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Hyperfine Structure Foriixulas for LS Coupling
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Formulas for the interval factor A and the quadrupole coupling factor 8 in the hyperfine structure
formula,

W = Ws+ 2AE+B-E (X+1),
are derived with Racah's tensor algebra. The results are directly applicable to light atoms (Z(30) that
show good I.S coupling. Data of White and Ritchl for manganese are analyzed, and an approximate value
of the nuclear quadrupole moment in Mn ' of Q= 1X10 "cm' is obtained. This confirms another approxi-
mate value of Q=0.5&(10 cm recently obtained by microwave methods. An error in the calculation
carried out by Brown and Tomboulian to evaluate the Q of tantalum is noted. A relation satisfied by X func-
tions is derived, which simplifies their numerical evaluation.

A. GENERAL THEORY

HE interaction between the nucleus and electrons
of an atom is usually given by the formula, '

where
Wp= Wz+ ',AK+BK-(K+1),

K= F(F+1) I(I+1)—J(J+1)—. (2)

61' (2—g) —2 (g—1)L (L+1)
A(J) =) (2—g) —a

I (2L—1)(2L+3)

+P(g 1), (J&0), —(3)

'H. Kopfermann, Eernmomente (Akad. Verlag. M.B.H. , Leip-
zig, 1940), referred to as I.

'H. B. G. Casimir, Verhandel. Teyler's Tweede Genootschap,
Haarlem (1936).' S. Goudsmit, Phys. Rev. 37, 663 (1931).' G. Breit, Phys. Rev. 38, 463 (1931);G. Breit and L. A. Wills,
Phys. Rev. 44, 470 (1933).

~ G. Racah, Phys. Rev. 62, 438 (1942); 63, 367 (1943), referred
to as II and III respectively.

G. Racah, Z. Physik 71, 431 {1931);Nuovo cimento 8, 178
(1931).

The dependence of Ws on F (and, practically, on I also)
is given by E and the dependence on electronic quantum
numbers is included in 2 and 8-. The term with 2 as
coefficient arises from the magnetic dipole interaction
between the nucleus and the electrons while the term
containing 8 arises from the electric quadrupole
moment interaction. The dependence of A and 8 on the
electronic quantum numbers has been calculated only
for special electronic configurations, ' 4 usually by writ-

ing out the wave functions explicitly, or by use of
Goudsmit's sum rule. ' YVe give here expressions for A

and 8 that can be evaluated easily with Racah's tensor
algebra. ' The expressions are directly applicable to
atoms showing I.S coupling. Since relativistic eGects" '
are largely neglected, the atom considered should not
have too great an atomic number (say Z&50).

Goudsmit' has given the following formula which ex-
presses the J dependence of A for an atom showing
I.S coupling.

where'

1'= -', (J(J+1)—L(L+1)—5(S+1)),
J(J+1)+5(5+1) L(I.+1)—

g=1+
2J(J+1)

(4)

Goudsmit's derivation by means of the diagonal-sum
rule was too cumbersome to publish; we give a more
direct derivation of this in Sec. D. Goudsmit did not
define the coefficients X, o, and P explicitly in terms of
one-electron parameters. The procedure outlined in
Sec. D yields the following values of X, o., and P in terms
of double-barred submatrices and tensor operators de-
fined in II; the necessary submatrices are diagonal in
nSt, where 0, represents the quantum numbers needed
to specify the electron state (exclusive of 5 and L).

(nSL~ ~g;(a,);1;~)nSL)
X= (6)

Ã(L+ 1) (2L+1)7'

o = —
I (2L—1)(2L+3)7l

(nsLI ~Z'(a )'s'&'"'~ ~nsL)
X (&)

[5(5+1)(25+1)L (I.+ 1) (2L+ 1)7-:

(nSLiig, (a,),6(l,, 0)s, iinSL)
(8)

t 5(5+1)(25+1)7l

In these expressions s, and l, are the spin and angular
momentum respectively of the ith electron and C&'& is
the second degree tensor operator defined by Racah
in II, Eq. (46). The one-electron parameters a, and ai
are defined in agreement with the definitions of Fermi'
and Goudsmit 3

87r (m~ )
I 14(0) I'g(I),

Em )
(m~) 1

ai ——A a,'n~ '~ — g(I) (lWO).
&3Ir) rt' A,

(10)

~ Tables of g values have been prepared by C. C. Kiess and W.
F. Meggers, J. Research Natl. Bur. Standards 1, 641 (1928).

