv/Co, Cs/Co, and Gs/G upon M for
Cv/C, =0.1 and 0.01, and dependence of Go/G„on JI.

C~/C, —o.i c~/c, =o.oi
M Cg/Cp Cg/Cp Gg/G C~/Cp CB/Cp Gg/G~

1 Q.3167 0.9764 0.8431 3.Q92 -10 2 0.7583 0.8703
10 1,2 12 ~ 10~ 0.9203 0.9568 1.120 .10 3 0.6530 0.9698
102 1.021 10 3 0.9886 0.9951 1.110.10 4 0.9106 0.9954
104 1.000 '10 ~ 1.000 , 1.000 1.001 10 6 0.9992 1.000

0.8408
0.9529
0.9950
0.9999

(1—Gv/G„) are included to show the details of the
curves near saturation. The Gv/G„and (1—Gv/G„)
curves are displaced to the right by one decade in order
to show all curves clearly in one 6gure. For %=100,
the Cv/Cs curve is an excellent Debye curve over the
entire range shown. Thus, the deviation of the Cv/Cs
curve from the Debye values for M= 0.1 can readily be
seen. The deviation is surprisingly small. On the other
hand, the Gv/G„curve for M= 100 is only well approxi-
mated by a Debye curve for gv less than about 3,
the point where the (1—Gv/G„) line begins to curve.
Similarly, -for M=0.1, agreement is good only for gv
less than unity. In the case of the Gp/G„curve for
%=100, '"the. departure from Debye values above
gv =3 is of no practical consequence since Gv/G„ is
within about one percent of saturation at Qv =3.The
dependence of Cv/Cs and Gv/G„on gv for several M
values is presented in Table III.

The crossover point, at which Cv/Cp= Gv/G„, should
occur for Debye curves at v =1. In Table IV, the
values of Qv at crossover are presented for various
M values with )=0 and 100, and also for different f
values with M= 10. It will be seen that the deviations
from unity are not very great for any of the values.

series quantities. Ke obtain

. r =D /a&=RsCs=Cs/G = (r 1)v—/a&= (r 1—)r&. (72)

r is thus just the time constant of Cp in series with 6„
and is therefore the capacitative relaxation time asso-
ciated with the space-charge layers at the electrodes.
In contradistinction to v~ it involves the separation
between electrodes I.. For large M, it is approximately
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Pro. i. Doubly logarithmic"plot of Cv/Co and Gv/G„versoos gv, „

for )=0 and &=0.1 and 100, solid lines. The dotted lines are
(1—Cv/Co) and (1—Gv/G ). These curves apply only for zero
recombination time. Note that Gv/G„and (1—Gv/G„) curves
are displaced one decade to the right for clarity.

The value of Gv/G„and Cv/Cp at crossover should be
one-half. A decrease below this value sets in as 3f
becomes small; however, this decrease is not usually
important.

Although the dispersion curve shape is only slightly

dependent on Nfor')=0, this is no longer the case
when $/3E is large. Figure 2 is a doubly logarithmic
plot of Cv/Co and Gv/G„versus gv for )=100 and
35=1 and. 100. For M=100 the principal diGerence
from the corresponding /= 0 curves is a rounding of the
shoulders. "But for &=1($/M=100) a definite plateau
appears in both the Cv/Cs and Gv/G„curves. The curves
are thus made„'".up of two dispersion regions, the lower
frequency one arising from recombination, the higher
from the motion of the charge carriers. This behavior
is even more clearly demonstrated in Figs. 3 and 4 for
ALII=10 and various values of $. In these curves the
abscissa is Qv rather than Qv . It will be noted that
in Fig. 3 the shape of the lower-frequency dispersion
curve is essentially'"„. 'independent of $ for large $ and
that an increase in $ merely displaces the two dispersion
regions by lengthening the plateau. If the lower fre-
quency dispersion region is treated separately, it is
found that the dispersion curves arising from recom-
bination alone are also well approximated by Debye
curves over a wide frequency range if M is not too
small. The two regions of dispersion may be separated
by letting 1s' go to infinity. Then v goes to zero and fv
to v„.Making these substitutions in equations (52),
(53), and (54), the expressions for Cv/Co and Gv/G„
pertaining to. recombination alone may be obtained.
Their dependence on Qv„ is presented in Table V.
Cv/Cs reaches a limiting value at high frequencies
which will be denoted by C„/C, (the plateau in Fig. 3).

