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A general analysis of the energy spectrum resulting from the degradation of ionizing radiations is pre-
sented in part A (Secs. 2—6) and of. the range-energy straggling in part B (Secs. 7-13).A method for calcu-
lating the energy spectrum is developed, which requires that the diGerential cross sections of successive
collisions are nearly equal. This method is applied to the slowing down of mesons and other heavy charged
particles (Sec. 6). The same requirement on the cross section for successive collisions underlies the analysis
of straggling into contributions from separate energy intervals traversed in the course of degradation.
Successive approximation formulas for the straggling parameters (cumulants) are derived (Sec. 12) and
applied to the case of heavy charged particles (Sec. 13). The connections among the theoretical approaches
of several authors are discussed.

l. INTRODUCTION propagation with respect to a fixed direction, and (3)
the energy attained in the course of degradation. A more
general type of source, namely point collimated, requires
the introduction of two additional variables. Experience
with neutrons' and x-rays emphasizes the convenience
of proceeding by steps, taking into account one variuMe
at a time. This is done by averaging out the distribution
of radiation over the other variables.

The process of energy degradation may be isolated
in this manner from the other aspects of penetration
and diGusion, by averaging over all variables other
than the energy of a particle or photon. The single-
variable problem of simple energy degradation inquires
about the distribution-in-energy of the particles or
photons which result from a succession of collisions,
irrespective of their positions in space. Once this problem
has been solved, one may consider a two-variable
problem. The second variable may be either the path
length traveled by a particle from its source, or the
obliquity of its direction. The study of the distribution-
in-path length of radiation particles of various energies
pertains to the problem of range-energy straggling. The
study of the distribution-in-direction of particles of
various energies, irrespective of their position in space,
has received less attention than the other, but has
proven instructive in the x-ray problem. ' Either of the
two-variable problems may be reduced to a set of inde-
pendent single-variable, energy degradation problems
(see Sec. 8, and Appendix I, respectively). Even the
more complete three-variable problem, including the
distribution-in-distance from the source, can be reduced
to a set of energy degradation problems, at least in

certain cases.4

As a preliminary to an eGort to solve the electron
problems it was desired to make a general study of the
energy degradation problem and of the two-variable
problem of range-energy straggling. These studies are
reported in parts A and 8 of the present paper, respec-

' 'ONIZING radiations which travel through a material
~ - experience a succession of inelastic collisions. Each
colhsion results in a subdivision, or "degradation, " of
the radiation energy and in a deRection of its line of
Right and may also change the nature of the incident
radiation; for example, a photon may be replaced by a
photoelectron. Therefore the propagation of high-energy
radiation through a large mass of matter leads to a
complex process of degradation and diffusion.

This process has been the object of much study in
the case of neutrons. ' Work on x-rays and p rays up to
energies of about 10 Mev has been in progress for
several years in this laboratory. Heavy charged particles,
including mesons, are scattered only to a minor extent
and therefore do not experience true diffusion. Their
multiple small-angle scattering is fairly complex, but
the simpler problems of heavy particle degradation and
range straggling have been solved long ago in a good
approximation which will be discussed further below.
The penetration, degradation, and diffusion of electrons

up to about 10 Mev offers serious difhculties and is
being approached systematically only now. The theory
of high energy electron;photort showers has, for the most

part, taken advantage of the smallness of deQections
and of simplified cross sections for the elementary
processes at very high energies. A recent semiempirical
study by %wilson' has pointed up the errors due to
unrealistic approximations. Here, too, a systematic
study is still to come. The problems encountered in the
study of different radiations have much in common.

A comprehensive formulation of a process of pene-
tration, diffusion, and degradation in an in6nite
medium, with a point isotropic source or with any plane
source, involves at least three independent variables:
(1) the distance from the source, (2) the obliquity of

*Work supported by the U. S. OfBce of Naval Research and
the U. S. Atomic Energy Commission Reactor Division.

' See, e.g., R. E. Marshak, Revs. Modern Phys. 19, 185 (1947)
and in particular, the work of Placzek, Adler, and Wick quote
therein; also, I. Wailer, Arkiv. Mat. Astron. Fysik 3', No.
(1948).

~ R. R. Wilson, Phys. Rev. 86, 261 (1952).

d s See, e.g. , L. V. Spencer and F. A. Jenkins, Phys. Rev. 76, 1885
3 (1949).

4 See, e.g., L. V. Spencer and U. Fano, J. Research Natl. Bur.
Standards 46, 446 (1951).
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tively. Each problem is 6rst surveyed qualitatively,
mostly on the basis of ideas developed in the study of
the neutron' and of the x-ray problems. Direct methods
of solution, which work well in the case of neutrons or
x-rays, are inadequate for charged-particle problems
where the distribution of energy losses in individual
collisions is extremely skew. A different line of approach
is aGorded by the fact that the energy degradation
process exhibits a steady-state feature when successive
energy losses obey nearly equal statistical laws, that is,
when the diGerential cross section changes little from
one coIlision to the next. This condition is fulfilled by
"elastic" neutron collisions, ' by all heavy charged
particle coHisions owing to the smallness of the maxi-
mum fractional energy loss and by most electron
collisions. (The occasional hard knock-on collisions and
the radiative collisions experienced by electrons do not
fit into this class. ) The steady-state feature is exploited
in the development of an analytical method of suc-
cessive approximations (Sec. 5) which assumes a slow
variation of the cross sections for successive collisions.
This method is not yet adequate to solve the electron
problems, but it applies to heavy charged particles and
serves to calculate corrections to the earlier elementary
theories. These corrections are of little quantitative
importance, however, because they correspond to an
expansion in powers of m/M (electron mass divided by
the mass of the incident particle). The steady-state
feature is also shown to aGord the necessary basis for
resolving the range-energy straggling into a sum of con-
tributions due to the various energy intervals traversed
by particles in the course of degradation (Sec. 9).

In conclusion, this paper intends to clarify a number
of concepts in the theories of energy degradation and of
range-energy straggling as well as the relationships
among earlier theories. As a by product it contributes
new corrective terms on the slowing-down and strag-
gling of heavy charged particles.

A. ENERGY DEGRADATION

2. Formulation of the Problem

Consider a uniform medium containing a source of
high energy particles or photons. The initial energy of
each particle or photon is reduced in discrete steps as a
consequence of successive collisions. Other secondary
radiations may arise from these collisions. What is the
resulting energy spectrum of the primary radiation and
of its secondaries'

This problem belongs to a broad class of one-dimen-
sional random walk problems and much of the following
treatment appears to have a correspondingly broad
range of applications.

The problem is, .perhaps, formulated most visually
if one considers a uniformly distributed source of
constant intensity which emits S(E)dE particles or
photons of energy between E and E+dE per unit
volume and per unit time. Spectral equilibrium of the

radiation in the medium requires that the rate of
destruction of radiation of each energy (number of
particles absorbed per unit volume and per unit time)
equal the rate of generation of the same radiation by
the source or by degradation from higher energy radia-
tion. If N(E) indicates the spectral density of the Pgx
of particles or photons of energy E at each point
(number traversing a small spherical probe of unit
cross-sectional area per unit time per unit spectral
range), p, (E) the total probability of inelastic collision
per unit path, k(E, c)de the di8erential probability per
unit path of a particle of energy E to undergo a collision
with an energy loss between e and e+de, the degradation
obeys the equation

)u(E)N(E) = k(E+e, e)e(E+e)de+S(E). (1)J,
The range of integration is indicated as extend. ed to

infinity, but in practice infinitely large losses cannot
occur and k(E, e) will vanish for e larger than some
maximum value esr. The probability distribution k(E, e)
may contain terms k,8(e—e~) corresponding to the ex-
citation of discrete levels of energy ~; in the atoms or
nuclei of the medium.

Actually, the source need not be considered as uni-
formly distributed in space and time. S(E)dE may be
regarded as the total number of particles or photons,
emitted with energy between E and E+dE, no matter
where or when. The spectral distribution rl, (E)dE is
then normalized as the total track leng/h covered by
particles or photons while their energy lies between E
and E+dE. This normalization will be adhered to in the
following. For convenience we shall also assume a unit
source strength, J~" S(E)dE= 1.

If one considers secondary radiations, such as the delta rays
ejected by protons, one may classify the different kinds of radiation
by an index n=1, 2 ~ . The degradation obeys then the system
of equations

p(n, E)N(a, E)=Z k(n, n', E+e, e)I(n', E+e)de+S(a, E),
0

(2)

where a takes all its values and k(n, a', E, e) indicates the dif-
ferential probability that a particle of radiation a', with energy E
collides and generates a particle of radiation e with energy E—e.
The terms of the Z ~ with n'Wa represent in eBect additional
sources of the radiation a. The whole system (2) is more com-
plicated but in principle no more dificult to solve than the single
equation (1),provided that there are only a few kinds of radiation.
In this paper, we consider only the single equation (1).

Knowledge of th, e spectral distribution n(E) serves to answer
numerous questions such as the following one: "How much energy
is radiated as Bremsstrahlueg by electrons in the course of their
degradation?" The basic data to be provided by Jjremsstrahlung
theory is the energy S'(8) radiated per unit distance by electrons
of energy E. The total energy radiated 'is then obtained by
multiplying W(E) by the track length e(E) of electrons of energy
E and integrating over the energy, Jo"e(E)lV(B)dE. Notice that
the usual calculations of this quantity assume that n(Z) is given
by the approximate formula (3), below, which is inadequate just
when Bremsstrahlung is intense.
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n(E)~( dE/d—s) '= t k(E, e)ede
0

(3)

Much of the eGort of this paper is directed to formulate
the specific assumptions which underlie the approximate
solution (3) and to develop a procedurefor taking into
account the fact that individual losses are actually 6nite.

The model of continuous slowing down applies to a
considerable extent also to electrons. However, an
electron occasionally loses a large fraction of its energy
in a single collision especially when Bremsstrahlgng is
important. These rare events have a great inhuence on
the range straggling of electrons. Hence there arises a
need for considering radical departures from the model
of continuous slowing down, but also for making the
best use of this model in so far as it offers a valid ap-
proximation.

(b) Direct Integration

The degradation Eq. (1) determines n (E) if a
knowledge of n(E+ e) is assumed (e)0). (Similarly, the

system (2) determines n(n, E) if all n(u', E+e) are
known. ) Therefore, one is naturally led to stepwise
methods of solution, beginning with the highest source
energy Ep, such that n(Ep+ e) vanishes, and progressing
from high to low energies along the course of energy
degradation.

Placzek' approached the neutron slowing-down
problem along this line, solving (1) stepwise in succes-
sively lower energy intervals by analytical means. The
degradation of x-ray photons by successive Compton
scatterings has been treated by Karr and I.amkin by
numerical evaluation of the integral in (1) at succes-
sively lower values of the energy. '

The numerical procedure may well be the most ex-
peditious one in many circumstances. One of its main
limitations lies in the necessity of extrapolating the
knowledge of n(E+e) over the last finite interval of
integration. This leads into difhculties unless n(E+e)
and k(E+ e, e) vary smoothly and not too rapidly with
e. In the slowing down of charged particles the energy
loss distribution k(E+c, e) is sharply peaked at low

' P. R. Karr and J. C. Lanikin, Phys. Rev. 76, 1843 (1949).The
same method has been applied in references 3 and 4 and in further
extensive work still in progress, by means of desk and of automatic
computers.

3. Qualitative Discussion

(a) The Limiting Case of Continuous Storing Dou n

Heavy charged particles dissipate their energy in
such small bits @at their slowing down may be regarded
for many purposes as a continuous process. According
to this model the track length covered by particles of
energy E is given by the reciprocal of the stopping power
( dE/—ds). This is to say that for this model the
degradation Eq. (1) has the solution

values of e, so that this direct approach is not immedi-
ately applicable.

(c) Transient and Steady State

An additional element in the qualitative analysis of
the degradation problem emerges from the following
considerations. Both in neutron and in x-ray degrada-
tion the spectral distribution tends to a shape inde-
pendent of the source energy, at all energies suKciently
lower than the source energy itself. This trend arises
from the randomness of the energy loss in individual
collisions, which erases the "memory" of the initial
energy of each particle or photon after a few collisions.
(As noted below, not every collision need be equally
signi6cant in this connection. ) One may say that the
process of energy degradation consists of an initial
"transient" phase, which involves. the first few col-
lisions, followed by a simpler "steady state. "

(d) ExPansion According to Orders of Scattenng

The erst few collisions can be treated, if necessary,
by an elementary iteration procedure, or expansion
according to "orders of scattering. " According to (1),
the spectrum of undegraded (unscattered) particles is
np(E)=S(E)/ti(E), that of "first scattered" particles
is ni(E)= Jp k(E+e e)np(E+e)de/ti(E); the recur-
rence formula n„(E)= Jp" k(E+e, e)n, i(E+e)de/p(E)
gives the spectrum of particles that have experienced
r collisions. ' This iteration procedure is laborious and
has been found to be of value only under special circum-
stances. A direct application to the energy loss of a
charged particle, where a signi6cant energy loss in-
volves an extremely large number of collisions, appears
unpromising.