8 E. Fermi, Z. Physik 60, 320 (1930).
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In these relations, E is the Rydberg constant; n is the
fine structure constant (=1/137); u, is the Bohr hydro-
gen radius; m, /M„ is the ratio of the electron mass to
the proton mass (=1/1836); and g(I) is the nuclear

g factor.
In Eq. (9), P(0) is the value of the eigenfunction of

the s-electron at the nucleus. It is usually evaluated by
use of a formula given by Fermi and Segre. '%hen this
evaluation is used, a, takes on a form similar to that
suggested by Goudsmit. "

8flz, n Z t' ds).=- ' ——W:g(I) (-:, z)I 1—
I

-3 kIp E.' Zo de)

Z ( ds]
=2.32X10 "W& g(I)«(—s, Z)I 1——I. (11)

Z,
'

& dts&

i (
——Rn'a. sZ;(1/rP)A„X (l, Z). (12)

Z; is an effective nuclear charge, about two less than Z
for p-electrons and 10 less than Z for d electrons, and
X (l, Z) is another relativistic correction' which is
tabulated in I. The value of i ~ is determined from an
analysis of the experimentally-observed fine structure
of the term by methods outlined in Appendix II. By
means of Eq. (12), relation (10) takes the form

In this expression a, is measured in kaysers. "8' is the
energy in kaysers needed to remove the s electron from
the atom in that stage of ionization in which it is the
outer electron; Z is the atomic number; and Zp is one
for neutral atoms, two for singly ionized atoms, etc.
The factor «(-„Z) is a relativistic correction' tabulated
in I. The rate of change of the quantum defect ds/dn
can be evaluated if other members of the series are
known; neglecting this factor will generally make the
calculated value of a, a little too small.

The value of (1/r P)A„ in Eq. (10) can be related to the
spin-orbit parameter i & by the equation .

The coeKcient y, which is independent of J, is given by:

p = —[(2I.—1)(2I-+3)J'*

(ALII&'(bi) *&'"'11~5'L)
X . 16)

[L(L+1)(2L+1)$'

The one-electron parameter is defined as

38
bg= (1/" ') '

16I(2I—1)
(17)

By use of (12), since e'=2Ra„ it can be evaluated as

Q

8n'a. ' X(l, Z)Z; I(2I 1)—
0.253l (

X 10", (18)
X(t, Z)Z; I(2I 1)—

where b& and i & are in kaysers and Q in units of cm'. If
bI is measured in millikaysers and Q in units of barns
(10 "cm'), then the factor 10"can be omitted.

For one-electron configurations, the values of A and
8 have a particularly simple form. Entering the follow-
ing expressions from II into the general formulas (6),
(7), (8), and (16),

The electric quadrupole. moment Q of the nucleus is
defined in Sec. E (it is measured in cm );0; is the angle
which the radius vector r; of the ith electron makes with
the Z axis. The J dependence of 8 is not shown ex-
plicitly in this formula. To express this dependence we
have derived in Sec. E the following expression for 8:

8(3(2—g) [J(J+1)(2—g) —ll —L(L+1))
B(J)=y

(2J—1)(2J+3) (2L—1)(2L+3)

(J~o, —',). (15)

m, ii
g(I) =0.545 g(I) X10 '. (13)

M~'A(l, Z)Z; lt(l, Z)Z;

(ll Ill ll) = [t(l+1)(23+1)g',

(lllslll) =& l,

(19)

(20)

23
8= ——

8 I(2I 1)J(2J—1)—

Both a~ and i ~ are measured in kaysers.
The expression usually given for 8 is that due to

Casimir. 2

i(l+1) (21+1
(ill&"'Ill) =-

(2t—1)(2l+3)

one 6nds for the one-electron con6gurations that
it=a.= ai, P= a„and y=b~. Entering these values into
(3) and (15) we have,

x( Z.
(3 cos'e —1)

(14)
J=J Av

' K. Fermi and E. Segre, Z. Physik 82, 729 (1933).
'0 S. Goudsmit, Phys. Rev. 43, 636 (1933).
""Kayser" is the name adopted by the Joint Commission for

Spectroscopy for the unit of vrave number, cm '. It is abbre-
viated "E."

