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Group these terms in the following manner:
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The first group on the right in (29) is E, of (11). The
second group in (29) is equal to —3_ j5s J:{P ;) of (11),
which one may prove by expanding J;; as defined in
(10). In the proof it must be remembered that S;;=0
and S;;, (¢] |7), etc. are also zero if 7 and 7 have dif-
ferent spins.

We state without further proof, that the next group
of terms in (29), which would involve three integrals
over pairs of wave functions with different ¢ and 7, is
equal to the third-order terms of (11). ,

If the series (17) converges sufficiently, one may
neglect the remaining terms in (29) and consequently
R in (11).
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A few difficulties in the previous theories of energy loss and secondary electron production by primary
electrons in metals can be removed by replacing the Coulomb interaction between a primary electron and a
lattice electron by a screened Coulomb interaction, such as required by the plasma theory. In the new theory
Wooldridge’s mechanism of secondary electron production seems to have lost most of its importance. The
energy loss distribution due to the interaction with the conduction electrons of the metal is found to have a
maximum at an energy loss slightly less than (42£,.2/2m), where %, is the value of the wave vector of the
conduction electrons at the Fermi level. The theory is also applied to the bound electrons, and it is shown that
the screened Coulomb interaction does not change the previous results very strongly. It is also shown that

the polarization of the medium has only a small influence upon the previous results for insulators.

I. INTRODUCTION

EKKER and van der Ziel' recently unified the
various theories of secondary electron production.
This theory, which is essentially a modification of the
existing theories of energy loss of fast particles in
matter, is based upon a Coulomb interaction between
the primary electrons and the lattice electrons. It has
the same difficulties for the conduction electrons of the
metal as previous theories:

(a) In a single collision between a primary electron
and a lattice electron the probability P(Exx)dEws of
an energy loss between Eiw and Eipw—+dEg, becomes
infinite for E—0.

(b) The probability P(k’)dk’ of a transition of a lat-
tice electron to an energy state having an absolute value
of the wave vector between %' and k'-+dE becomes
infinite at the Fermi level.

(c) The rate of energy loss (dE,/dx) due to the lattice
electrons for a primary electron of energy E, varies as
E,1log(E,/Ey), with a very small value of Ey'.

* Supported by U. S. Signal Corps Contract.
1A. J. Dekker and A. van der Ziel, Phys. Rev. 86, 755 (1952).

It is the aim of this paper to investigate whether a
screened Coulomb interaction might remedy these
defects. It is reasonable to expect so, for, since the
difficulties are caused by the interaction of primary
electrons and those lattice electrons that are passed by
at larger distances, this interaction should be removed
by a screened potential function.

Such a screened potential should be expected in
metals according to the plasma theory of electron in-
teraction. In that theory the interaction between a
primary electron and the electrons of the metal is split
into two parts.?

(1) An “organized” part, consisting of the interaction
with the electron gas as a whole, resulting in relatively
sharp to very sharp energy losses caused by the excita-
tion of “plasma oscillations.” This part of the interaction
can explain the discrete energy losses of electrons in
metal foils. It is not known how important this process

2R. Kronig and J. Korringa, Physica 10, 406, 800 (1943);
H. A. Kramers, Physica 13, 401 (1947); D Bohm and E. P.
Gross, Phys. Rev. 75, 1851, 1864 (1949) ; D. Bohm and D. Pines,
Phys. Rev. 80, 903 (1950),82 625 (1951) D. Pines and D. Bohm,
Phys. Rev. 85 338 (1952); D. Pines, Phys Rev. 85, 931 (1952).
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is for the production of secondary electrons; this ques-
tion deserves further study.

(2) An “unorganized” part consisting of the residual
interaction with the individual lattice electrons. This
part can be described by a screened Coulomb potential,

e
V(R, r)=——exp[—\|R—r| ], (1)
|R—x|

where R and r are the radius vectors of the primary
electron and the lattice electron, respectively, whereas
A is determined by the properties of the electron gas;
it is estimated that A=~10% cm™ for metals. This part
of the interaction is investigated here.

We assume in our discussion that the metal is in the
form of a cube of 1 cm?® volume and that the primary
beam has an intensity of 1 electron per cm? per second.
Let Kand K’ be the wave vectors of the primary electron
and k and k’ the wave vectors of the lattice electron
before and after the impact, respectively. Energy is
conserved in the collision process; that is, if £ and E’

are the energies of the lattice electron before and after

the impact, then
WK/ 2m+E=mK"?/2m+E' . (2)

For given values of K, k and k’ the magnitude of K’ is
thus fixed but its direction is not.