(e) Discussion of the Steady State

The spectrum under steady-state conditions can be
easily formulated in favorable circumstances, where the
spectral density n(E) equals the reciprocal of a suitable
average of the energy loss per unit path. This situation
was pointed out by Placzek for the neutron problem. '
It would also obtain for low-energy x-rays if one could.
disregard the photoelectric absorption. ~ Notice 6nally
that the solution (3) to the degradation equation, in the
limiting case of continuous slowing down, is also equal
to the reciprocal of the mean energy loss. We seek here
to identify the common element in these examples.

The concept of a "steady state" implies, usually,
more than independence of the initial conditions. In
addition it tends to imply, in our case, a smooth vari-
ation of the spectral density n(E). This implies, in
turn, a smooth variation of the degradation law k(E, e)

See, e.g. , G. H. Peebles and M. S. Plesset, Phys. Rev. 81, 430
(&95&).

7 The actual steady-state shape of the x-ray degradation spectra
can be qualitatively understood in this manner, as pointed out

-- by M. H. Johnson in a private discussion.
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as a function of the energy E.' After all, any convenient
treatment of the problem must rely on some regularity
of the degradation law.

In fact the examples mentioned above have this in
common, that their degradation law can be expressed
in a form independent of the energy of the incident
particle or photon. Neutrons below 10 Mev are slowed
down by elastic scattering against nuclei with a prob-
ability of deflection which is uniform in the center-of-
mass system. Consequently the probability of a neu-
tron losing various fractsoes of its energy depends only
on the ratio of its mass to the mass of the nuclei in the
medium and not on the energy of the incident neutron.
The variations of the logarithm of the energy in suc-
cessive collisions obey identical probability laws. The
steady-state spectrum of neutrons in a logarithmic energy
scu~e is the reciprocal of the meum logarithmic energy loss
per unit path. Similarly the Compton scattering of
x-rays approaches a constant angular distribution at
low energies. Therefore the maveleeg/h charges of the
x-rays in successive scatterings obey identical prob-
ability laws and the x-ray spectrum in the wavelength
scale tends to the reciprocal of the meum ma~elemgth

increase per unit path. In the slowing down of protons,
on the other hand, the determining factor is not so
much that the relative probability of various energy
losses varies slowly with the energy of the incident
particle. Rather the energy loss in each collision is so
small that successive collisions obey practically equal
probability laws. Therefore, the approximate solution
(3) of the degradation equation for protons does not
rely strictly on the model of continuous slowing down
but on the fact that the individual energy losses are so
small that the changes of cross section from one collision
to the next can be disregarded.

The neutron slowing down with constant probability
law has been treated analytically by Adler. ' This
treatment brings out clearly the emergence of a steady
state after a transient stage of damped oscillations. It
is presented in Sec. 4, in a form suitable for application
to any radiation, because it constitutes the point of
departure for further development.

(f) Proposed Lsle of Advance

The Adler treatment assumes that successive energy
losses experienced by a particle are governed by iden-
tical probability laws. In order to permit a flexible ex-
ploitation of the regularities indicated above, we shall
develop in Sec. 5 an analytical solution of the degrada-
tion equation, assuming only that successive energy
losses obey "nearly equal" probability laws. More
speciically we shall calculate corrective terms to the
approximate solution (3) for the slowing down of

Sharp, localized, irregularities of the degradation law can be
treated separately from the smooth variations. For example,
Placzek has treated the absorption of neutrons in a sharp spectral
line as a "negative source" which gives rise to a new transient (see
reference 1).

protons. Since the maximum fraction of energy lost by
a proton in a collision is of the order rrt/M (i.e., electron
mass/proton mass), successive corrections to the results
based on continuous slowing down will involve suc-
cessively higher powers of m/M.

As indicated in the introduction, the justification for
deriving these corrections does not lie primarily in their
practical importance for proton problems (where
et'/M 10 ') or even for mesons (where m/M~10 ').
Rather, it is desired to ascertain whether the qualitative
argumentation of the preceding sections can be de-
veloped into a consistent formalism.

The solution of the problem of the degradation of
electron energy will still have to wait for the develop-
ment of a technique to deal with the rare collisions with
large energy loss. The "order of scattering" procedure
indicated above in Sec. 3 might perhaps serve for this
purpose, when combined with the techniques appropri-
ate to the smaller energy losses. Large energy losses are
not so rare for high-energy electrons, when bremsstrah-
lung is important. Here too, however, one may see
some hope in the fact that the spectrum of brems-
strahlung losses is nearly energy-independent when
expressed in a logarithmic scale.f

In order to improve the initial approximation repre-
sented by the Adler treatment, one may want to express
the energy variable in any scale suitable for minimizing
the variations of the probability law. Furthermore, for
simplicity, we may assume that the radiation source is
monochromatic, with energy

Es, 5(E)=b(E—Es).

(No generality is lost here, since the degradation equation
is linear. ) Therefore the energy will be indicated by a
general variable x, such that x=0 when E=EO and
x)0 when E&Eo. We also set

y(x)dx=rt(E)dE, E(x, g)dg=k(E, e)de. (5)

The degradation equation (1) becomes then

tt(x)y(x) = K(x—
P, P)y(x —g) dan+5(x). (6)

The near equality of probability laws in successive
collisions does not apply so much to the absolute as to
the relative probability of different energy losses.
Therefore it is not E(x, $) which should vary slowly
with x but rather E(x, g)/tt(x), and it is convenient to
introduce the additional substitution:

ft(x) = tt(x)y(x), X(x, g) =E(x, g)/tt (x). (7)

Equation (6) takes now the simpler form:

t Note added iN proof: Asolution of th—e electron degradation
problem, which combines the features of continuous slowing down
and of direct integration, is presented in a forthcoming paper by
I-. V. Spencer and U. Pano.
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However, the 6nal results will be expressed just as
easily in terms of K(x, $) as of E(x, t).

Equation (8) is a general one-dimensional random
walk equation, with the restriction that every step is
forward, i.e., K(x, g) vanishes for $(0. Therefore it
corresponds to the games of chance of the parcheesi
type. K(x, $) is by its nature a non-negative function
(except in the applications of Appendix I).

Since k(E, e) represents the probability of collision
with a finite energy loss e, the JOP k(E, e)de represents
the probability of all collisions with a finite energy loss.
This probability cannot exceed the total probability
p(E) of all collisions. On the other hand. p, (E) may
exceed Jo" k(E, e)de if there is some process of outright
absorption of the particles. Thus we have, in general:

The singularities of the transform 8(p) are poles
located at the points p=p; which are roots of the
equation

I' (P) = K(8) em(ph)dk= 1.

Assuming that these roots are simple, which appears
in the following to be true, the integral (13) can be
evaluated by shifting the path of integration toward
p= ~ and reduces to the residues at the poles,

1t(x)=2 exp( —P x)/~'(P )

p; exp ( p;—x) K($) exp (p;g) $d$. (15)

r
k(E, e)de& p(E),

0

K(x, g)dg~& p(x),
Jo

K(x, P)dpi&1',

(9)

(9.1)

(9 2)

Since Eq. (13) is real, its roots are real or complex con-
Jugate in pairs; pairs of terms of (15) with complex
con3ugate p s represent real damped sinusoids.

The distribution of the roots of (14) may be dis-
cussed by setting p a+iP so that (14) splits into two
real equations:

40

where the equality sign holds in the absence of absorp-
tion, the inequality in the presence of absorption.

E(g) exp(ng) cos(pt)d&=1,
0

(14.1)

4. Constant Degradation Law

If E(x, g)=K(&) in (8),

(10)

The homogeneous portion of this equation is invariant
with respect to translations along x and, therefore,
must have exponential solutions. One takes advantage
of this fact by a Laplace transformation. In this type
of problem many formulas are expressed more con-
veniently by introducing a Laplace transform variable

p with sign opposite to the usual one, i.e., by setting

8(P) = Jt exp(Px)g(x)dx,

I"(P)= " exp(pg)E(g)dp.

Multiplying the degradation equation (10)by exp(px)
and integrating over x from 0 to ~, we obtain the
transform equation

~(p) =~(p) ~(p)+ 1. (12)

The solution of (12) is 8(p)=Ll —E(p)] ', and the
solution of (10) is represented by the inverse transform

—a+ioo

g(x) = (2+i) '~ exp( —px)L1 —E(p)g 'dp. (13)

E(P) exp(n$) sin(PP)d&=0.
0

(14.2)

Equation (14.2) has a solution P=O. When P=O,
cosP$=1 in (14.1); the resulting expression Jo"E($)
&&exp(a$)d$ is an increasing function of n, since E($)
is non-negative. Therefore (14) has a single real root,
which we indicate as p= po ——uo, p=O. In the absence
of absorption Jo"K($)d$ = 1 and po

——0; otherwise
Jo"K($)dp(1 and po) 0.

The other roots of (14), if any, must have values of
P of such magnitude that the positive and negative
values of the integrand of (14.2) average out. This
requires that P)m/br, where $~ is the largest value
of $, beyond which E($) vanishes. The cos(P$) in the
integrand of (14.1) oscillates also, and therefore n will
have to be la,rger than no if (14.1) has to be fulfilled
despite the partial cancellation of positive and negative
values of the integrand. Two examples may be quoted.
If K(g)=b exp( —a$), there is no root other than

'po=a —b. If K($)=1/a for 0~& (~&a, E($)=0 for $)a,
and we set P„=&(2'.+e„), then . eo ——0, ei m/4,
lim~~ e„=~/2 and n~= (1/a) log((2m~+ e„)/sine„).

This discussion indicates that all terms of the sum
(15) other than j=0 are damped out more rapidly than
the j=0 term, as x increases, because a;&no for j~0.
The rate of damping is inversely related to the mag-
nitude of the maximum energy loss $~. All these terms

. together represent the "transient. "
The j=0 term is a constant in the absence of absorp-

tion, where po
——0. Its value, which represents the steady
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state value of g(x), is

y(x) =1

where

E($)PdP= 1/Mt (steady state, no

absorption), (16)

dp
E(k)(de (17)

represents the 6rst moment of the probability distribu-
tion E($). According to (7) we have also

y(x) =1

with

E(x, $)Pdg=1/Mt(x) (steady state,

no absorption), (18)

Mt(x) = E(x, $)$d$,
aJ p

(19)

whenever E(x, P) = ti(x)E(P) is the product of ti(x) and
of a function of $, that is, whenever the relative prob-
ability of diferent energy losses is independent of x.
Equation (18) includes (3) and the results for neutrons
and x-rays mentioned in Sec. 3e.

In the presence of absorption, the formulas (16),
(17), (18), and (19) become:

one evalpates the inverse transform

0(x)=(2xt) '
em. ( P*—)D f" (—P)?'g(P)dP

=(2') 'J .exp( —Px)$1—F(P)g 'dpf s(x')

X exp(px')dx', (24)

the source strength at x'&x does not contribute anything to
y(x), as one would expect, that is the integral over x' is effectively
limited at 0~&x &~x. This is verified by shifting the path of in-
tegration over P toward P= —~, since expLP(x' —x)g vanishes
there when x')x. The separation of the steady state from the
transient according to (15) is also applicable, but the transient
does not become negligible unless the source strength s(x') is
confined to values of x' sufficiently smaller than x.

The procedure of this section is also applicable if the kernel
E(x, g) of (8) is not constant but equal to different constant
functions E~(f), Xs($), etc. in successive intervals 0&&x&&xq,

xl ~& x ~&x2, etc. The constant kernel problem can be solved for each
interval taking as a source the input of particles which are de-
graded from higher energy intervals. A new transient will occur
at the beginning of each interval, but it will have a low amplitude
if the difference of the kernels in successive intervals is small.
Thus one might approach the problem of a continuous kernel
variation E(x, f) by regarding it as the limit of a succession of
variations by Gnite steps.