A=a„ (~=0),

B(J)=
&'(1+1)

(i&l).

i(l+1)
~ (J)= ~„(&so),

2(2+1)

(22)
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The expressions for A have been given by many
authors;" A(E+-', ) and A(E——,') are usually denoted by
a' and a" respectively. The expression (24) for 8 is in
agreement with results given by Casimir' and Racah. '

For a term made up of equivalent electrons we write
in the notation of II:

g (u~) s C &'&=a&(E[[C&")jE)V""

g;(b&);C;&'~ = b&(EJ(C&'&((E)U"'.

Relations (7) and (16) become now

o = —a&(Ef]C&"JJE)P(2L—1)(2L+3)j&

(E"nSLffV &"&I JE"nSL)
X (26)

LL(L+1)(2L+1)S(S+1)(2S+1)$&

y = —E l (E] jC"'( ~E)p(2L —1)(2L+3)]'

(E"nSL(
(
U &'~

] (
E"nSL)

X (27)
LL(L+ 1)(2L+1)j:

The double barred submatrices of V&"& and U&'& are
tabulated in III for configurations made up of equiva-
lent p or d electrons; the double barred submatrix of
C&s& has already been given in (21). Because of a rela-
tion analogous to (19), A=a& for groups of equivalent
electrons (this is also true for a group of equivalent
electrons plus any number of s electrons).

If con6gurations of non equivalent electrons are
coupled together, 3 and B are evaluated by straight-
forward application of the decoupling formulas )rela-
tions (44)jof II; the results are omitted here for brevity.

3. QUADRUPOLE MOMENT OF MANGANESE

The data of White and Ritchl'3 has been analyzed in
an eGort to evaluate the quadrupole moment of man-
ganese (Mn"). The two lines X5394('Py/s-+'Ss/s) and
),4033('Ps/s —+'Ss/s) lead to the respective Q values
j.10X10 "cm'. and 1.01X&0 "cm' and from thj
conclude that

Q=1X10 "cm'.

This value is probably less accurate than the approxi-
mate value,

Q=0.5X10 "cm',

recently obtained by microwave methods, "but the two
determinations do tend to con6rm each other.

The Q given above was determined by least squares
from the 6rst three line-component intervals only. Suc-
cessive intervals are less and less well-de6ned as the
lines get wider, weaker, and more closely spaced, and
the reproducibility of measurements becomes poor.

~ For notes on the literature and a simple derivation see G.
Breit, Phys. .Rev. 37, 51 {1931).See also G. Sreit and F. W.
Doermann, Phys. 'Rev. 36, 1732 {1930).

's H. E. White and R. Riteh1, Phys. Rev. 35, 1146 (1930).
'4 Javan, Silvey, Townes, and Grosse, Phys. Rev. 91, 222

{1953).

White and Ritschl give no estimate of the accuracy of
their interval measurements, but the increased difhculty
involved in the measurements can be appreciated from
inspection of the photometer traces they have given for
several of their patterns. In the homologous spectra of
technetium —where the generally wider spacing allows
for better resolution —a weighting procedure was used
with the weights defined by the reproducibility of the
measurements of the intervals. In some cases this pro-
cedure amounted practically to disregarding all but
the erst two intervals.