TABLE III. The dependence of Cv/Co and Gv/G„on gv for 3I=0.1, 1, and 100, and &=0.

0.0100
0.03162
0.04217
0.05623
0.07499
0.1000
0.1334
0.1778
0.2371
0.3162
0.4217
0.5623
0.7499
1.000
1.259
1.585
1.995
2.512
3.162
4.217
5.623
7.499

10.00
13.34
17.78
31.62
42.17
56.23
74.99

100.0
177.8
316.2

CP/C0
M =0.1

G~/G

0.9999
0.9999
0.9999
0.9997
0.9993
0.9984
0.9949
0.9841
0.9514
0.8611
0.6633
0.3875
6.900 10 2

2.822 ' 10 '
1.193 10 '
5.035 10 '
2.123 ' 10 '
3.775 F 10 4

6.713 10 '

1.321 10 '
3.306 10 '
8.400 10 '
2.110 10 4

5.296 10 4

1.329 10 '
4.189 10 '
1.310 10~
4.003 10 '
0.1144
0.2775
0.5055
0.7802
0.8334
0.8742
0.9057
0.9293
0.9602
0.9776

Cy/Cp

1.000
1.000
1.000
0.9999
0.9996
0.9986
0.9956
0.9862
0.9576
0.8773
0.7405
0.5336
0.3167
0.1612
7.684 10-2
3.092 10 '
1.290 10 '
5.405 10 '
2.270 10 '
9.552 F 10 4

4.023 ' 10 4

7.147 10 5

Gg/G

3.685 10 6

1.165 ' 10 5

3.685 10 '
1.165.10 4

3.684 10 4

1.164 10 '
3.669 ' 10 '
1.149 10 2

3.527 10 '
0.1021
0.21.52
0.3882
0.5696
0.7020
0.7791
0.8348
0.08751
0.9062
0.9295
0.9471
0.9603
0.9776

M
CI /Co

0.9999
0.9901
0.9696
0.9099
0.7616
0.5025
0.2421
9.176.10 '
3.097 10~
1.001 10 '
3.197 10 '
1.021 10 '
3.309.10 4

1.110 10 4

4.820 ' 10 '
2.179 10 5

1.018 10 '
4877 10 '
2.374 10 6

= 100
GE/G

9.849 10 ~

9.753 10 '
3.020 10 '
8.963 10 '
0.2372
0.4950
0.7541
0.9037
0.9642
0.9851
0.9919
0.9941
0.9949
0.9953
0.9958
0.9963
0.9969
0.9974
0.9979
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If we define C,/Crp= (Cp —C )/(Cp —C„)'and G,/Gr„
=Gp/G„(ls'= po ), it is found that these quantities
depend on frequency very similarly to those shown in
Fig. 1 for motional dispersion and, like them, agree with
Debye curves over a considerable frequency range.
Thus, the equivalent series values of recombination
capacitance/cm' and conductance/cm' will be Crp

=(Cp—C„)and Gr„.These values may be determined
frolTl

I.O

10 '—

C (M/v2) coth (M/K2) —1

M cothM —1
(7h)

G.„/G„=t (M/V2) coth(M/v2)

—M'(4 sinh'(M/K2) ) ']$ '. (76)

Like the motional case, the actual series value of
capacitance drops from (Cp —C„)toward zero for very
high frequencies. Similarly, the series conductance
drops to a limiting value less than Gr„at low fre-
quencies. Nevertheless, unless M is very small, the
series values may be considered frequency-independent
over the frequency range of experimental interest. As in

TABLE IV. The dependence of the value of V v at Cp/Co= Gp/G
on M and P. The Debye value is unity.