5. Slowly Variable Degradation Law

The preceding results suggest that, when the degra-
dation kernel E(x, $) is a slowly variable function of x,
Eq. (8) should have solutions similar to individual
terms of (15), exp( —p;x)/Li, modified by a slow varia-
tion of the parameter P;. A form of this type is:

= exp( —Pox)/Lt (steady state), (20)
g(j, x)~exp — P, (x')dx' I.,(j, x), (25)

Li jE(g) ex——p(ps/) PdP„
0

(21)

$$

y(j, x) exp — P;(x')dx'
JP

Li(j, x). (25.1)

y(x) = exp( —Pex)
~o

E(x, 5) exp(Pot)Ã$

Here Li and Li are given by (21) and (23), with p; in
place of ps and P;(x) is defined, for each value of x, as
a root of the equation.

= exp( —psx)/Lt(x) (steady state), (22) ate
E(x, $) exp[p(x)gd$=1,

Li(x) =
~o

E(*,8) exp(Po8)id'
E(x, P) expLP(x)P]dg=ti(x), (26.1)

The parameters L~ and I-j.are the first moments of the
statistical distributions Z ($) exp (Ps/) and E(x, $)
Xexp(pe)), respectively. These are not the probability
distributions of the "energy losses" $ which can be
experienced by the particles with "energy" x, but rather
the distributions of the "energy losses" experienced in
the preceding collision which had led to x. The factor
exp(peg) takes into account the fact that there were

exp(ps/) as many particles at x—$ than at x, the
balance, exp(pep) —1, having been absorbed.

The procedure of this section is still applicable if the source term
in the initial equation (10) is a function s(x) instead of b(x). The
unit term in the transform equation (12) must be replaced by the
transform of the source function, g(P) =Ja" s(x) exp(px)Cx. When

which is analogous to (14).
This surmise is supported by the following develop-

ments. In particular, it will be shown that:
(a) For all values of x)0, where there is no source

and the degradation equation is homogeneous, there is
a set of solutions y(j, x), whose form is approximately
(25.1).

(b) The accuracy of each solution can be improved
progressively by a procedure of successive approxima-
tions.

(c) The solutions of the homogeneous equation can
be superposed, with suitable coefFicients, so that

y(x)=Z ~y(j, x) (27)
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obeys the degradation equation (6) over the whole
range of x, inclusive of the point @=0 where there is
the source 8(x).

(d) As x increases, all terms of the P; in (2/) with
j&0 are rapidly damped out and the term with j 0
emerges as the steady-state solution.

The homogeneous equations corresponding to (8)
and (6) are

and

g(x) =
40

E(h—8, $)g(x k)—dk (28)

P(h)y(h)= ~~ E(h—6 k)y(x $)d—k, (28.1)
0

respectively.
For purpose of orientation we consider first the case

of no absorption, where Jo"X(x, g)df= 1 and (26) has
the solution po(x) =0. The corresponding spectral dis-
tribution of the form (26) reduces then to g(0, x)
~1/Mi(x) and is, therefore, a slowly variable function
of x. To determine this spectral distribution in a
deductive manner, rather than by surmise, one may
treat (28) by expanding X(x—$, f)g(x P) in —the form
E(x P)g(x) $8)E(x g—)g(x))/cjx+ .Thisprocedure
is carried out in Appendix II. The solution y(0, x) of
the equation (28.1) in terms of the moments of the
"degradation step size" g, averaged over the step-size
distribution E(x, $), i.e., in terms of

is

M„(x)=~" E(*,~)Pdg,

y (0, x) = (C/M i)$1+-,'(d/dx) (M2/M i)
+-', (d/Ch) (M2/M i) (d/Ch) (M,/M, )

—-', (d'/Ch') (M,/M, )+ ], (30)

where C is an undetermined integration constant.
The factor 1/Mi in front of the bracket coincides

with (25.1), with po
——0, as expected. To visualize the

expression (30) as an expansion into successive orders
of approximation, one may analyze the dimensions of
its terms as follows. A ratio M~i/Mi represents the
mean of the nth power of the "step size" $ averaged
over the distribution E(x, $)$, and has the dimensions
of $". The percent-variations of the ratios M„/Mi
depend on the variations of the kernel E(x, $), which
are assumed to be small and are represented by the
logarithmic derivatives of the ratios. A term of the
expansion (30) which contains a total of e logarithmic
differentiations-in-h, together with ratios M„/Mi with
total dimensions P, constitutes a quantity small of the
nth order. Thus, e.g., the second term within the
bracket of (30) may be written in the form

~ fdglog(M2/Mi)g/Ch}(M2/Mi) and clearly represents
a erst-order correction. Similarly the last two terms

of (30) may be expressed by means of terms like
fC'Llog(MB/M&)J/dx'} (M3/Mi) and represent second-
order corrections.

As an illustration, consider the example: E'(x, $)
=&(h)/g(h'1 for 0&~)~&@(h), E(x, g)=0 for ()e(x).
According to (29), M„(x)=p(x)g" (x)/(m+1), and,
according to (30), y(0, x) =L2C/p(h)a(x) j L1+zda/dx—(1/36)d'(a')/dx'+ ].

Consider now the general case where one does not
assume p=O in the tentative solution (25). This case
is of importance for various reasons, even though the
steady-state distribution of particles corresponds ordi-
narily to p=0. In the first place the treatment of
transients requires one to work with p;QO. Even with
regard to steady states only, one may want to consider
some outright absorption of particles by nuclear col-
lisions. Moreover, in the degradation of electrons it
might prove convenient to treat unusually large energy
losses as separate processes which deplete the number
of electrons that have experienced only small losses.
Finally, the applications to two-variable problems, con-
sidered in part 8 and in Appendix I, introduce in effect
an additional, positive or negative, absorption.

The variations of g(j, x) as a function of x need not
be "slow" according to (25), when p;AO, unless p; itself
happens to be so small that p,(g)«1. On the other
hand, p; itself, as a solution of (26), varies only on
account of variations of X(x, $) and can therefore be
assumed to vary slowly. This argument suggests the
replacement of y with a slowly varying dependent
variable. This is achieved by the substitution

y(j, x)=exp—
40

q(j, x')Ch', (31)

L„(j,x) =
) E(x, g) exp/P;(x) Qg"dg

0

(32)

of the modified distribution E(x, $) exp(p;(x)$$. L„
corresponds to M„.in the same way as the first moment
Li of (23) corresponds to the Mi of (19).The index j
will be.dispensed with whenever it is not necessary for
clarity.

The calculations of Appendix III show that q(j, x)

where g(j, x) need not be small and is expected to be
approximately equal to the root p;(x) of (26) and to
vary slowly as a function of x. The lower limit of the
integral in (31) is fixed arbitrarily in such a way that

y(j, 0)= 1.The treatment of the homogeneous equation
(28) by means of the substitution (31) is developed in

Appendix III and we give here only the results.
Whereas the solution (30) for p=O is expressed in

terms of the moments M„, the general solution for p WO

is expressed in terms of the moments
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is given, up to second-order corrections inclusive, by

d logLi 1 dp; L2
v(j x)=P (x)+ d$2 dx Iy

1 d' L2 dp; d L3 3 (Lg)'
2 dx'Li dx dx I.i 4&Li)

(dp, ~' 1 L4 L&L2 1 (L,~'
+I t

— +t —
tEdx) 4Ii L Li 2&L J

2 d'P L3 3 (Lg) '
+ (33)

3 dx' Li 4(Li)

The first term, p;(x), indicates a solution of (26) or
(26.1). The discussion of these solutions is the same as
for the equivalent equation (14). The solution with
j=0 is the only one which is real; all other solutions
have a real part, n;(x), larger than Po(x). The solution
of (26) for each particular kernel E(x, $) constitutes a
special problem, which may have to be solved numeri-
cally. The terms in the two curly brac'kets of (33)
represent the erst- and second-order corrections to the
zero-order value P;, respectively. The classification of
these terms according to order of. approximation is
given by the number of differentiations which they
contain.

To obtain y(j, x), one enters the expression (33) for
q(j, x) into the substitution (31).The terms of q which
do not contain P; explicitly can be integrated directly.
The 6rst-order term dlogLi/Cx contributes to y a
factor exp( —logI-i)=1/Li. This yields just the de-
nominator of the expression (25.1) which had been
surmised to indicate the approximate form of y(j, x).
The second-order term ~d'(L2/Li)—/dx' contributes to
y a factor expr -', d(L2/Li)/dx$ 1+-',d(L&/Li)/Cx which
is analogous to the first-order correction term in (30).
Thus, 6rst- and second-order terms in the expansion of
q(j, x), yield zeroth and first-order effects on y(j, x),
after integration over x. In general, the integration of
the "small" terms of (33) over x implies an accumulation
of corrective eGects from all along the course of energy
degradation. Accordingly, care must be exercized in
determining what approximation is required in the
calculation of q(j, x).

There remains now to construct a solution to the full
inhomogeneous degra, dation equation (6) by superpos-
ing the various solutions y(j, x) of the homogeneous
equation with suitable coe%cients A;, as indicated in
(27). To determine the A s we construct the solution
g(x) =p(x)y(x) of the inhomogeneous equation (8) by
an entirely diferent method valid only for x 0. The
degradation kernel E(x g, g) is expande'd in—to powers
of x—$, that is, beginning with its value at x—)=0
rather than at x—(=x. The calculation, whose details
are given in Appendix IV, proceeds by the method of
the Laplace transform, as in Sec. 4. The result is ex-

pressed. in terms of the transforms of the derivatives
$8"E(x, $)/Bx"j, 0=, namely,

F (P) = L~"&(x 5)/»"j.-o exp(P$)dk (34)

XL1+FiFO'/(1 —Fo)'jdp

=Xi(Lexp( —Px)/Fo'3L1+k(Fi"/Fo'

F lF II/F 12 3F F I/2/F /3)

—(Fi'/Fo' ', FiFO"—/F-o") x

+2(Fi/Fo')x'+. ]}i=~i (35)

where the primes indicate diQerentiation with respect
to P.

We shall now compare this expression of g(x) with
the expression derived from (27) and (31), namely,

g(x) =p(x)y(x) I

S

=p(x)P;A; exp —
~

q(j, x')dx' . (36)
0

At x=0 this expression reduces to p(0) P;A; and it
coincides with the corresponding value of (35) provided
we set

~,=L1/. (0)3((1/F.')L1+-;(F, '/F.
—Fi'Fp "/Fo"——,'FiFp'"/Fo") — g} = . (37)

The F's and their derivatives with respect to P can be
expressed in terms of the I 's or I.'s and of their deriva-
tives with respect to x. Thereby (37) may be rewritten
in the form

1 dp~ (L3
Ag ———1+ ~ ~ ~

Li 2dxLi 2 dx (Li. 2 Li2J
(38)

The coinparison of (36) with (35) has been extended
to values of x/0 by expanding (36) into powers of x
up to x'. The expansion is found to coincide with (35)
provided A, has the value (37).This comparison verifies
the consistency of the independent calculations. which
lead to (33) and to (35).

6. Application to Heavy Charged Particles

As mentioned before, the formulas of the preceding
section cannot be applied immediately to the slowing
down of electrons but rather to protons and other
heavy charged particles for which the maximum- value

which are treated. as small quantities of order e. LIf g
is independent of x, as in Sec. 4, E„vanishes for e&0,
and Fo(P) coincides with F(p) of (11).) The solution,
carried to 6rst-order corrections only, is

&
—a+~co

g(x) = (2mi) 'J exp( —Px)L1—Fo(p)] '
—a—zoo



of g is small, so that the successive approximations Lthe
successive terms of (30)j are bound to converge rapidly.
This application serves to calculate corrective terms to
the elementary equation (3).

Protons and other heavy charged particles are not
subject to outright absorption except at high energies
where the chance of head-on nuclear collisions becomes
appreciable. If the absorption is disregarded, i.e. if pp
is assumed to vanish, the steady-state term of the
spectral density (27) reduces to

The factor in front of the brackets coincides with the
elementary solution (3). The first-order corrective
terms in the brackets are proportional to y, as expected.
The term y/B' arises from the derivative of B, and is
considerably smaller than ~iy/B, since B is of the
order of 10.

The corrective terms are, of course, small owing to
the smallness of p. It m'ay be worth noticing, however,
that the accuracy attained in the zero-order approxi-
mation depends on the relationship between x and E,
which one assumes. For example, one might take into
account from the outset that the maximum fraction of
energy lost in a collision, p, is independent of the
energy. Accordingly, the degradation kernel E(x, $) is
more nearly energy independent if represented in a
logarithmic energy scale, that is, if one takes
x= log(EO/E). This choice of x leads to a result equiva-
lent to (43), but with the corrective term —,'y/B incor-
porated in the zero-order approximation 1/Mi (see also
Appendix VII).