We apply the method employed in Dekker and van
der Ziel’s paper and rewrite Eq. (11) of that paper.
According to that equation the rate of collision processes,
in which the wave vector k is changed into k’ and the
wave vector of the primary electron after the collision
is found within a solid angle d’ around K’, is

m*(K'/K)
PR, KK, W)y =" T, ()
where i
= [ VR, 1) expliq- R—0)1dR,  (3a)
= f V@@ expli(a-nldr.  (3b)

The integrations are to be extended over the crystal
and q=K—K'. The potential energy V (R, r) describes
the interaction between a primary electron and a
lattice electron, and ¥ (r) and ¥ (r) are the wave
functions of the lattice electrons before and after the
impact. It follows directly from Dekker and van der
Ziel’s calculations that (3) holds for an arbitrary poten-
tial function.
Substituting (1), we obtain .

J=4re"/(+N),
4m?e*(K'/K)
B (g4\2)?

(30
and

P(K, k—K’, k)d = |I]de.  (4)

For the case A—0, the potential energy (1) becomes a
Coulomb potential function and (4) reduces to Dekker
and van der Ziel’s formula (11), as should be expected.

To calculate the rate of production of secondaries the
integral I has to be evaluated. The cases of weakly
bound electrons (conduction electrons) and strongly
bound electrons have to be treated separately.

II. THE CASE OF WEAKLY BOUND LATTICE
ELECTRONS

For weakly bound lattice electrons ¥ (r) is of the
form u(r) exp[i(k-r)], where u:(r) is periodic in r
with the period of the lattice. A Fourier expansion of the
periodic part of the wave function yields.

() = E ca(k) expli(n-n+ilk-1)],

Vi) = z= () exp[i(m-1)+i(k'-1) .

Substituting this into (3b) yields that

I=3 3 ca(k)em™(k'), ()

if
C=K+k+n—m=K'+Kk (momentum law) (5a)
and zero otherwise; —%(n—m)= —/p is the momentum

taken up by the lattice.
For a given momentum —#%p taken up by the lattice
the transition probability becomes

Po(K, k—K', K)de
|5 e (0 >’ R
= m m ¢ \ ’7
p Cmip R | (4

¢=|K—K'| = |K'—k—p|.

where

(6a)

Now introduce the vector C,= (K+k+p), and use
it as the Z axis of a polar coordinate system and in-
troduce the polar angle ¢ between K’ and C, and the
azimuthal angle ¢ of K’ as new variables. Since C,~K

if K>|k+o|,

Kdk  KdE
AV dp=——do,
C,K' KK’

(6b)

we find for the rate of transitions whereby a lattice
electron of wave vector k is scattered into a state
between %’ and k'+dk’

4m?
! y__ ' 7
Py(k)dE = e k' dk

27 d¢ 2
m+p k e k)| . 7
*J, G| T oo 00] - O



PRODUCTION OF SECONDARY ELECTRONS IN SOLIDS 37

We now have to discuss this for the cases (a) momen-

tum —7%p taken up by the lattice (p>%0), (b) no mo-

mentum taken up by the lattice (p=0).

For A=0 these cases lead to Wooldridge’s theory and
Baroody’s theory, respectively.®*

Comparing the cases p7#0 and p=0 and observing
that

2 Cmip(kK)en* (k') | K1 for p£0 and ~1 for p=0,
m

we see that the case 70 has a much smaller probability
than the case p=0. For A=0 this would be offset by
the fact that the factor |k’—k—p|— has a very sharp
maximum around k'~(k+p), but for A><0 this is no
longer the case. The unimportance of the case p=0
is further strengthened by the fact that

, 2 tmtp(K)em* (k)| =0 for k'=k+p,

as was first shown by Marshall.® It seems therefore that
Wooldridge’s mechanism has lost all its importance
in the case of a screened potential and that it is sufficient
to consider the case p=0 (Baroody’s mechanism).

We first make the simplifying assumption that
k>k; Eq. (7) then becomes

8rm?et  k'dk

P(¥)dk = —
h4K2 (k' 2‘+ AZ) 2

(7a)

and the rate at which an energy loss between Ej and
Eyy+dEgy occurs is

wNet dEg

P(Ekk’)dEkk'= U
E, (Ew+Eo)

8)

where N is the number of conduction electrons/cm?,
Eo= (h*/2m)N?, = (h*/2m)K?, and Ep=E
= (k*/ 2m)k'? is the energy loss. The total rate of energy
loss is, therefore,

dE, [®»
—_——— Ekk'P(Ekk’)dEkk'
dx 0
wNet E,+E E
“og(2)- ()] @
Epl_ E() Ep+E(]

For E,>>E, this may be written

dE, =N¢ [ E,
(),
dx E » EEQ

(9a)

where e is the base of natural logarithms.