The Q values obtained from three other lines of
the spectrum, namely X5432 (sPs/s~sSs/s), lt4030
('P7/s +Ss/s) and X4034 (P3/s +Ss/s) were disre-
garded; the Q values for these three lines were —2.6,—0.3, and —2.7X j.0 '4 cm', respectively. This proce-
dure is justified on the basis of the sensitivity of the
intervals to the eGects of the quadrupole moment. A
suitable criterion for this sensitivity is the diHerence be-
tween the position of the third of three levels with
consecutive Ii values when predicted from the interval
between the first two levels with a Lande rule, and when
predicted according to the full formula (1); this differ-
ence has the value 48(F—1)(2P—1). The quadrupole
moment will be determined most accurately from terms
in which this quantity is large compared to the ac-
curacy with which the intervals are measured. If we
assume Q=10 '4 in Mn, and calculate this difference,
we get the values for 'Py~2, 'P'@2, 'PE;g2, 'Pyg2, 'P3/2 as
0.0035, 0.0036, —0.0013, —0.0022 and —0.0013kaysers
respectively (in Mn 1, i&——250, Z, =15, I=5//2). These
numbers are indicative of the much stronger efFect to
be expected in the sP7/s and 'P&/s. In technetium, the Q
values obtained from the lines corresponding to those
neglected in Mn were also too small. The data in tech-
netium were weighted heavily in favor of the 'P7~2 and
'P5~2 patterns by making a statistical analysis with
weights based on the estimated errors of each Q de-
termination as judged by the variability of the Q values
obtained from diferent observations.

Reliable 8 values can be obtained most easily. from
lines in which the splitting of one level is zero. In both
Mn and Tc, the analysis neglects possible splitting of
the 'S5~2 ground level. Theoretically, both 2 and 8 are
zero for this level if it is a pure d's' 'S, and no splitting
of this level has been observed directly. By an indirect
procedure, White and Ritschl determined an overall'

splitting of 0.030 K in this ground level in Mn z. They
corrected the iljtervals of the 'P and 'P hfs to account
for this nonzero splitting. Though these corrections
are two or three times as large as the effects of Q evalu-
ated above, the analysis of these corrected intervals
leads to very nearly the same Q values as we obtained
above from the direct measurements of the lines. The
large splitting found by White and Ritchl in the 'S
ground term of Mn is hard to explain, and their analysis
may be in error. However, a moderate Lande splitting
of this ground term, especially for the transitions in-
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volving large F values in Mn and Tc, would have neg-
ligible effect on the Q values.

In manganese the levels 'P5~& and 'Py2 are only
8.73 K apart so that second-order eGects of the magnetic
interaction might produce perturbations of the hfs
pattern and invalidate the determination of Q given
above. The matrix elements of the interaction between
hfs levels with the same F value in the two one struc-
ture levels were determined by the methods of Sec. D,
and found in all cases to be less than —s,c, (only effects
of the s electron were calculated). As a, has a value of
about 0.14 K in Mn I the maximum perturbation to be
expected is less than 0.00006 K, so this eGect is too small
to inRuence the results.

. Observations on Mn x have also been made by Fisher
and Peck."Their measurements on X5394 (sF7/s~ Ss/s)
and ) 5432 (sFs/s —+sss/s) lead to Q values of 3X10 '4

and —4X10 '4 cm', respectively. The first of these Q
values is probably too large since, if it were correct,
we would expect more consistent Q values for all lines
considered. The second determination is disregarded
because of the previously noted low sensitivity of the
measurements to effects of Q.

Fisher and Peck evaluated the coe@.cients X and 0.

experimentally in the ds(sD)s 'D term of Mn r, obtain-
ing the values ) =0.0094 and 0.(0.0001. From relations
(6) and (7) it follows that X= //s and o = —as/5. From
relation (13) we expect as ——0.011 (ps=250, Z;=15,
g= 1.2), which is in good agreement with the observed
value of X. On this basis, a- should have the value
—0.002. It seems unlikely that 0- can be evaluated
accurately enough from the observed data to make
the disagreement between theory and experiment
significant.

C. QUADRUPOLE MOMENT OF TANTALUM

Schmidt" has determined Q values of tantalum from
the 'Ii@2, 'Its~2, 'Jig/2, and 'Py2 levels of the Sd'6s' con-
figuration of Ta z. These Q values are 6.3, 6, 2, 4.2 X 10 '4

cm', respectively; from these data he has given the value
Q=6X»0 " cm' for Ta'". Assuming this value of Q,
the values of 4J3(F 1)(2F—1) for th—ese terms are
—0.023, —0.010, —0.012, and —0.053 kaysers, respec-
tively (in Ta r, f'q 1500, Z;=——62, I= 7/2 as given by
Schmidt), so that effects of Q should be easily observ-
able in all patterns. The lower accuracy of the measure-
ment would justify disregarding the low value of Q
obtained from the 'Fs/s. The low value of Q obtained.
for the 'P@2 may be attributed to breakdown of LS-
coupling. Our unpublished calculations of the energy
levels of Ta I in intermediate coupling show that the
purities of the four levels considered above are 0.92,
0.97, 0.91, and 0.70, respectively, which tends to bear
out this conclusion. The fact that the observed g value