M 10' 10 20 100 104

0 0.9598 0.9612 0.9888 0.9938 0.9990 0.9999
100 1.138 1.130 1.056 1.055 0.9821 0.9999

MQg 0 10 102 104 105 106

10 0.9888 0.9681 1.0692 1.0857 1.0860 1.0860

the motional dispersion case, we may now define a
macroscopic recombination time constant vz, given by

cothM —(1/v2) coth (M/v2)

(1/2&2) coth(M/v2) —M{4sinh'(M/V2) ) "

(77)

Except for the term in the brackets, which approaches
2(u2 —1) as M increases, ere is thus equal to r„

The foregoing results may now be utilized to con-
struct an equivalent circuit for unit area of the layer of
thickness I. which consists, within the limitations dis-
cussed above, of frequency-independent elements. The
circuit will apply for any value of g and will be valid
over a wider frequency range the larger the value of M.
The circuit is given in Fig. 5. It is easily verified that
this configuration gives the correct frequency response.
For example, when P/M is much less than unity, Eq.
(79) shows that Gr„/G„will be very large. The con-
ductance/cm' Gr„may then be neglected, and the
space-charge branch of the circuit reduces to Co and G„
in series as previously found for the case /=0. Simi-
larly, for P= ~ (complete dissociation), Gr„ is zero,
arnd the series arm consists of C„and6„.%hen it is
remembered that G„is just the ordinary ohmic con-

io-3
IO 2 1O-'

FIG. 2. Doubly logarithmic plot of Cp/Cp and Gp/G„versus gv
for )=100 and M=1 and 100.
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Fio. 3. Semilogarithmic plot of Cp/Cp versus Qv for M =10 and
various $ values.

ductance/cm' of the layer in the absence of blocking at
either electrode, it is easily seen from Fig. 5 that the
effect of blocking is to introduce the additional elements
shown. If only one electrode is blocking, the equivalent
circuit of a layer L/2 thick with one electrode blocking,
one nonblocking will be exactly like that shown in
Fig. 5, but with all elements doubled. This result is
readily verified from a consideration of the symmetry
about the plane at L/2 of a slab of thickness L with
both electrodes blocking. Since carriers pass freely
across the center plane and the two halves are exactly
alike and essentially in series, the capacitance and con-
ductance of either half with one blocking and one non-
blocking electrode must be twice that of both together.

IV. COMPARISON WITH EXPERIMENT AND
WITH OTHER THEORIES

In this section we shall consider how the theoretical
results can be best compared with experiment to obtain
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FIG. 4. Doubly logarithmic plot of Gv/G„versees gv for
M=10-and various P values.

ep p and g, and how the present theory compares with
some other theories of space-charge eGects. It is obvious
from the preceding work that cp, fs', and t can be cal-
culated if C„Cp,G„,C„,and G earn be obtained from
the experimental results. "Not all these quantities are
necessary, of course, but some are easier to work with
than others. First, if measurements can be extended to
su%ciently high frequencies, the measured parallel
capacitance/cm' and conductance/cm' will approach
C, and G„.In the experimental situation where charge
carriers are mobilized by absorption of light, C, can be
determined at any convenient frequency by measure-
ment in the dark. Alternatively, it can be calculated if
the dimensions and dielectric constant of the sample are
kriown. Assuming that C, is known and that measured
values of parallel capacitance/cm' and conductance/cm'
are available over the frequency range of interest, one
then may subtract C, from the measured values to

' It is possible to calculate only D' and not p,
' unless the Einstein

relation is employed.

TABLE V. Dependence of recombination dispersion values of
Cv/Co and Gp/G„on gv, . The values of Gv/G„ for M=1OP are
identical with those for 3f= 10.