3D. E. Wooldridge, Phys. Rev. 56, 562 (1939).

4E M. Baroody, Phys. Rev. 78, 780 (1950).

6 J. F. Marshall, Phys. Rev. 88 416 (1952); E. M. Baroody,
Phys. Rev. 89, 910 (1953).

We now investigate how these results are modified
if the velocity distribution of the lattice electrons is
taken into account. We observe that (7) expresses the
number of transitions from a single state of wave vector
k to a new wave vector having an absolute value be-
tween k' and k'4-dk’.

We therefore multiply (7) by the number of electrons
occupying a given region in k space. The number of
states in k space from which an electron may be
scattered into a new state &’ by an increase in momen-
tum equal to 7% |k’—k]| is then equal to

2.27k*dk sinfdd/ 8,

where 0 is the angle between k and k’. The number of
transitions per unit time from an initial state with a
wave vector of magnitude between k2 and k+4dk to a
final state with a wave vector of magnitude between
k' and k'-4dF’ is found approximately by integrating
with respect to 8 and ¢, this yields

8mek'dk'k:dk

P(k, ¥)dkdk = . (10)
T KL (B RPN — (2R

Integrating this expression with respect to % be-
tween the limits 0 and %.., where %, corresponds to the
absolute value of the wave vector at the Fermi level,
gives the total transition probability to a state between
k' and k'+dF/,

dmre'k' dk’ 1 [ (B 4km)2 422 l
mhiK? { (k' — k)22

4k’
1 2km\
+—tan™! ( ) ‘ (11)
22 k2N —k,2
Considering the logarithmic term as a function of

2k k) (kn2+ k2422 and making a series expansion
of (11) gives in first approximation

Nety dE
" E, (E'+E)”

Ptog, (k,) dkl =

(12)

where E'= (h2/2m)k'2, which is identical with (8). This
result is obtained by using only the first terms in the
series expansion, rearranging some terms, bearing in
mind that usually k24A2>k.2, and substituting
kn?=3w2N, where IV is the number of conduction elec-
trons/cm?®. This expression remains finite at the Fermi
level and extends to relatively large energies if EQ>>E,.
The infinite transition probability to unoccupied states
at the Fermi level has thus been eliminated.
Introducing into (10) the energy loss Exw = (h%/2m)
X (k'2—Ek?) as a new variable and E,= (4%/2m)\? as a
constant and integrating with respect to &, we obtain
the rate P(Eiw)dEw at which an energy loss between
Eiw and Epp—+dEg occurs. In carrying out this in-
tegration we have to observe that all conduction elec-



38 A. VAN DER ZIEL

trons can contribute to Egp if Exyr = Ep. For Epp S Eop
only those electrons can contribute for which E(k)
+Euw = E; here E, = (h*/2m)k,.2 and k., is the absolute
value of the wave vector at the Fermi level. For
Epw = E,, the limits of integration are therefore 0 and
km, whereas k,(1—Eyw/E,)? and &, are the limits of
integration for Ei < E,.. Carrying out the integration
we obtain

’ll'N e“dEk % 3
E, 4EE,,

Xll— (—————) tan’l(————)], (13)
2(EoEm)? E+E,

for Eyy = E,» whereas for Eyy < E,,

P(Ex)dE=

wNe“dEkk:
P(Ekk')dEkk' =

y4

3 By +Eg 2(EoEn)}
it G = Gore)
4EE,, 2(EoEn)? Epw~+E,
By +Eo

a (1—%; [1~ (2[E0(E,,,—Ekk,)]%)

2| Eoy(Epn— Epri B
tan“( L .;kk'—l"Eg 2 )J} (14)

We thus see that P(Ey;)—0 if Er—0 so that the
previous infinity at Eiw=0 has been removed. More-
over, (14) has a maximum value for a value of Ey; that
is slightly smaller than E,,. Previously such a maximum
had been found experimentally by Rudberg and Slater;®
they could only explain these maxima theoretically by
treating the free electrons as bound. The screened
potential thus leads to the same result in a less artificial
manner.