'«R. A. Fisher and E. R. Peck, Phys. Rev. SS, 270 (1939).In
their notation, X=e(3d') and cr=b(3d ).' T. Schmidt, Z. Physik 121, 63 (1943).

of the 4Ps/s level is much too small (observed g= 1.524;
theoretical g= 1.733) also confirms this conclusion.

In the non relativistic limit, formulas (15) and (16)
lead to the same values of ((P;(3 cos'0;—1))Mg J)s„as
Schmidt obtained by writing out the eigenfunctions ex-
plicitly. In general, to check values of this quantity
(when the sum is over a group of equivalent electrons),
8 is evaluated with (15) and (16) and then multiplied

by J—(2J 1)—/2b&

Brown and Tomboulian" have recently obtained the
value Q= 5.9X10 "cm' for Ta' ' from observations on
the sd'6s 'F ~ level of Ta zr. We found by the use of rela™
tion (15) that their calculation of the matrix element
for this level is in error by a factor of two (in the non-
relativistic limit), so that the observed data actually
lead to the unreasonably large value of Q 11.8X10 s4

cm'. It is likely that departures from I.S coupling, which

may be greater in Ta rx than in Ta x, are the cause of the
discrepancy with respect to Schmidt's value. '8

Hr, ,=—aiI (s—3rr s/r'), (l&0), (28)

where a& is defined by (10), I is the vector representing
the total nuclear spin, s is the electron's spin vector,
and r is the radius vector from the nucleus to the elec-
tron. The quantity in {) in (28) is a tensor product of
order one; according to relation (40) in Appendix I
it is equal to +10t sX C& &]~'i where Ci'i is the tensor
operator introduced in II, Eq. (46). The interaction
(28) is the scalar product of two vectors, one in the
space of nuclear coordinates, the other in the space of
electronic coordinates. We have by Eq. (38) in II and

Eq. (36) in II,

where

+10(nSLJJ(aigsXC"'Q"'f/ctSLJ)
t

IC
(29)

[J(J+»)(2J+»)]& I 2

E=F(F+1) I(I+1)—J(J+1).—

» B. M. Brown and D. H. Tomboulian, Phys. Rev. SS, 1158
(19S2).' In commenting on the original manuscript of this paper, G.
Racah has pointed out that in jj coupling the level (dg)'s with
J=1 has (2;(3 cos'8; —l))A, =-,', which is about three times the
value of 12/175 valid for the d's «Ii» in LS coupling. Thus the de-
partures from LS coupling are likely to act in the right direction
to explain the result. In another private communication, B. M.
Brown has informed us that if the worst possible view of the
errors is taken, then the )3042—X2702 combinations of Tax?
lead to the value 8=—0.77&0.12, so that very little of the dis-
crepancy can be due to experimental error.

D. MAGNETIC DIPOLE INTERACTION BETWEEN THE
NUCLEUS AND AN ELECTRON

The interaction of the nuclear magnetic moment with
the spin magnetic moment of an electron is that of two
magnetic dipoles, and according to (3, 8)I, it has the form
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Using (43) of Appendix I the expression in {}in (29)
becomes

30(2J+1) &

X SLJ (nSLL[a,sc&"l[n5'L) (3o)
J(J'+1)

Hr. i=aiI I, (l/0), (31)

where 1 is the electron's orbital angular momentum. The
interaction giving rise to the last term of (3) is derived
from the Dirac equation;" it applies only to s electrons.
According to Eqs. (3) and (28) of I it has the form:

Hi, ,=a,I s, (l=0), (32)

where a, is defined in (9). However, it is simpler and
more direct to use II, Eq. (38) and II, Eq. (44) in
carrying out the derivation of these two terms in (3).

All three magnetic interactions (28), (31), and (32),
are scalar products of two vectors and have the form:

H„=e,„I V.