The corrected value (43) of I(E) is a little lower than
the value 2E/kB derived from the model of continuous
slowing down. This shows that the 6nite size of the
degradation steps e6ectively shortens the average track
length traveled by protons of each energy. A related
eGect of the Quctuations of energy loss is familiar from
the theory of neutron slowing down, where the mean
number of collisions required for a certain degradation
depends on the mean logarithmic energy loss per col-
lision rather than on the simple mean energy loss.
However, it should not be concluded here that the mean
range of protons is a little shorter than expected from
the model of continuous slowing down. The systematic
treatment of the range distribution in Sec. 13 will show
that the range shortening eGect considered above is
overcompensated by the chance of unusually low energy
losses during the transient phase of slowing down, at
energies just below the initial energy.

I

3. RANGE-ENERGY STRAGGLING

1d M2
A oy(0, x) = 1+—— + ~ I, (39)

taking into account (31), (33) and (38). )Notice that
this expression (39) coincides with the homogeneous
solution (28), as it should, provided the integration
constant {.of (28) is set equal to 1.j

%e take x=Eo—E, where E is the proton energy and
Eo its initial value. The moment

represents the stopping power (average energy loss per
unit path). Its value may be indicated as

Mi= (k/2E)B, B= log(yE/I)' (40)

where k=2vrXZs'e4M/m; M, E, and se are the mass,
energy, and charge of the incident particle; SZ is the
number of electrons per unit volume; e, m, and I are
the charge, mass, and eGective binding energy of the
electrons in the medium; and y=4(m/M) (1+m/M) '
~4m/M is the maximum energy fraction lost in a single
collision. 8 represents the stopping number.

The moment M2= Jo"E(x, P)Pdg= Jo" k(E, e)c'dc
represents the mean square energy loss per unit path.
From the theory of stopping power it follows that M~
is given to a good approximation by9

Mg ——(k/2E) )ATE+ (4/3) TBj, (41)

where T indicates the mean kinetic energy of the elec-
trons in the medium. Therefore we have

Mg/M i yE/B+ (4/3) T——. (42)

Taking into account the relationship between x and
E, the spectral distribution (39) becomes in the energy
scale,

V. Background

The energy loss of radiations along their path in a
material is subject to statistical Quctuations. This eGect
of "straggling" is rather small for heavy charged par-
ticles and rather large for electrons; for neutrons and
x-rays the Quctuations are so large that the mean
energy loss per unit path length is hardly a significant
parameter.

Certain basic features of the phenomenon of strag-
gling were established in Bohr's early theory of stopping
power. "Among these is the fact that successive inter-
vals of energy degradation contribute additive amounts
to the mean square Ructuation of energy loss. The Bohr
theory applies primarily to heavy charged particles
since it regards the Quctuations as suKciently smaB to
be well represented by a Gaussian distribution.

' N. Bohr, Phil. Mag. 30, Series 6, 581 (1915).

idMg
e(E)= 1—— +

Mg 2 dEMg
2E 17

1 + + ~ ~ ~ (43)
M 28 82

'The inelastic collisions may be classi6ed according to the
energy Q that an atomic electron would receive if it could recoil
freely. The probability of collision can then be written as
k{E,e, Q)dedQ= (k/2E) (dQ/Q2) jF(a, Q) (2dc where

~
F{e,Q) ~2 is

the "generalized form factor. " One finds from sum rules that
JD"[F(Q, e) f'ete=Q and Jo"/F(Q, e) J4'de=Q'+4QT/3 The.
6rst of these formulas serves to calculate the stopping power 3fI,
the second serves to calculate Ng.
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fn the following sections we propose to formulate a
general treatment of the energy distribution of particles
which have traveled a certain path length from their
source and of the path length distribution of particles
which have been degraded to a certain energy. Attention
will be directed to the conditions under which successive
intervals of energy degradation contribute additively
to the straggling. The problem will be treated as a two-
variable problem from the point of view outlined in
Sec. 1.The treatment will rely heavily on the concepts
and techniques of the energy degradation problem.
Since these techniques are primarily applicable to the
slowing down of heavy charged particles, the immediate
application of our methods will be to verify, anal. yze
and extend the recent results of Lewis. "

It is hoped that these methods will also prove useful
for analyzing and developing further the work of
Wilson, "of Blunck, " and of Landau and Symon. '4 on
the straggling of electrons. These authors, as well as
Lewis, rely on simplified representations of the collision
cross sections and do not make it quite obvious how
critically their results depend on the initial assumptions.

Finally, it should be noted that the study of the dis-
tribution in energy and path length 6nds a direct appli-
cation to certain penetration problems. Whenever the
penetration of radiation in a material is accompanied
by only small deQections, the depth of penetration
attained is approximately equal to the path length
traveled. Increments of path length and increments of
depth of penetration are in a ratio equal to the cosine
of the angle q between the instantaneous direction of
travel and the initial direction. Approximate theories
are often based on the assumption cosy~1, which is
called the "straight ahead" approximation. These
theories may be regarded as theories dealing with the
distribution in path length rather than with the dis-
tribution in depth.

k(E+e, e)f(E+e, s)de+S(E)8(s), (44)
0

with the boundary condition f(E, s) =0 for s(0.
The Dirac function 5(s) indicates that the source con-
stitutes the point of zero path length.

It will prove advantageous to treat the distribution
function f(E, s) in terms of its Laplace transform

F00

y(E, o) = exp(os) f(E, s)ds.
aJ o

(45)

(Here, as in part A, it is convenient to define the trans-
form variable o with a sign opposite to that of common
practice. ) The transform of the transport equation (44),
obtained by multiplication by exp(os) and integration
over s, is

ij (E)—oh' (E, o)

k(E+ e, e)y(E+ e, o)de+S(E). (46)

when, then f(E, s)dEds represents the track length
covered by the particles while their energy and path
length lie within the specified limits, again a,s in Sec. 2.
Ke shaB follow the latter point 0& view, so that
f(E, s)dEds has the dimensions 'of a length and f'(E, s)
the dimensions of a reciprocal energy. Accordingly,
J'o"f(E, s)dE is a number, the number of particles
which travel at least a distance s in the course of their
degradation. On the other hand, Jo"f(E, s)ds coincides
with the spectral density N(E) of part A.

The distribution function obeys a familiar transport
equation, which is formulated on the same basis as the
degradation equation (I) and is

8f(E, s)/Bs= —p(E)f(E, s)+

8. The Energy-Path Length Equation and Ets
Laplace Transform

Consider the energy-path length distribution function
f(E, s) of particles or photons which have an energy E
and. which have traveled a path length s from their
source. The distance s is to be measured along the zigzag
path actually followed. If one deals with a source dis-
tributed uniformly in space and time, with a strength
measured in particles emitted per unit volume and. per
unit time, f(E, s)dEds represents the flux of particles
traversing a small spherical probe of unit cross-sectional
area per unit time, with energy between E and E+dE
and pathlength between s and s+ds (see Sec. 2). If,
on the contrary, one considers only the total number of
particles emitted -in the medium, no matter where and

f(E, s) = (2m~)-'
&
—a+i

exp( os)y(E, o)da.—(4'7)

The integral

f(E, s)ds=y(E, 0) (48)

This is a degradation equation of the type (1), with
IJ, (E) a in the place—of IJ, (E). The variable o may be
regarded as a parameter and the equation may be
solved separately for different values of 0-, that is, as
though it were an equation with the single variable E.

By inverting the Laplace transform we represent the
distribution function as

n H. W. Lewis, Phys. Rev. SS, 20 (1952).
~ R. R. Wilson, Phys. Rev. 84, 100 (1951).
'3 0. Blunck, Z. Physik 131, 354 (1952).
'4L. D. Landau, J. Phys. (U. S. S. R.) 8, 201 (1944); K. R.

Symon, Harvard thesis, 1948 (unpublished).

represents the spectral distribution without reference
to the path length traveled and is the solution of (46)
for o=0, i.e., of the degradation equation (I), as men-
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g(E, s) = —(d/ds) f f(E', s}dE',
and its transform is

(5o)

I'(E, o) =J exp(os)g(E, s}ds=oJ d (E', 0)dE'. (51)

The distributions (49) and (50) must tend to coincide in the
limiting case of continuous slowing down (Sec. 3a). Their rela-
tionship will be discussed in the following sections.

9. Laylace Transform and the Additivity of
Straggling

The representation of the distribution function by a
Laplace transform serves not only to "separate" the
energy and path length variables in the transport
equation (46) but also to combine conveniently the
eBects of independent statistical Quctuations. This is
a well-known method of statistics which can be illus-
trated by the following schematic example.

Suppose that a quantity x is the sum of two quan-
tities x~ and x2, which are subject to independent statis-
tical fluctuations. Call fi(xi) the statistical distribution
of xi and fs(xs) that of xs, call Pr(o) and Ps(&r) the
Laplace transforms of fi and fs. The statistical distribu-
tion of x=xr+xs is f(x)= Jp"fr(xi)fs(x xi)dxi A—c-.
cording to the well-known "folding" theorem, which can
be easily verified, the Laplace transform of f(x), P(o),
is simply the product of Pr(o) and of gs(o). Thus the
combination law of the independent statistical Quctu-
ations of x~ and x2 takes a simple form when expressed
in terms of the distribution transforms gr and Ps. The
combination law can be cast in the form of an addition,
corresponding to the addition of x& and x2 by writing

log& (o)= log&i(o)+ logos (o). (52)

Let us see how this combination law applies to the
straggling of charged particles. Bohr's theory of strag-
gling relies on the model of "continuous slowing down"
(Sec. 3a). According to this model each particle traverses
every small energy interval dE in the course of its
progressive degradation. The statistical Quctuations of
pathlength within different intervals dE are, of course,
independent and should accordingly contribute additive
amounts to log&(E, o). This argument is formulated by
writing

(53)

y(E', o)dE' represents the logarithm of the transform
of the distribution of path lengths traveled during the
degradation through dE'.

tioned above. Accordingly the ratio

f(E, s)/@(E, 0) (49)

represents the path lessgth distribmtsoN of all particles
which happen to have the energy E.

Often one may want to consider the related distribution of the
path length at which the particle energy drops below the value E.
This distribution is

The relationship between P and p in (53) is essentially
the same as that between y and —g in (32), which
suggests a close connection between the additivity of
pathlength Quctuations and the solution of the degrada-
tion problem by the method of Sec. 5. True enough, one
can always introduce the relationship (53) in a formal
manner, by defining p as the logarithmic derivative of
d. However, the substitution of P with to appears
physically meaningful only when the value of q for each
energy interval can be calculated independently of its
values in other energy intervals. Independent calcu-
lation is, in fact, achieved in Sec. 5, where q(x) is given
in terms of the values at x of the "moments" I-„, i.e.,
of the kernel E(x, $), and of their derivatives. Therefore
the path length Quctuations will be determined by
adding contributions from successive energy intervals
provided the transform equation can be solved by the
method of Sec.5 and the solution represented adequately
by its steady-state component. In other words, the
additivity of straggling hinges on the near equality of
the probability laws in successive collisions and on the
attainment of a steady state rather than on the model
of continuous slowing down.

10. Inversion of the Laplace Transform

In general one may expect to have to solve the trans-
form equation (46) numerically for particular values
of 0-. Even so, the subsequent problem of inverting the
transform by means of (47) need not be very difficult.
This was shown, for example, by Spencer in an analo-
gous study of x-ray penetration. "

The topography of the Laplace transform on the
complex plane has an important common feature in the
penetration problem and in the present one, namely, that
the singularities are con6ned to the portion of the
positive real axis where o=ls(E). Inspe.ction of the
transform equation (46) shows that a singularity arises
when o=ls(E). If the . right side of (46) is finite and
ls(E) —o. vanishes, $(E, o) becomes infinite. Further-
more, if @(E,o) is infinite for a certain value of E, this
infinity will appear in the right side, under the integral,
when the equation is solved for lower values of E and
thereby will propagate through the rest of the degrada-
tion process. This is to say that the. transform p(E, o)
is singular whenever 0 equals any value which p takes
in the whole energy range between E and the source
energy. The smallest value of 0. which leads to a singu-
larity equals the smallest value, p„of ls(E) in the range
of integration. To avoid singularities 0 must remain
&p„ if it is real. Owing to this topography, the steepest
descent path of integration in the inverse transform
(47) passes through a single saddle point to the lett
of r=p ""

'~ L. V. Spencer, Phys. Rev. 88, 793 I,'1952).
"See also U. Pano, Phys. Rev. 76, 739 (1949) which deals with

the equivalent problem of x-ray penetration in the straight-ahead
approximation and a more general discussion by U. Fano, J.
Research Natl. 33ur. Standards 51, 95 (1953).
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L.(E)-.)~&.&(E .)= h(E+...)~&-&(E+., -)
"p

+S(E)b„,+~&=&(E, ), (54)

where Q&"&=8"&&&/Bo". This equation shows that each
derivative obeys the same Eq. (46) as &t& itself but with
a "source" proportional to the previous derivative.
Therefore, since rt&(E, &r) is itself positive, all its deriva-
tives are in turn positive. Furthermore this chainwise
relationship among the derivatives makes it so that
successive derivatives increase more and more steeply
as 0- increases toward p, and also as the energy E
decreases.