QVr

0.1000
0.1334
0.1778
0.2371
0.3162
0.4217
0.5623
0.7499
1.000
1.259
1.585
1.995
2.512
3.162
4.217
5.623
7.499

10.00
17.78
31.62

M=f
CI /Cp Gy jG~

1
0.9999
0.9995
0.9986
0.9955
0.9860
0.9583
0.8888
0.7650
0.6594
0.5853
0.5459
0.5281
0.5206
0.5171
0.5160
0.5156
0.5155
0.5155
0.5155

9.421 ' 10 5

2.979.10 4

9.412 ' 10 4

2.970 10 3

9.333 10 '
2.893 10 2

8.609 10 '
0.2294
0.4850
0.7026
0.8557
0.9371
0.9740
0.9894
0.9966
0.9989
0.9995
0.9998

1

M'=10
C~/'Co G~/G„

0.9999
0.9998
0.9992
0.9976
0.9925
0.9775
0.9387
0.8461
0.7927
0.7359
0.7025
0.6864
0.6794
0.6761
0.6751
0.6747
0.6746
0.6746
0.6746

7.071 ' 10 '
2.236 10 4

7.066 F 10 4

2.231 ' 10 3

7.016' 10 '
2.182 10~
6.561 ' 10~
0.1798
0.4028
0.6218
0.8007
0.9084
0.9610
0.9841
0.9949
0.9984
0.9995
0.9998
1
1

M ~10&
Ca/Co

0.9999
0.9998
0.9993
0.9978
0.9932
0.9796
0.9442
0.8764
0.8115
0.7599
0.7295
0.7149
0.7085
0.7056
0.7046
0.7043
0.7042
0.7042
0.7041

obtain C& at each frequency. The measured conduc-
tance/cm' will be G~ in the absence of other loss and
conduction mechanisms. If the shapes of the Gp and C~
curves eersls frequency approximate well to Debye
curves with the same relaxation time, it may be con-
cluded that recombination is rapid and P/M is less
than about 0.], or alternatively, that both positive and
negative carriers are mobile with equal mobilities, or
finally, that they have diferent mobilities but very
rapid recombination. The correspondence of the experi-
mental curves to Debye curves may be tested either by
conversion of the parallel values to equivalent series
values or in the following way. If G& depends on fre-
quency according to a Debye curve, the quantity
Gs/(G„—GQ) plotted versus ep' should give a straight
line of slope r '. Likewise (Cp/C~ —1) versus ep' should
also yield a straight line of slope v- '. The r values
obtained from these two lines should be the same,
provided the CJ and G~ curves involve the same dis-
persion mechanism. Further, the value of v obtained
from crossover (C~= G~/epr) should also be the same as
that obtained from the straight-line plots.

When the curves approximate well to Debye curves
over a wide frequency range, the quantity f cannot be
obtained from simple frequency dependence measure-
ments. However, p' and Co may be calculated from
either the curve of C& versus frequency or that of G&
versus frequency. This is a valuable result since it often
may happen that measurements cannot be extended to
a suKciently low or a sufficiently high frequency to
yield both Co and G„.If one or the other of these quan-
tities can be determined together with r, Eq. (75)
shows that the other may be immediately computed.
Of course, the experimental determination of Co, G„,
and r furnishes an additional check on the correctness
of all of these values.
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When the curves of (it and C& versus frequency show
well-deffned double dispersion, the quantity $ (and so
ks and k&) may be determined in addition to tt' and Cs,
provided it can be established that the lower-frequency
dispersion region is in fact due to recombination. $ can
then be determined either from the G& curve using Eq.
(79) or from the C& curve by subtracting out the
motional capacitance/cm', C„,and determining r„from
the remaining recombination dispersion curve. In the
intermediate region where the curves are rounded by
recombination but no plateaus appear, $ can only be
determined from a detailed comparison of theoretical
and experimental curve shapes for different values of $.
A qualitative comparison of the present theory and
some experimental results on electrolytes, semicon-
ductors, and photoconductors has already been given. "
A quantitative comparison with experimental data on
the photocapacitative eGect' will be published later.

It is worth noting that the Fuoss-Kirkwood many
relaxation time theorys cannot be used to accurately
fft the dispersion curves when g is greater than zero
except in the trivial case for which f is sufficiently small
that the dispersion curves are well approximated by
Debye curves with a single relaxation time. The reason
for this failure is, of course, that as $ increases from
zero, two relaxation times appear in our theory, and
these times are not in general equal. On the other hand,
the Fuoss-Kirkwood theory postulates a distribution of
relaxation times spread about a most probable time.
Even in the case )=0 and M(1, for which the devia-
tions from Debye curves are fairly considerable, the
Fuoss-Kirkwood theory will not allow a good fit of the
dispersion curves to be obtained. Again, this is not an
unexpected result.