The Racah method also enables us to calculate non-
diagonal elements of these interactions Las well as the
diagonal elements needed in deriving (3)].By Eq. (38)
of II we have, in general,

(nJ, I, F
i H„(n' J', I, F)

= (—1) +'- P (I+1)(2I+1)]&
~ (nJ!jo„y!(n'J')W(JIJ'I; F1). (33)

When J=J', the W function in (33) is proportional to
the quantity E which is defined in (29) Lin deriving (29)
the explicit form of the W function was used). The
general relation (33) is used in conjunction with (43) of
Appendix I, which is needed to evaluate the double-
barred submatrix, to calculate nondiagonal matrix
elements of the electron-nuclear magnetic interactions.
The perturbations due to these nondiagonal matrix
elements are sometimes responsible for departures of
the hfs intervals from the Lande ratio, ' "and the pro-
duction of forbidden electronic transitions. "

"S.Goudsmit and R. F. Bacher, Phys. Rev. 43, 894 {1933).
~ S.Mrozowski, Phys. Rev. 67, 161 (1945);K. G. Kessler, Phys.

Rev. 77, 559 (1950);F. F. Deloume and J.R. Holmes, Phys. Rev.
76, 1'74 {1949).

The X function in (30) has been evaluated in terms
of W functions in relation (50) of Appendix I. When the
W functions in (50) are explicitly evaluated with (36)II,
and the resulting explicit form of the X function is
substituted in (30), an expression equal to the second
term on the right of (3) )where 0 is defined by (7)] is
obtained.

The first and last terms on the right of (3) can be
obtained similarly. The 6rst term arises from the inter-
action of the magnetic moment of the nucleus with the
6eld generated by the electron's orbital motion. By
(3, 5)I, this interaction has the form:

~ ppa~j'p.
Ho= —e' '. (-,' cosV ', )d—r-i,dr„

J r3
(34)

where 8 is the angle between the radius vector r~ of
an element eppdrI, of nuclear charge and the electronic
radius vector r, and pj, and p, are the nuclear and elec-
tronic densities, respectively. By II, Eq. (45) the angular
factor in (34) is represented as a scalar product of tensor
operators,

—,
' cosV ——',=C &" C~"' (35)

and then by (38)II

(n+LJ, ni,I, F!H'o! n,SLJ, nyI, F)
= —e'(—1)~+i r(n+LJ~]r, 'C &'&((n+LJ)

~ (niI)(rp'Ci. &"](nl I)W(JI JI;F2). (36)

The quadrupole moment Q of the nucleus is defined as
a matrix element over the space of nuclear coordinates,
evaluated when I has its largest component in the z di-
rection i.e.,

Q= (ri, '(3 cos'8~ —1)birr =r)«. (37)

By utilizing II, Eq. (29), and II, Eq. (17), we put this
in the form

I(2I 1)——2 (naI~(ri'4"'((nd). (38)
(I+1)(2I+1)(2I+3) .

When this is substituted in (36), and the W function is
evaluated explicitly with Eq. (36) of II we get:

(n,5LJ, n„I, F'!H, !,n,SLJ, n,I, F)
—3e'Q 1 (2J—2)! '

2I(2I—1) r,' A„(2J+3)!

(nDLJ!!C."'!!nDLJ)

~ LE(E+I)—( /43)I(I+1)J (1+1)], (39)

with E again defined as in (29). The first term in
brackets [i.e., E(E+1)]contributes the third term on
the right to the hfs formula (1);its coeflicient, the factor
in braces, is therefore equal to B(J).This can also be
shown more directly by evaluating the expression for
B(J) given in (14) with Eq. (29) of II. The contribu-
tion of the second term in brackets of (39) is included in
Wq Lthe first term on the right in (1)].

The J dependence of B(J) is obtained by evaluating
the submatrix in the factor in braces in (39) with

E. ELECTRIC QUADRUPOLE INTERACTION BETWEEN
THE NUCLEUS AND AN ELECTRON

The quadrupole interaction between the nuclear and
electronic charge distributions is given by Eqs. (11)and
(1) of I as,
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Eq. (44) of II; this leads directly to the formula given
in (15) and (16).