'It follows that the saddle point, whose position is
de6ned by the condition'~

or
os+log&t2(E, o) =—mi.n,

~& &(E, -)/~(E, -)=, (56)

moves steadily to the right, toward a.=p„as s increases.
Accordingly, the trend of the transform &t&(E, o) for
positive r, approaching p„determines the trend of the
path length distribution f(E, s)/&t&(E, 0) over the largest
values of s, i.e., it determines the long path length tail
of the distribution. Similarly, the trend of &t&(E, o) for

"H. and B. S. Jeffreys, Mathensaticel Physics (Cambridge
University Press, Cambridge, 1946), Chap. 17.

As discussed by Spencer, "it is possible under these
conditions to evaluate the inverse transform integral
(47) on the basis of the values of &t&(E, o.) for a few values
of 0- on both sides of the saddle point. One method of
evaluation consists of approximating &t (E, o.) over an
interval of the real axis by a suitable analytical function
of 0., whose inverse transform is known. The resulting
analytical function of s constitutes a good approxima-
tion to f(E, s) for values of s such that the saddle point
of exp( —os)&t&(E, o) lies within the interval where the
approximation holds.

1l. Survey of the Path Length Distribution

In order to apply the technique indicated above, or
any similar procedure, one must have good under-
standing of the topography of r&I&(E, o), particularly on
the real axis of 0. The calculation by Landau" of the
energy straggling of charged particles after a short
travel serves as an illustration of the questions which
arise in this connection. This calculation is discussed in
Appendix V. Examination of the transform equation
(46) shows that &t2(E, o) diverges when o )&&s„and is
6nite when t&(E)—o remains positive for all values of E.
Any decrease of r, toward the left on the real axis,
makes fs(E) —o larger and therefore causes &&&(E, o) to
decrease. In fact, not only &t&(E, o) but also its slope and
all the higher derivatives are increasing functions of cr.

This is seen by taking successive derivatives of (46)
with respect to 0, which yields

negative 0., approaching —00, determines the short path
length side of the distribution. The trend of &t&(E, o)
for intermediate values of 0., near 0.=0, determines the
features of the middle and main part of the distribution.

(") = d "f(E, )/4(E, 0)=4'"'(E 0)/4(»0) (57)
Jp

Similarly the nth moment of the distribution (50) pertaining to
particles whose energy drops below 8 is

(s")[&2]= dss"g(E, s) =r&"&(8, O) =I @&" '&(E', 0)dZ'. » ($8)
0 g

Notice that the mean path length (s)e equals
&t&&» (E, 0)/&t (E, 0). Hence, according to (56), the saddle
point lies exactly at 0 = 0 when s equals its mean value
(s)

In order to take advantage of the additivity of
straggling, discussed in Sec. 9, we consider parameters
of the statistical distribution which relate to the deriva-
tives of log&(E, a) rather than to the derivatives of &t&

itself. These parameters are familiar to statisticians and
are called clmulam/s because of their additivity property
or also "semi-invariants of Thiele. ""They have been
used by Lewis" to characterize the range distribution of
heavy charged particles.

According to (53) the derivatives of log&| are strag-
gling parameters which are represented as the sum of
contributions from different energy intervals,

"os( )/ "= '"'( '
)

J~
(59)

The cumulants are just the values of these parameters

"The relationship between the moments (57) and (58) is as
follows. The expression (57) is the ratio of the solutions qb(") and
qb of the equations (54) and (46). These differ only in their source
terms which are ~'" ') (E, 0) and S(E), respectively. On the other
hand (58) may be regarded as the ratio of the integrals of the
sources, since the total source strength Je"S(8')dE' is understood
to equal 1.Therefore (57) relates to (58) as the ratio of two solutions
of the transform equations relates to the ratio of the corresponding
source strengths. This relationship is obviously very nearly an
identity under steady-state conditions, as we shall verify later on."See, e.g., H. Crammer, Mathematical 3fethods of Statistics
(Princeton University Press, Princeton, 1946), p. 185 6. The rela-
tionships between the 6rst four cumulants t~. and the moments
(s")&2 are listed here for convenience.

K& (s)E K2 (s'&—(s&'= (r-s —(s)1'»
K2= (s') —3(s')(s)+2(s)'= (ps —(sQ'),
K2

—(s&)—3 (s2)2—4(s2) (s)+$2 (s2) (s)2—6(s )»

= (Ls—(s)3'&—3(rs—(s&1')',

(s) =K&, (s') =K2+K&', (s') =K2+3K2K&+K2',

(s )=K4+3K2 +4K2K1+6K2Kp+K& .

(u) Their ddt'e Portiom of the Path Lersgth Distributiol

It is widely known, and can be veri6ed easily from
(47), that the moments of a statistical distribution are
equal to the derivatives of its transform, at fr=0. Thus
the ssth moment of the path length distribution (49), of
the particles with energy E is
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for o.= 0 and are usually indicated by

.=L»!"1o 0'(» )/~ "3.=o (60)

They represent, of course, the coeKcients of the power-
series expansion of log&(E, o), that is of the following
expansion of p,

Q(E, o)=y(E. , 0) exp (Q„z o "/e!).

In Sec. 12 we shall calculate P (E, o-) by the method of
Sec. 5, i.e., by means of (27), (31) and (33), for the
slowing down of heavy charged partirles, to which the
method is applicable, The cumulants will then be given,
in the main, by an integral over the derivatives of the
parameter q, which coincide with the pi"' of (59).

The corresponding calculation for electrons will have
to wait until the method of Sec. 5 is suitably adapted
(see Sec. 3f). The additivity property of cumulants is
not easily exploited in the slowing down of x rays and
neutrons. However in these cases the equation (54) for
successively higher values of e can be solved in suc-
cession, by direct numerical approach (see Sec. 3b).

Information on the transform p(E, o.) for o. 0, as
represented by a knowledge of a few terms of its power
expansion, i.e., of a few P&"&(E, 0), can be utilized in
various manners to construct an approximation to the
path length distribution f(E, s)/P (E, 0) (see Appendix
VI).

(b) The Long Path Leegth Tail of the Distribltiorl,

The behavior of p(E, o) when cr approaches t4 has
been studied particularly for the equivalent problem
of x-ray penetration in the straight-ahead approxima-
tion. " For example, in the usual case where p(E)
increases monotonically as E decreases, P turns out to
vary in proportion to p, —o- raised to 'a power of the
order of —1 or —2, which depends on the logarithmic
derivative of IJ, (E) at the source |;nergy. The range
straggling of neutrons is rather analogous to that of
x-rays.

The occurrence of an unusually long path length is
favored by a succession of numerous collisions with a
particularly low-energy loss. The calculation of g (E, o)
for o. near p, rejects this relationship and can take
advantage of it. A positive value of o in the transform
equation (46) is equivalent to a decrease of the absorp-
tion coeKcient tM. Such a decrease may be visualized as
indicating an effective multiplication of the particles
at every collision. Therefore the particle population of
low energies grows larger as o- begins to approach p, It
also consists to an increasing extent of particles that
have experienced a long succession of small energy
losses and thus have been boosted by repeated "effective
multipbcation. "The preference, in the region of o- near
p„of low energy losses as compared to large energy
losses tends to improve the accuracy of calculations in
this region by the method of Sec. 5 which assumes a

small change of probability law from one collision to the
next.

To verify this surmise, we begin the application of
Sec. 5 and specifically of Eq. (26.1), which reads now:

p(E) o=—.k(E, ») exp(p»»)d»
J0

The parameter p» pertains to the steady-state solution
of the transform equation (46). As o grows positive and
p —o grows small, p» is forced to take negative values of

. increasingly large magnitude. Now, the solution of the
transform equation by means of (31) and (33) depends
on the moments L of the modi6ed distribution of
energy losses k(E, ») exp(pp») As .p» grows large and
negative, this distribution becomes increasingly con-
fined to small energy losses e. The convergence of the
approximation method. of Sec, 5 depends on the small-
ness of moment ratios such as L2/Li and will obviously
improve rapidly when p» grows large and negative.

The solution of the problem of straight-ahead x-ray
penetration" was in effect a resort to the zero-order
approximation of Sec. 5, justi6ed by the large negative
values of P».

In addition, that solution took advantage of the
circumstance that the differential cross section k(E, »)

for x-rays and neutrons varies slowly for e 0. As a
result the J»" k(E, ») exp(pp»)d» in (61) converges
rapidly toward a limit

k(E, ») exp(p»»)d»

k(E, 0) exp(P»»)d»= —k(E, 0)/Po, (62)
0

and the solution of (61) becomes

(63)

This is just the result of reference 16. Its new and Inore
general derivation points to possible improvements in
the approximation.

The corresponding study for charged particles re-
quires a different approach since k(E, ») is peaked
sharply at e 0. For particles that have lost only a
small fraction of their total energy, the answer is
provided by the Landau theory" (see Appendix V). For
larger energy losses, this study may be of minor im-
portance in so far as excessively long path lengths of
charged particles, and especially of heavy particles, are
quite unlikely and their distribution might be deter-
mined rather well by the behavior of 4 (E, o) near o =0.

(c) The Short Path Lerlgth Tail of the Distributiow

The trend of g(E, o) for o negative and large corre-
sponds to the probability distribution of unusually
short path lengths. It depends on the occurrence of an
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rp(*)—5y(* )= 1~(*—4 4)y(*—
& )+~(*) (65)

where y(x, &r)dx= &t (E, o)dE. Since dE/dx is inde-
pendent of 0-, the cumulants are given by

&&„=Lc&" logy(x, o)/8 5&r. p= (66)

The solution of (65), for any particular value of o,
is given by (31) and (27) in the form

y(x &r)=Q A;(o) exp — &7(j, x', &r)dx' . (67)
0

Confining ourselves to the steady-state term, j=0,
which is permissible whenever x is much larger than its
maximum change in a single collision, we take

y(x, o)=Ap(o) exp —
) &f(0, x', o)&'

0

unusually large proportion of collisions with large
energy losses. No general analysis of this problem has
been given. For x-rays and neutrons this problem is not
of great interest. For heavy or light charged particles
that have lost a small fraction of their energy, it is
solved by the Landau theory. "For heavy charged par-
ticles that have lost much energy, extreme fluctuations
of this kind are unlikely and the tail of the distribution
can be predkcted by the behavior of p(E, o) near o.=0
as was done by Symon" (see Appendix V).

12. Calculation of the Cumulants

We propose here to calculate the cumulants of
the path length distribution, i.e., the parameters

&& =5&7" 1 got/&&c&r5 p= (64)

of Sec. 11a, under the assumption of a slowly vari-
able degradation law, i.e, , by the approximation method
of Sec. 5. This method, in its present form, yields
results which are applicable primarily to the slowing
down of heavy charged particles.

In'order to maintain Qexibility in the choice of the
energy scale and to utilize the, formulas of part A,
we proceed as in A, Sec. 3f, and, represent the energy
by a variable x, such that x= 0 at a fixed source energy,
E=Ep. The transform equation (46) will be written
here in a form analogous to (6), namely

The parameters &7 and A are given, in turn, by the
successive approximation formulas (33) and (38) in
terms of still other parameters, P and L„.Like &7 and A,
p and the L„'s should be calculated, in principle, for
each value of 0-. However, the cumulants a which we
want to calculate are coefficients of the expansion of
logy(x, o.) into powers of o. Therefore we seek here the
expansion of each parameter (P, L, g and A) into
powers of 0.. This problem is straightforward but its
solution is algebraically complicated since it involves a
double expansion, into powers of 0 and into orders of
approximation of the procedure of Sec. 5.

The expansion of P(x, o) may be written as

P(x, &r) ='P„P&"&(x)o"/e!. (70)

Since P (x, a) itself—the zero-order approximation value
of q(x, o)—has to be determined by solving Eq. (26.1),

i«(x) —= 1~(x k) expLP(» )n&k=Lp(k) (71)

From this expansion we derive the expansion of the
L„'s by multiplying each side of (72) by E(x, $)$" and
integrating over $. There result integrals of the type
Jp"I& (x, $) expLP&" (x)Q$"dp. These integrals have the
same form as the L„'s, but with P&o& in the place of P.
They are the I.„values for 0-=0, i.e., the I values
pertaining to the simple degradation process, irre-
spective of path length distribution. Accordingly they
will be indicated as I. "'(x).