Calculating the energy loss distribution we obtain a
complicated expression which in first approximation is
identical with (9). In the case A=0 it was found that

E,
log(“) ’
Ey

where Ey=0.277E,, and E,= (h*/2m)k.,? as before.
Comparing this expression with (9), we see that
— (dE,/dx) decreases much more slowly with increasing
E, for the case A\s%0 than for the case A=0 so that the
screened potential also removes the third objection of
the introduction. This result is important for the rela-
tive shape of the curve representing the secondary
emission coefficient § as a function of E,.

dE, wNeée

dx E,

(15)

8 E. Rudberg and J. C. Slater, Phys. Rev. 50, 150 (1936).

III. THE CASE OF STRONGLY BOUND ELECTRONS

Though the application of a screened potential func-
tion to the interaction between primary electrons and
bound electrons does perhaps not have as firm a founda-
tion as for the conduction electrons, it is at least
interesting to investigate the result. The wave function
¥x(r) for an electron bound to an atom in a lattice point
of radius vector r; closely resembles an atomic wave
function. In calculating the integral I of (3b) we may
use the approximation

expli(q-r)]=[1+14q- (r—r,)] exp[i(q-r;)].

Making use of the orthogonality of ¥« (r) and ¥y (r)
leads to

(16)

[1]*=g¢?

1 2
f L0 (—r) Wl

=|Lus|?¢, (17)

where |L|? is the optical transition probability.?
Substituting into (4) yields

P(K, k—K’, K)o
Am?eK'/K g

[ Ly | de. (18)
ﬁ4 (q2+)\2)2

Choosing K as the Z axis of a polar coordinate system
and specifying the direction of K’ by its polar angle 6
and its azimuthal angle ¢ gives

d¥~(qdg/KK")d. (18a)

Integrating with respect to ¢ (limits 0 and 27) and
with respect to ¢[limits gmin=mEi/H2K and gmax=K
(see reference 1) ], we obtain for the rate at which transi-
tions k—k’ occur

4rmet
Pk k)=—
h‘z

4

1 4E,(E,+E)
[ Ly |*-| ~ log—————
2 Ew+4E,E,
1/ 4EE, Es
4 )} o
2\E*+4EE, Eo+E,

For E,>>FEy and Ep*>4EE,, this expression reduces
to the value found for ordinary Coulomb interaction
(E0=0)a

drmet 2E,
Pl K) = | L] log(———). (198)
WE, Epw

This should occur for the deeper-lying bound electron
levels. If, however, E,>>FEy and E?*<K4EoE,, Eq. (19)

71t should be noticed that in general the value of the integral
depends upon the direction of q, unless the wave functions have
spherical symmetry; we ignore this dependence here.
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reduces to

Pk k)=

4wmet 1 E,
Ika’P -—log(——), (lgb)
RE, 2 \eE

where e is the base of natural logarithms. This might
occur for bound energy levels closest to the conduction
band.

We conclude therefore that the screened potential
does not modify Dekker and van der Ziel’s results for
the bound electrons very much; it only decreases the
transition probability for those bound electrons that
have energies closest to those in the conduction band.
This is a very reasonable result.

IV. APPLICATION TO INSULATORS

In the case of the interaction between primary
electrons and bound electrons in insulators, one has to
take into account the polarization of the medium. The
potential function is then equal to ¢2/|R—z| for small
distances and €?/e)| R—r| for larger distances, where ¢
is the effective dielectric constant. It seems therefore
that the potential function

e e*(eg—1)
1

«/R—1|  &|R—r|

VR, 1= exp[—\[R—r[], (20)

where 1/\ is of the order of magnitude of atomic dimen-
sions, should give a rough estimate of the influence of

-polarization. The integral J of (3a) then becomes

4dre® dre(e—1)

@ e(@+N)

(21)

Since the electron of wave vector k is bound, the value
of the integral I is given by (17). Introducing (21)
and (17) into (3), using Eq. (18a) for dQ?; and in-
tegrating with respect to ¢ and ¢ yields the rate P(k, k')
at which transitions k—k’ occur. The result is similar
to the one obtained for bound electrons in a metal.
For E,>>E, and Ep*>>4EE, the result reduces to the
value found for zero polarization. For E,>FE, and
E?*K4EE, we find that P(k, k') somewhat smaller
than for zero polarization. The polarization should thus
only affect the transition probability for the more
weakly bound electrons, which is a very reasonable
result.

The author is indebted to Dr. A. J. Dekker and Dr.
W. G. Shepherd for stimulating discussions on the
problem and to Dr. E. L. Hill for a critical review of
the manuscript.