Next, it is of interest to compare the results of the
present theory with those of other space-charge theories.
The present theory predicts the possibility of two dis-
persion regions, one at low frequencies arising from
finite recombination time and the other, at higher fre-
quencies, -produced by the finite mobility of charge
carriers. Recombination cannot relax the space-charge
capacitance by more than a factor of g2 unless M is
small, and motional relaxation does not reduce the total,
capacitance by more than a factor of about M.

Lawson, Miller, SchiG, and Stephens"" have de-
veloped a theory to account for the dispersion of the
parallel capacitance and conductance of the barrier
layer of a crystal rectifier based on a dispersion mecha-
nism not explicitly considered in the present work. In
the frequency range to which this mechanism is to
apply, these authors assume that the recombination.
time is short compared to a half cycle and that the
mobility is suKciently high that free carriers can always

"Lawson, Miller, Schi6', and Stephens, National Defense
Research Council Report NDRC-14-153, July 1, 1943 (un-
published).

~ H. C. Torrey and C. A. Whitmer, Crysta/ RecteJt ers (McGraw-
Hill Book Company, Inc. , New York, 1948).

II

Cg

FIG. 5. Equivalent circuit for unit area of a capacitor containing
mobile charge carriers of only one sign for which both electrodes
are blocking.

stay in phase with the applied voltage. Dispersion then
arises from the fact that some carriers will be bound to
impurity ions within the barrier layer. When the phase
of the applied voltage is such that free carriers leave the
barrier layer, the additional carriers bound to impurity
ions will be unable to leave immediately but will be
delayed by the average ionization time k& '. Since k&

is the probability per unit time for ionization, the delay
will be negligible as long as k~ is much greater than the
frequency of the applied. voltage, but dispersion mill

occur when these quantities are comparable. This
trapping-time dispersion may occur either above or
below the frequencies at which motional dispersion
takes place, depending on the magnitudes of the
mobility and k&. However, if motional dispersion occurs
at the lower frequency, it will relax the barrier layer
capacitance and. no further change will be observed at
higher frequencies.

This theory of Lawson et al. only applies to rectifiers
having barrier layers of the order of 10 ' cm thick, to
which the diode rectification theory also applies. The
neglect of motional eGects implies that an electron
produced in the barrier layer will leave that layer and
reach the bulk material in a time short compared to a
half-cycle of the frequency concerned. For thick barriers
of the order of 10 4 to 10 ' cm thick, to which the dif-
fusion rectification theory applies, an electron will be
unable to traverse the layer in a half-cycle of the fre-
quency at which trapping-time dispersion takes place.
This frequency is of the order of 10' to 10"cps in most
crystal rectifiers. Thus, in this latter case, motional
dispersion would occur at lower frequencies than the
above. . Experimentally, the dispersion in rectifiers
having thick barrier layers does indeed occur at fre-
quencies several orders of magnitude below 10" cps
and the present discussion therefore indicates that all
or part of such dispersion may be a motional eGect.

Although the present theory and that of Lawson e1 gl.
are both space-charge dispersion theories, the fact that
the dispersions arise from diGerent causes makes any
direct comparison between them relatively useless.
However, as an aid to distinguishing between the two
in experimental cases, Fig. 6 shows how the respective
normalized curves for the two theories diGer in their
frequency dependence. Both sets of curves apply to the
small dissociation case only. The frequency scales have
been adjusted to make the capacitance curves coincide
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assumption. Since, as we have seen, the actual 6eld is
complex and may be essentially zero near the middle of
the slab and exceedingly inhomogeneous near the
boundaries, this is not a very good assumption. It leads
to the correct value of G„but to Cs ——efjcsL/6D. Thus,
the dimensionless frequency variable which Chang and
Jaffe use is not the same as either of the variables i

or v used herein. The relative curve shapes are not as
greatly'~'diferent from those of the present theory as
one might expect, however. Figure 7 shows the com-
parison of normalized capacitance and conductance
curves for the two theories. Since the Chang-Jaffe
theory applies only to positive and negative charge
carriers of the same mobility and no recombination, we
have made the comparison on the same basis (o=1,
M=10). Here, the frequency scales have again been
shifted to make the capacitance curves coincide at low
frequencies, and we see that the principal deviations
occur between the respective Gi/G„curves. The Chang-
Jaffe curves do not, of course, agree well with Debye
curves. The present theory is an improvement on the
Chang-Jaffe theory in the following ways:

Fxo. 6. Comparison of 6nite-ionization-time dispersion curves
(dotted lines) with motional dispersion curves (solid lines) plotted
for 2f =10, /=0 (see references 11 and 12). Frequency scales
have been adjusted to make capacitance curves coincide at low
frequencies.

at low frequencies. It will be noted that the principal
deviations occur in the capacitance curves.

Finally, let us compare the present theory with that
of Chang and Jaffe. s We have already seen that for
3f»j., the values of Co and G„obtained from the
present theory are in agreement with those of Chang
and Jaife. Even in this case, the frequency dependence
of Ci /Cs and G~/G„are considerably difFerent, however.
Chang and Jaife derive formulas for the frequency
dependence of the capacitance and conductance of the
polarization layer l(((L) only. To obtain the parallel
values for the entire layer L, they would be forced to
convert their parallel values to series values, add in the
series resistance of the bulk layer of thickness (L—l),
and finally convert the resulting series values to parallel
values. Since / is also a function of frequency, this is a
tedious process and it yields results applicable to only
a single value of L each time it is carried out. The
Chang-Jaffe results for the polarization layer l alone
yield capacitance and coriductance curves which dier
markedly from our results.

Rather than compare our results with those of
Chang and Jaffe for a single value of L, we shall instead
compare them with the results of an earlier theory of
Chang and Jaffe which are not corrected for frequency
variation of the thickness of the polarization layer. ' In
this work, instead of assuming an inhomogeneous elec-
tric field within the entire layer L, Chang and JafFe
postulated a real constant 6eld and derived the re-

. sulting space-charge capacitance and conductance for
the entire layer of thickness I. on the basis of this

(a) The theory in intrinsically more accurate since the
electric Geld satisfies Poisson's equation;

(b) The results apply to the entire layer L and
follow Debye curves quite well in their frequency de-

pendence, so that an illuminating equivalent circuit of
the layer may be constructed;

(c) The theory applies for any recombination time
and any degree of dissociation;

(d) The equations of the theory have been solved for
any ratio of the mobilities of positive and negative
carriers.

In conclusion, we should mention that the theory
derived in this paper is not sufFiciently general to

apply to all space-charge e8ects of interest. First, the
results when positive and negative carriers have dif-

ferent nonzero mobilities have only been given in

terms of a complicated formula, not tabulated and
graphed. It is hoped to rectify this omission in a later
paper devoted mainly to electrolytes. Second, the
assumption that all the charge carriers in the material
dissociate from the same kind of neutral centers will

often be too restrictive. However, although the ex-

tension of the equations of detailed balance to include,
for example, the presence of extraneous traps for one or
more species of charge carrier changes the frequency
dependence of q+, it will not in general change the form

of the solution of the equations. Thus, the present
solution is a good beginning for the analysis of more
complicated situations. Such extension has been carried
out and will be further discussed in the later paper on

the photocapacitative e8ect.

ACKNOWLEDGMENTS

The author wishes to thank Mr. Elwin L. Dershem
for programming the 6nal formulas for the IBM card



THEORY OF AC SPACE —CHARGE POLARIZATION EFFECTS

programmed computer and for carrying out the cal-
culation of many frequency-dependence tables. In addi-
tion, the author is much indebted to the Argonne
National Laboratory for a visting appointment.