L (X)=L &o&+~p&'&L

+ r~sLP&s&L t&o&+P&r&sL s&o&5

+-. LP"'L "'+ P"'P"'
+P&r&sL~s&o&5+. . . (73)

the coeflicients p&"&(x) of (70) are to be found through
the expansion of (71) into powers of o. To begin with,
the expansion of the factor expLP(x, o)g yields"

emLP(x ~)H
= exp/p&'& (x)Q expL p P'"'(x) p&r"/ !5

n&0

=expLP"'(*)6{1+P"'5+s~'LP"'i+ P""e5
+1~3LP&3&g+3P&2&P(1&gs+P&1&o)35+.. .} (72)

~ Each of the expressions in the brackets that multiply cP,
a'. ~ ~ has the sanm structure as the expression in the footnote (17)
which gives (ss), (s') ~ in terms oi the cumuiants si, s, ~ ~, with
p&"&p in the place of s", If expLZ &o p&"&go"/n, Q=Z„~rB~"/yi,
the coeKcients B„are determined in the following manner. Con-
sider all the partitions of the number v, which are represented by
a set of numbers v, such that Z, 1" rv, =vj.+2v2+ ~ =v. For
example, for v=4 the sets of v„'s are (4000), (2100), (0200),
(1010), (0001).We 6nd that

S

logy(x, o) = logA (o.)— &t(x', o)dx'

and

K = Lc&" logA (a)/c&&r"5. o
— q&"&(x')dx

(steady state), (69)
P (&) v&8„= z v I II—

aO Partltlanswhere q&"& =
f 8"&7/c&&r"5.=o.

The expansion of Eq. (71), which determines the
P&""s, results when the expansion (73) of Lp is enteredt,'stead state&. (68&

Dropping from now on the index j=0, we write
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into P1): inclusive:

14(X) o L0(0&+op(1&L (0&+ lo2fp(2}I (0&+p(l&2L (0&$

+.iosLl&(2&L1(0&+3p(2&p&1&L2(0&+p(1&2L2(0&)+. . . (74) I (x)

Separating out the groups of terms with the same
power of 0-, we obtain the set of equations:

I0
(0& fl (x) Ll(0&p(l&—

L (0&P(2&+L2(0&P(1&2=0 (75)

L (0&P(2&+3L (0&P(2&P&1&+Is(0&P(1&s—Q

The first of these equations,

L0&'&(x) = E(x, $) exp/p&'& (x)gjd(= p(x)
0

d L «) idlogL«)L «)
1+—

L,(0)

dp(0& (L (0& (I (0&)2)

dx (Lt&0& (Ll«&)2)

1d L«)
1+ ———

dP(0& ( Ls(0& (L2(0&)2)-

dx &Ll&0& (Ll(0&)2&

L «) +; P8)
2 dx (Lt&0&)2

is the equation (2.61) pertaining to the simple degrada-
tion process. From the standpoint of the path length
distribution problem we regard this equation as solved
in advance. (In the absence of absorption, ps ——0, of
course. ) If p(0&(x) is regarded as known,

' all the L„&'&

are known as well.
From this point on, the successive equations (75)

yield the successive parameters p&"&(x) in terms of the
moments L„"&(x),and one finds

The expression (69) of the cumulants &(„ is obtained in
zero-order approximation, by replacing q(") with its
zero-order value p("& given by (76). Here one may
disregard L()" logA/Bo' 7 —0 since this term yields only
a first-order correction as shown further below. Thus
we write

&&„(x) — P &"' (x')dx'. P7)

The values thus obtained are those which measure the
straggling according to the model of "continuous
slowing down. "

To obtain the higher order approximations of a one
must now take Eqs. (33) for q(x) and (38) for A and
expand them into powers of ~, utilizing the expansion
(73) of the I.„'s. This procedure is tedious but straight-
forward. We give here only the values of q&'& (x) and of
Lc& logA/84r), =0, calculated to first-order corrertions

p (1& (x) — 1/J 1(0&

p(2& (x) — L2(0&/(Ll(0&)2

p(2& (x)—I 2(0&/(Ll(0&)4 3(I2(0&)2/(Ll(0&)0

(76)
p(4& (x)— L4(0&/(Ll(0&)0+ 1()L2(0&L2(0&/(Ll(0&)0

—15(L2 ")'/(L, ")',

P(5&(x) —J (0&/(L (0&)0 L15L (0&j (0&+1QJ (0&j2/(L (0&)7

+1o5L "'(L "')'/(L "')'—105(L "')'/(L "')'

'8 logA

8(T &r—0

L2&'& 1 d ( Ls&'&

(L,&'&)' 2 dx ( (L,&'&)'

(L."&)'i
~ ~ ~

(I (0&)2)
(79)

ds

L'(&(x)

d I2«)
1+

2 d'~' L,«)

dp(0& (Ls(0& (L2(0&)2)—

dx' (Ll&0& (Ll(0&)2)

Ls(0& ) 1 ( L (0&

+. 80
2 0 (Ll(0&)2) 2 ( (Ll&o&)2)

The significance of the various terms of this expression may be
illustrated by comparing it with the expression for the related
mean path length,

(s)&z& =f P(E', 0)dE'=J y(x', 0)dx', (81)

of Eq. (58). We assume here absence of absorption, i.e., p('&=0
and L (')=3l„. Under these conditions, the integrand of (80),
(1/M&){1+-',d(M2/M4)dx+ . ) represents the steady-state value
of y(x', 0) in (81), according to (30). The sum of the first and the
last term of (80), namely, ,'(M2/3IP)~ 0 can be sh—own to equal the
integral of the transient terms of y(x', 0), which are appreciable
only for x~0.~ The remaining term of (80), —',(L2('&/(Ll('&)')*

"Only the zero-order term of t 8 loge/Bo 7, 0 has been carried,
because the next term has an effect comparable to that of the
second-order terms of q(').

~ To evaluate J& y(x', 0)dx' in (81) correctly in the range
x 0 one can use the solution (35) valid in this range and carry
out the integration over x before the integration over p. The error
that would have been made by integrating over p &st aIId then
discarding the transient terms is seen to equal $LL2 "&/(Li "&)'7* o.
See also the treatment at the end of Appendix VII.

The value of the first cumulant 1&1 is given by (69),
which combines the two formulas (78) and (79)" into

( J2(0&

&& (x)=(s).= i

& (Ll&0&)2), 0
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does not appear in the evaluation of (81) and therefore represents
the true difference between the mean path lengths (s)s and (s)[&o].
Notice that the corrective terms,

I

P o"'/(L&"')o0*-o—xoP o"'/(L&"')'j*-o =sP o"'/(L&"')o3.-o
and )t Lo& &/(L&&o&) j„are approximately equal to J'Cx'/L&&'&
extended respectively, over one half-interval of Lo&o&/L&& & at
x~0 and over a similar interval at x. The ratio Lo&'&/L&&o& repre-
sents one "step of degradation. " Therefore one may visualize
the value (80) of the cumulant as equal to the integral of the
steady-state value of y(x', 0) from 0 to x, plus one half-step of
degradation at the beginning of the degradation and one half-step
at the end. These corrections represent effects of the discontinuity
of the process of degradation.

13. Application to Heavy Charged Particles.
Comparison with the Lewis Results

The formulas of the preceding section can be applied
directly to the calculation of the mean path length and.
of the straggling of heavy charged particles. As in the
application of the formulas on.spectral distribution, we
assume that there is no true absorption, so that
p&'&(x) =0 and I-„"&(x)=M„(x). We also choose
x= Ep—E.

The first moment 3f~, that is, the stopping power,
will be indicated by (k/2E)8, as in (40). The higher
moments can be shown to be, approximately

M -'kp" 'E" '/(n —1). (82)

This approximation disregards corrective terms of the
order of the atomic binding energy divided by the
maximum energy loss in a collision, pE; /The second
term in the bracket of (41), which constitutes a cor-
rection 4T/38yE, is an example of the terms disre-
garded in (82).$ These assumptions about the M's rely
on the ordinary, nonrelativistic, theory of stopping
power. Improved formulas may be entered in the theory
without any additional difhculty.

The Bohr theory" of the mean range and of the mean
square straggling may be described here as a calculation
of the first and second cumulant in zero-order approxi-
mation. It utilizes (77), that is,

&0

(E=0) —
i

I
p&

"&(Eo—E)dE,
0

with the values of P &" and P"' from (74). Blunck&s gives
also the formulas for Kq and K4.

An explicit calculation of the cumulants up to K~ in
this approximation has been carried out by Lewis."
The Lewis results can be derived by entering the values
(76) of p&"& into (83), substituting the M values (81)
in place of the L (') and performing the integration over
the energy. If the stopping number 8 is regarded as
constant (as in the Lewis "simplified problem" ) one
obtains the Lewis formula (L23) ss with 8 and y in the

"The Lewis equation numbers will be accompanied by the
letter L. The coefficient 230 in t4 of (L23) should apparently be
replaced with 210. Notice also that 8 does not quite coincide with
Lewis' A I=B——,'y nor does y coincide with ey y(1-y). However
this difference is immaterial in the zero-order approximation. It

place of Lewis' A& and ei. If the dependence of 8 on
the energy is taken into account, one obtains (L23.1).

Lewis also introduced a new notion in the theory of
the mean range, namely the need for a correction of the
order of y~tn/M, which amounts to a fraction of 1
percent for p, mesons. The Lewis correction should
appear in the present treatment as a erst-order cor-
rection. According to (80) the "mean range, " i.e., the
mean path length of particles with no remaining energy,
1s

1(Ms)
"(o)=().=-I

2 EMas) tr-top

&

&o dEt dM,
t~ ~ ~

dE Mi I 2 (Mrs) &r=p

pEp &

o 2EdE
~+~ 1 ++" . (84)

kB' ~p kB 2 8 8'

The last term in the mid. die expression vanishes at E=0.
Otherwise it would have to be discounted in the com-
parison with the Lewis theory, since Lewis calculates
the mean (s)&p&, according to (58), instead of (s)p. The
comparison must be made at E=O because the Lewis
theory deals only with the path length for zero energy.

The Lewis formula for the mean range (L20) is
(R)=JP 2EdE/Lfi, where At 8 ', y——P —If—A(t is
expanded into powers of p, (R)= J"p '(2EdE/kB)
X(1+rsvp/8+ ). The discrepancy in sign between
the correction term in this formula and the term y/8
in the curly bracket of (84) is compensated by the term
in front of the integral of (84), whose value is
fo '(2EdE/kB) (y/8 2y/8') .Howev—er, the term y/8'
of (84) has no counterpart in the Lewis treatment. This
discrepancy is small, since (y/8')/(y/8) = 1/8~0. 1,
but real. The corrective terms y/8' arise from the
derivative of 8 which is disregarded by Lewis."

A further discussion of the Lewis theory is given in
Appendix VII.
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does not seem consistent for Lewis to regard AI as diferent from
8 in this calculation, since terms of the order of e have been dis-
regarded in his derivation of (L23).

'4 jn Lewis's notation v and B are called o and log( / ) oT1&he.
value of A, given by Lewis is equal to log(o/s)+o/2 and appears
to be incorrect, possibly because of confusion between his symbols
e and eI. The Gnal statement that the range is lengthened by a
factor 1+3o&/2 log(o/it)+ ~ ~ seems to be incorrect for the same
reason, since the stopping number in the Bohr formula is
B=2 log(oR/I) as shown in (L2) and not 2 log(o&E/I).

"Lewis begins by treating a "simplified problem" in which 8
is regarded as constant and then allows for the variation of 8
only after having obtained the formula (If)=Jo&to2E&fZ/k(B —$y).
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p(E)Ã(E, ~)= ' de day'k(E+e, e, " ay')
f

XN(E+e, +')+S(E, +). (85)

The source distribution, the scattering probability,
and the particle distribution will be represented by
Legendre polynomial expansions:

S(E, 8)=gt(2l+1)St(E)Pt(cos8)/4n. , (86)

k(E, e, coso')=Pt(2l+1)kt(E, e)Pt(cosO)/4m, (87)

N(E, 8) =Qt (2l+ 1)Nt (E)Pt(cos8)/4~. (88)

It is well known that this expansion effectively separates
the variables, as long as the kernel k depends only on
cosO= ~ ~' and not on ~ and ~' separately. For ex-
ample if the source is isotropic the distribution will
remain isotropic; if the source were distributed like
Pt(cosd) =cos8, the particles would also be distributed
in this manner. Multiplication of Eq. (85) by Pt(cosd)
and integration over all directions ~ yields the set of
equations

p, (E)Nt(E)= i dekt(E+e, e)Nt(E+e)+St(E). (89)
0

The equations with different values of l can be solved
independently of one another. Each of the equations
has the same form as (1) and can be treated accordingly.
The equation with k=0 is identical with (1) and Np(E)
with e(E) of Sec. 2.

One difference, which may be important at times, is
the fact that neither Nt(E) nor kt(E, e) need be positive
for.,%0.Each d:stribution Nt(E) has no physical reality
per se, since it corresponds to a source distribution Pt
which is negative in some directions and therefore
unrealistic. The discussion of the roots of (14) given
in Sec. 4 hinges on the fact that IC(g is positive. No
study of the more general problem with a nonpositive
E' seems to have been made yet.

I

APPENDIX I. DISTRIBUTION IN DIRECTION
AND ENERGY

Suppose that particles or photons diffuse in a medium
under the conditions of Sec. 2 and that the source is
nonisotropic, though with cylindrical symmetry. The
angle between a direction ~ and the axis of symmetry
will be indicated by 8. The number of particles emitted
with energy between E and E+dE and with obliquity
between ~ and ~+d8 will be indicated by S(E, 8)dE2~
)&sindd8. The track length of particles in the same
energy range and in the same range of obliquity will be
called N(E, 8)dE2n. sin8dA The probability per unit
track of a collision with energy loss from e to e+de and
with a deflection of 8 to 0+d will be called
k(E, e, coso)de2vr sino'dO~. (This probability includes
elastic scattering, for which e=O.)

The degradation and deQection equation is:

APPENDIX II. CALCULATION OF THE STEADY
STATE IN ABSENCE OF ABSORPTION

We wish to solve the equation

u(*)= " &(*—&, 8u(*—«)d» (28)

with Jp" E(x, g)d$=1, assuming that both Eand g'
"G. Moliere, Z. Naturforsch Ba, 78 (1948).See particularly the

derivation by H. W. Lewis, Phys. Rev. 78, 526 (1950) and by
H. A. Bethe, Phys. Rev. 89, 1256 (1953)."L. V. Spencer, Phys. Rev. 9Q, 146 (1953).; also, L. V. Spencer
and C. H. Blanchard, Phys. Rev. (to be published).

"See, e.g. , S. Goudsmit and J. L. Saunderson, Phys. Rev. 57,
24 (1.940); 88, 36 (1940), H. W. Lewis, . reference 26, and also C. H.
Blanchard and U. Fano, Phys. Rev. 82, 767 (1951).

Spencer and Jenkins' solved the set (89) for x-ray
degradation up to 1=5, by the direct method of Sec. 3b.
There was formerly some feeling that the breakdown of
the problem in terms of Legendre coeKcients, as in (89),
is convenient only in the absence of peaked angular
distributions, i.e., when only a few X~ s are signi6cant.
However it has become apparent that one can also
handle long sequences of Legendre coeScients provided
their 'values vary smoothly with /. For example, the
Moliere theory of multiple electron scattering'6 takes
advantage, in essence, of the independence of the dif-
ferent Legendre coefFicients and replaces the Zt in (88)
with an integration. A procedure to carry out the Z&

when znany terms are important has recently been
developed by Spencer. "

When the directional distribution of particles is
peaked sharply at the source, it becomes progressively
smeared out by multiple scattering. The smearing out
is described, in the Legendre polynomial representation,
by a damping of the coefE"ients S&, for t.'&0, in the
course of degradation. The larger /, the faster is the
damping. This picture has been developed particularly
in treatments where the directional distribution is con-
sidered as a function of the pathlength traversed. "
Since the cross sections are functions of the energy,
rather than of the path length, the formulation given
here is a little more appropriate. A more complete
treatmen't would combine the procedure of this appendix
and of part 8 to give a combined distribution in energy,
direction and path length.

The damping of the Legendre coeKcients Nt(E)
comes about as follows. According to (9), Jp kp(E, e)de
&~p(E). Moreover, since k(E, e, coso) is non-negative,
kt(E, e) = 2m Jp" k(E, e, cosO)Pt (cosO~) sinodO~&kp(E, e),
for /WO, owing to the oscillations of Pt(cosO) which
become increasingly rapid as 3 increases. Therefore the
integral Jp" kt (E, e)de over the kernel of (89) ™un's
to a smaller and smaller fraction of p, (E) as f increases
and the solution p of Eq. (26.1),' p(E) = Jp" kt(E, e)
&exp(pe)de, tends to become large and positive. The
value of p determines the damping of the solution of
(89), Nt(E), in the course of degradation.
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are slowly variable functions of x. In view of this
assumption we utilize the expansion

( g)e gn
&(*-&,s)g(*-&)=Z E(x, g) g(x). (90)

n=o ~ f gx"

This expansion reduces (28) to the form

g(x) =Q (—d/dx) "[M„(x)g(h)i/e!, (91)

where M„=Jp" E(x, $)$"df, according to (29). The
g(x) on the left side cancels with the v= 0 term on the
right, since Mp 1. Inte——gration of (91) yields

2(—~/&x) "[M~~(x)V(x)3/(~+ I) '= ~, (92)
n=Q

where C is an integration constant.
In a zero-order approximation one would disregard

all derivatives and consider only the term m=0 in the
sum. A procedure of successive approximations may be
established by writing

g(x) =gp(x)+yg(x)+y, (x)+, (93)

with the understanding that the rth term of the ex-
pansion, y„, is small of the rth order, i.e., that it contains
r differential factors. This expansion brings (92) to the
form

2- Z. (—~/dx) "LM-(h)V. (*)3/(~+1) = & (94)

Since y„contains r differentiations, the total number of
differentiations in each term of (94) is m+r. The pro-
cedure of successive approximations requires that (94)
be fulfilled separately by each group of terms with the
same value of rl+r. Thereby (94) separates out into
the set of equations:

Mggp ——C, (e+r=1),
M,g,—-', (d/d*) (M2gp) = 0, (a+r = 2),

Miy2 ,'(dldx) (M2g—g)+—p(d/dx)'(Mpyp) =0,
(e+r=3).

The first equation yields yo, the second y'~, etc., and
the resulting expressions, when entered in (93), give

C 11 d C 11 dM2d C
g(h) = +-

My 2 Mg dx Mg 43IIg dx Mg dx Mg

1. d' C
Mp + . (96)

6 Mg dx' Mg

Since M„/M„=M„/M„, Eq. (96) reduces to the ex-
pression (30) for y(x), when divided by p(x).

without assuming that g (x) varies slowly. The equation
may be written by means of operator symbols in the
for m

g(x) = ' exp[ —gd/dh)E(x, g)g(x)dg. (97)

exp($[g(x) d/dxj)X(x, P)d)=1. (99)

YVe wish to set up a procedure of approximation in
which g(h) and X(x, g) are regarded as varying slowly
with x. To this end we must expand the exponential'
operator of (99) into powers of the differential operator
d/Ch. The Feynman operator calculus" yields the ex-
pansion formula

1 ~s
+ ds ds' exp[(1—'s)ejP

&&exp[(s—s')n]P exp(s'e)+ . (100)

In our problem, n=g(x) and P= —gd/dx and the
commutator of P and exp[(1—s)n] is independent of P.
Therefore P may be shifted everywhere to the left of n,
after which the integrals in (100) reduce to ordinary
integrals. This procedure gives

exp P q(x) ——
dx

t
d dg 1 d' dg 2 d'g

1—k 5 +—8—-
1 .~x dh 2 dx ax 3'dx

1 (dg)
+-Pl —

I + exp[((h)6. (1o1)
4 Edxj

If we enter this expansion in Eq. (99), the integrals
over g can be represented as the moments

The substitution (31), g(x) =exp[—J;*g(x')dx'1, is
such that (d/dx)g(x) =g(x)[(d/dx) —q(x)$ and, there-
fore,

exp[ —(d/dx]g(x) = y(x) exp(t[g(x) —d/dx7). (98)

In this manner y(x) can be factored out of (97), which
reduces to

APPENDIX III. CALCULATION OF SOLUTIONS
OF THE HOMOGENEOUS EQUATION

We wish to solve Eq. (28),

~(*)= " &(*, ~) m[e(*)H~'d~
~Q

(102)

g(x) = E(x P, $)g(x P)d&, —— of a distribution E(h, $) exp[q(x)(], and (99) takes the

~ R. P. Feynman, Phys. Rev. 84, 108 (1951), Sec. 4.



U. FANO

form:

Ep—
dNl 1 dq 1 d'¹ 1 dg d¹

N—2 +—
ds 2 ds 2 ds 2 ds dx

1d'g 1 (dg) '
(103)

3 dx' 8 (dx)

The terms in surcessive brackets contain an increasing
number of diGerentiations.

At this point we proceed as in Appendix II, i.e., we
represent q(x) as a sum of terms of successively smaller
order, with the understanding that the term of rth
order contains an r-foM differential. In the zero-order
approximation, (103) reduces to Np ——1, which coincides
with (26) and shows that the zero-order value of q(x)
is in fact p(x). Hence we write:

q(x) =P(*)+ql(x)+ q2(h)+ (104)

The exponential in the integral of (101)can be expanded
into powers of P„&pg, (x)$. The value of N„with
g= p is the moment L„analogous to that of (32), so that

N. (x)=Z.LZ. g.(x)3'L .(x)/&! (»3)

We must now enter this expansion into (103) and
separate out the groups of terms of the same order, for
which the number of diGerential factors plus the sum of
the indices of the factors g„equals a given total. The
groups of terms of the same order must ful61 the equa-
tion separately. In this manner we obtain a system of
equations of which the 6rst three are written out ex-

plicitly:

I.o= i

APPENDIX IV. CALCULATION GF THE SOLUTION
FOR ENERGIES NEAR THE SOURCE

Vfe wish to solve the equation

g(x) = I E(x P,
—t)g(x —g)dgyS(x)

0

(8)

dh exp(Px) t E(x P, g)g(—x—P)dP+1
0 dp

F00 00

d2! expl P(k+2—!)j&bl k)g(n)+1J,

=P 23!
—' "

I
8 E(x, P)/Bx"j,=p

o

X"p(p&)«, " &-&(&) -p(p&)«+1
0

F-(p)!' d q"
I
—

I v(p)+1, (108)
23! Edp)

where F„(p) is the transform of $8"E/Bx"j p, accord=-

ing to (34).
The If'„'s are treated as small quantities of order +

and v (p) is represented as a sum of terms of successively
smaller order,

by means of the expan'sion

&(* «-) =2-L~"E(* ~)/~*-j*-.(*-~)-/ .. (»~)

The Laplace transform of (8) is

v(P) = )" exp(Px)g(x)dh
0

v(P) = vo(P)+ vl(P)+ +v. (P)+ . (1o9)dLl 1dp
qlI l— +-—I 2=0»d$2 dx This expansion, entered into (108), yields

Z. v. (P) =2- Z.F.(P) (dldP) "v.(P)/~'+1. (»0)
1 dqlL2 1 dgl 1 dp

q2~1+ ql L2 + L2+ 'glL3
2 d$2 dÃ 2dS

The groups of terms of equal order, i.e., with equal
23+r, when separated out yield the system of successive
equations:

1 d'L, 1 dP dL„1d'P 1 d'P
L 3 L4= 0. (106)——

2 dx' 2' Ch 3Ch' Sdx'
vo(p) =Fo(P)vo(P)+1

(p) =Fo(p) (p)+F (p')d o/dp

v2(p) =Fp(p)vo(p)+F2(p)dv, /dp+ 2F2(p)d'vp/dp. ', -

the first of which coincides with (12). The system,
solved chainwise, has the solution

vp(P) = L1-Fo(P)j '

l»l(p) =Fl(1 Fo) 'dvo/dp= —Fi (dFo/dp) (1—Fo) 3» (112'!