GLOSSARY OF PRINCIPAL SYMBOLS

l.o

0.6,

0.4

0.2

C~ Geometrical capacitance/cms of layer. (45)~
C~ Space-charge polarization parallel capacitance/cm' of

layer. (44, 53)
Cz Space-charge polarization series capacitance/cm~ of layer,
Cp Zero-frequency limiting value of C~ for inite recombination

time. (55)
C„Zero-frequency limiting value of Cz for infinite recombina-

tion time; also high-frequency limiting value of Cz for
finite recombination time, infinite mobility. (75)

C, Recombination contribution to Cp. It'equals (Ci —C„).
Crp Zero-frequency limiting value of C„.

co Average, static charge density of positive and/or negative
charge carriers.

D Diffusion coefficient of positive charge carriers.
O' Diffusion coefficient of negative charge carriers.

F.(x) Electric field strength. Static component Ep, fundamental
frequency component E&.

e Absolute vajue of electronic charge.
f Electrical frequency.

G~ Space-charge polarization parallel conductance/cm~ of
layer. (44, 54)

Gz Space-charge polarization series conductance/cm~ of layer.
G„High-frequency limiting value of GI. (56)
Gp Low-frequency limiting value of Gg. (71}
G, Recombination contribution to G~.

Gr„High-frequency limiting value of G,. (76)
ji(z) Fundamental frequency component of current density

within the layer.
J& Fundamental frequency component of current density en-

tering layer.
k Boltzmann's constant.

k& Dissociation constant. Probability per unit time for dis-
sociation of neutral centers.

k2 Recombination constant. Related to average recombina-
tion rate. (24).

I. Thickness of layer between electrodes.
In Root-mean-square Debye length. (57)
M Dimensionless variable which measures the number of rms

Debye lengths contained in I-. (31, 57)
E Initial homogeneous concentration of neutral centers before

dissociation.
n Concentration of negative carriers. Static component np,

fundamental component n~.

n, Concentration of neutral centers after dissociation. Static
component ncp, fundamental component nc~.

p Concentration of positive carriers. Static component pp,
fundamental component Py.

r Dimensionless variable equal to M for large M and small
dissociation. (58)

T Absolute temperature.
V Applied voltage; fundamental component V~.

Ratio of fundamental component of charge bound in
neutral centers to fundamental component of total charge,
free and bound. (48)

"Numbers in parentheses are those of the most important de-
fining equations for the symbol considered.

Q. l

0.06

Q.Q4

0.02

Q.Q l

0.006

0.004

0.002 \
\

\

0.00 l

0.06 O. l 0.2 0.4 0.6 l.o 2.0
tu

gp

. X

p
V

Vm

Vr

p 6

0'm

TD

Tm

Tt'

Tg
Ql

GOy

Ordinary dielectric constant of material in absence of free
charges.
Dimensionless quantities involving both the Debye length
and frequency. They largely determine the space-charge
polarization frequency response. (41)
Zero-frequency value of g in the case of negative carriers
alone mobile. pp equals M for small dissociation.
Ratio of fundamental component of charge bound in
neutral centers to fundamental component of free charge.
(23)
Microscopic mobility of positive charge carriers.
Microscopic mobility of negative charge carriers.
Dimensionless frequency variable. (33)
Dimensionless frequency variable equal to rara. (46)
MacroscoPic dimensionless frequency variable equal to ~Tm.
(74)
Dimensionless frequency variable equal to coT,. (24)
Ratio of average recombination time to dielectric relaxation
time. (47)
Complex roots of auxiliary equation which determine fre-
quency and x dependence. (34)
Ratio of mobility of negative carriers to mobility of posi-
tive carriers. (32)
High-frequency limiting value of conductivity of layer.
Dielectric relaxation time for conductivity ~ . (46)
Motional or capacitative relaxation time associated with
the decay of the space-charge layers near the electrodes.
(72)
Mean lifetime of an excess carrier for recombination. (24)
Macroscopic recombination time constant. (77)
Radial frequency.
Radial frequency at which Debye curves cross

cai =Gi (cai)/Ci (coi)—r

FIG. 7. Comparison of the results of the present; theory for e = 1,
%=10 (solid lines) with those of Chang and Jafte (dotted lines) who
assume a homogeneous electric field. Positive and negative charge
carriers of equal mobility, complete dissociation.