82(p )=F,(1 Fp) ''dr&i/dp-

+ 'I» 2(1 I» p) 'd'vp/dp'-—

The. first equation coincides with (26) and yields

p(x). The second yields gl(x) in terms of p(x), the third
yields g2(x) in terms of p(x) and gl(x), etc. When the

g, 's are expressed entirely in terms of p(x) and of the
L „'s, it turns out that the L„'s are combined in ratios
L /L„= L„/L„with the exception of one term,
d logLl/dx, in gl. On the other hand the relationship

g(x) =p(x)y(x) implies g(x) =q(x) —d log+/dx, so that
one can pass from the g„'s to the q„'s simply by replacing
the L„'s with I.„'s. In this manner one arrives at (33).
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All the terms v„(p) have poles only at values of p
which are roots of Eq. (14), Fo(p)=1. The Laplace
transform (109) can be inverted in the same manner as

(13),by reducing the integral to loops around the poles.
To evaluate the residues at the pole p p; one can use
the expansion:

1-E'o(p)

1 :(—p p;)-~o"(p;)/~'(p~) l (p—-p,)'(~'"(p,)/~o'(p;) —;[~."(p;))'/[~ '(p;)7&+"
113

L
—~o'(p~) 3(p—

p~)

X p —a— k(») exp(p»)d» dp, (114)

or, sInce y= f~" k(»)d»,

—a+ioo

y(E, 0) = (2ni) ' t—exp[ —p(ED —E)j

X k(.)[1—exp(p»))d» —~ dp. (115)
0

The Landau formula is obtained by entering (115)
into the inverse transform (47) and carrying out the
integration over &r before that over p. The integral over.
0- is given by the residue at

0-=
) k(») [1—exp(p»)gd»,

0

—a+ioo

y(E, s) = (2~»)-i, exp —p(E, E)-
—a—ioo

—s " k (»)[1—exp (p») jd» t dp. (116)

This is just Eq. (5) of Landau except for the replace-
ment of p with —p.

In the evaluation of J~" k(») [1—exp (p») $d», Landau
took advantage of the fact that k(») =const/»' over a
large range of values of e, for charged particles. For the
sake of analytical convenience, Landau assumed that

The inverse transform of the sum of two terms 80+Pi,
is (35).

APPENDIX V. CONNECTION WITH THE
LANDAU-SYMON THEORY

Landau" has given a theory of the energy straggling
of charged particles which traverse thin layers of matter.
This theory applies to total energy losses so small, that
the collision probabilities p(E) and k(E, ») may be
regarded as independent of E. Under this assumption
the transform equation (46) can be solved by the

- method of Sec. 4. The initial energy of the particles is
fixed at E», i.e., one takes S(E)=8(E E»). The —solu-
tion, equivalent to (13) is

—a+200

e(E, )=(2 ')-' t expL —p(E.—E)j
—a—2oo

the e ' dependence extends to e ~ instead of stopping
at some value e . Thereby he introduced a spurious
possibility of energy losses )~, but the resulting
error can be disregarded as long as the total probability
of any such spurious loss over the pathlength s,
s const/», remains much smaller than one. However,
the possibility of the spurious losses raises to infinity
the mean energy loss over a finite path length. Corre-
spondingly, the saddle point of the integrand of (116),
which must lie at p= 0 for E»—E= (E»—E) (see p. 43)
and at p) 0 for E»—E)(E»—E), remains, in the Landau
calculation, at p(0. Indeed the Landau value for
Jt" k(»)[1—exp(p») jd», namely constp log( —1.56p»'),
has a spurious singularity at p= 0. It is interesting that
the topography of the Laplace transform is thus
seriously altered even though the Landau assumption
is actuaBy realistic over a broad range of conditions and
even though the inverse transform remains unaGected,
as it should.

The Landau calculation breaks down when the prob-
ability of spurious losses, of the order of e, becomes
appreciable. This happens, for heavy charged particles,
including mesons, before a very substantial fraction of
the initial energy has been dissipated, owing to the
smallness of e . In the situation apposite to that of
the Landau approximation, the energy degradation
has proceeded so far that the frequency of actual losses
of the order of ~ has become rather large instead of
very low. In this situation the "transient" phase of the
degradation is over, the "steady-state" analysis of part
A, as applied in Secs. 13 and 12, becomes quite appro-
priate, and the straggling distribution approaches a
Gaussian shape.

Symon" has bridged the gap between ranges of
validity of the Landau analysis and of the steady-state
analysis by a skilled and elaborate interpolation pro-
cedure. " He characterizes the distribution in energy,
for a given path length, by: (1) the value of the most
probable energy, (2) a factor which measures the scale
of the Quctuations and which is related to the mean
square energy fluctuation, (3) a skewness parameter )
whose value ranges from zero for a Gaussian distribution
of straggling to 1.48 for the Landau distribution. The
shape of the distribution depends only on X. Symon
constructs a standard set of distribution curves for
0&)«1.48, whose shapes vary gradually from Gaussian
to Landau. The curves for ) ~& 1 are Gaussians modified

I

~Much of this procedure has been reproduced by B. Rossi,
High Energy Pe ticles (Prentice Hall, Inc. , New York, 1952), p,
326



U. FANO

by a suitably applied Edgeworth expansion. The curves
for ) & 1 are obtained from the Landau theory corrected
to the erst order for the error caused by the inclusion
of the "spurious losses. "For path lengths so small that
k(E, p) and p, (E) are effectively independent of E, the
Symon parameters can be calculated directly. For large
path lengths Symon fits his distribution to values of the
mean, mean-square and mean-cube energy loss calcu-
lated to an accuracy equivalent to that of the 6rst three
cumulants in (76) and (77).

APPENDIX VII. DISCUSSION OF THE LEWIS THEORY

A discussion of the range straggling theory of Lewis, "
especially of' his "simplified problem, " serves to illus-
trate various points previously raised in the present
paper.

Lewis assumes that the differential collision prob-
ability for heavy charged particles is

k(E„p)= k/2Ep' (117)

where k=2 &VirZ es' M/mas in (40). The values of the
energy loss e are supposed to vary from a lower limit
pE to the upper limit yE 4(m/M)E (p is called p by
Lewis),

~a&.&~j.

APPENDIX VI. UTILIZATION OF MOMENTS TO
INVERT THE LAPLACE TRANSFORM

Lewis" has utijized a standard method of statistics,
the Kdgeworth series, which amounts to fitting initially
a Gaussian distribution with the correct mean range and
mean square deviation and then of improving this dis-
tribution on the basis of data on higher moments. This
method is appropriate to the path length distribution of
heavy charged particles, which involves rather small
fluctuations and therefore is well approxiniated by the
initial Gaussian.

Another type of approach has been developed to
constru"t approximate distributions of x-rays in an
infinite medium. The idea is to represent p(E, o) for
0. 0 by an expansion especially chosen to converge
rapidly over a broad interval of o-. Thus, for example, if

& is expanded into powers of o/(li, —o), each term of
the expansion diverges as 0- aproaches p, . Since we
know that p itself actually diverges in this limit, this
expansion is more realistic than a simple power ex-
pansion. T'he coefficients of the first e terms of the
expansion in powers of o/(p, —o) are linear combinations
of the first e coefficients of the expansion in powers of
0- and therefore their determination requires no addi-
tional information. The additional information, pro-
vided by independent knowledge on the behavior of
g(E, o) far from o.=0, is embodied in the choice of the
type of expansion. Many types of expansion allow
analytical inversi. on of the transform term by term;
e.g. , the expansion in powers of o/(p, —o.) yields an
expansion off(E, s) in a series of Laguerre polynomials. '

+ (k/2) I f(E+p, s)dp/(E+ e) p'

~pa
+b(E—E,)S(s). (120)

The main part of the Lewis treatment deals with the
"simplified problem. " in which he regards as constant
the minimum fractional energy loss 8 and therefore the
stopping number 8=log(y/8). His calculation can be
simplified by considering the moments of the spectrum,
m„(s) =Jp p E'"f(E, s)dE, which coincide with the
Lewis expression (L15).The Jpp has to be understood
as limz pJ&Ep, so that particles whose energy drops
below 6 are eGectively "absorbed. " Multiplication of
(120) by E'" and integration over E yields

dm„/ds= —kA m„ 1(s)+Ep'"B(s),

equivalent to (L16), where

A „=',Jp& duu-'(1 (1———u)'"$

(121)

This expression of A„, is obtained by setting u= p/E,
= 1—(1+g) ' in Lewis's expression. The moments (58)
of the range distribution, (s")[p] ale eqllal to
iiJpg dss" 'mp(s} according to (50). To evaluate them
one can express mp in terms of d"m„/ds" and of 8(s) by
repeated application of (121) and then integrate by
parts e times. The result is (L19).

The Quctuations of energy loss in the simplified
problem remain costar/ throughout the degradatioe, if
expressed in a logarithmic energy scale. If we take
x=log(Ep/E) and P=logr E/(E —e)f=logr (1—u) '],
the collision probability becomes

k(E, p)de= ,'kEpi exp(2x) exp(-—g)$1—exp( —$)) 'd$
=E(x, P)d$. (122)

Similarly

p (E)=p (x) = 1pkEp ' exp (2x) (8 ' —y ')
=p(0) exp(2x). (123)

The transform equation (65) can then be solved; for
0.=0, by the method of Sec. 4 without any approxima-
tion procedure. According to (13) and (7) the result is

&&em( —px) 51—~(p) 3 'd p, (124)

The assumption (117) is not realistic for low values of
p, but the value of b is adjusted so that Ml ——Jp"k (E, p) pd p

has the correct value (40}.The error in the moments
M&, M, is also negligible and therefore the law (117)
gives the correct results for the purpose at hand. The
corresponding value of p(E) is

p (E)= (k/2E') (8-'—y ') . (119)

The transport equation (44) is, then,

Bf/Bs= —(k/2E')(8 '—y ')f(E 5)
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where

p
—log (I—y)

~(p)=(& ' —v ') '
log —o 5)—

Xexp( —$)dl[1—exp( —()7 exp(ph) (123)

= (8 ' —y ')) duu '(1 u) —&

y(x, 0) =Q(x)F'(0)7 '

=Ep'2 exp( —2x) k duu —' log[(1—u)-'7

=Ep'2 exp( —2x)/k[B+p(& —~)+ "7

Evaluation of (123) by taking the resid. ues at the poles
gives the steady-state solution, valid for x&)y,

As anticipated in Sec. 6, the exact solution obtained
in this manner is equivalent to the corresponding
solution (43), if the expression

(J~'duu 'log[(1 —u) '7} '=[B+2(v—&)+
I (127)

is expanded into powers of y/B. The fraction 8 can be
disregarded in this expansion (as it is effectively dis-

regarded in (41)), because it is extremely small. The
term p/B' of (43) cannot appear here since it arises from
the variation of j9.

It was pointed out in Sec. 13 that an evaluation of
the mean path length by the formula�(s)&, ] = Jp*y(x', 0)dx'
yields an incorrect resu1t if one utilizes the steady-state
expression (126) for y even in the interval of integration
x' 0. In this manner one would 6nd only the integral
of (84), without the additional term in front of it. To
obtain the correct value of (s)~ ~

one must take into
consideration the exact solution (124) of the simpli6ed
problem, which includes the transient effect,

p
eC

(~)r*i=
"o

y(x', 0)dx'= )
dx' exp( —2x')[2siu(0)7 '

—a+i~

X
—Q—$00

~—a+ice g &
—(@+2)~

p+ 2 1.—P(p)
exp( px)[1 F(p)7 'dp=

p(0) ~-a—~m

Since x itself is large, the factor exp[ —(p+2)x7
becomes very small in the residues at all poles of j —If'

except at p=o. Therefore we may apply the steady-
state approximation to the portion of the integral which
contains exp[ —(p+2)x7. This portion yields

—e"p (—2x)/2p, (0)F'(o) = —[2~(*)E'(o)7-
P/k[B+ ~ ~ ~ 7. —(128)

The remaining part of the integral, which does not
contain the exponential, converges for p large and.
negative and reduces to the residue at p= —2 plus a
half contour at p= —~, that is, to

[1/~(0)7( L1—F(—2)7 '—p) =Ep'/k~ i—1/2p(o).
(129)

Here A &
——-', (5-'—y ')[1—P(—2)7 is just the parameter

which appears in the Lewis range formula (L20),

1/2p(0) (Epp/k)5 is a very small distance, of the order
of the mean distance between collisions.

At E=O, (128) vanishes and (129) coincides with
the Lewis value of the mean range, to within the insig-
nificant term 1/2p(0). For purpose of comparison with
(84) one may add Ep'/k[B+ ~ ~ ~ 7 to (128) and sub-
tract it from (129). With this addition (128) becomes
essentially equal to the integral in (84), i.e., to the
integral over the steady state (126), and (129) becomes
(Ep'/k) {A~

'—[B+ 7 ') and coincides with the
corrective term in front of the integral in (84).

It may be concluded from the discussion that, whereas
the Lewis mean range Ep'/kA ~ is correct, its interpreta, —

tion as the integral of contributions from diQerent
energy intervals fp~'2EdE/kA& is not quite correct.
End-eGects, as discussed in Sec. 13, are primarily
responsible for the fact that the range is not
fp~' 2EdE/k[B+ ', y+~-