This work has been carried out in the Spectroscopy
Section of the National Bureau of Standards as part
of the program initiated by W. F. Meggers to study
the spectrum of technetium. I wish to thank Professor
Racah and Dr. Fano for a critical reading of the original
manuscript of this paper.

APPENDIX I

An extension of the theory in II is given in Sec. I of
this Appendix. This extension is equivalent to results
given by G. Racah and U. Pano in unpublished
manuscripts.

1. J Dependence of an Irreducible Tensor
in LS Coupling

The interactions encountered in atomic spectroscopy
are generally (a) scalars with respect to J, or else (b)
they commute with either L or S; Eqs. (38) and (44),
respectively, of II are adequate to specify the J de-
pendence of the interactions in such cases. The. inter-
actions (31), (32), and (34) are examples of the type (b).
However, the interaction (28) behaves as a vector with
respect to J and does not commute with either I.or S.
The following extension of the theory in II allows us
to calculate the J dependence in such cases.

A tensor of degree k~ which is irreducible with respect
to S and commutes with I can be combined with a
tensor of degree k2, irreducible with respect to I. and
commuting with S, to produce a tensor of degree k

(k)+k2&~ k~&~ k) —k2~) called the tensor product, which
is irreducible with respect to J by use of the relation, "
p (k) —[T(kl))('U(k2) j (k)

= Q Tq)('»Uqk("'(kkq(kqg2
~
k,k2kg). (40)

919'2

To obtain matrix elements of such a tensor between
states showing LS coupling, Eqs. (16) and (29) of II
are 6rst utilized:

(~SLJM
~
P, (»

~

~'S'L'J'M')

( 1)J+M+k+q(2k+ 1)$ Q ( 1)J"
~// J//

((2SLJ
~ ~

T'""
)
l(2"S'LJ")

(~"SLJ"~~U(") ~~~ S'L'J')

(—1)M" V(kgkqk; q)qq q)—
q1qg M//

.V(JJ"kk, —MM"q)) V(J"J'k; —M"M'g2)). (41)

The sum over the V functions is carried out with (41)II,

and then (44)II is used to obtain the result:

((2SLJM
~
P, (")(a'S'L'J'M')

= (—1)/+M V(JJ'k M—M'q)
~ [(2k+1)(2J+1)(2J'+1))&
. ((2SI ~~T(k1)U(k2))~(2 S'L )
~ ((—1)" ~ /'Q (2J"+1)W(k)Jk2J'; J"k)

J//

.W(SJS'J"; Lk))W(LJ"L'J'; S'kq)). (42)

By comparing this with Eq. (29) of II, and representing
the summation in braces as an X function in agreement
with the de6nition of Fano, "we put this result in the
6nal form,

(WLJIIP(k) ll~'S'L'J')

= (QISj
) g (k1) U("2)

~
j(2 S L )

'SI,J
[(2k+1)(2J+1)(2J'+1))~X S'L'J', (43)

where

SI.J
X S'L'J' =(—1)'-'-'P (2J"+1)

,kgk2k ,
W (k,Jk,J'; J"k)W (SJS'J";Lk))

W(LJ"L'J' S'k ) (44)

The following are some miscellaneous properties of
the X function. If any of the 9 arguments is zero, the
X function reduces to a 8' function; in particular, if
k=O then (43) is equivalent to Eq. (38) of II, while if
k2=0 or k2 ——0 it is equivalent to Eq. (44) of II. The
function vanishes if the triangular condition is not
satisled by any of the six triads forming the rows and
columns of the function. The function is invariant with
respect to interchange of rows and columns. Inter-
change of two rows or columns multiplies the func-
tion by

( 1)S+L+J+S'+L'+J'+k1+kk+k

As a consequence, when (SLJ)= (S'L'J') the function
vanishes unless k)+k2+k is even.

2. An Identity Satis6ed by X Functions

We have derived an identity which can be used
to simplify the numerical calculation of the X func-
tion. Relation (44) is multiplied on both sides by
(—1) (2k+1)W(J'kPk2, Jk)), and a sum over k is
carried out on the right by using Eqs. (40) and (43)

"G.Racah, "Group Theory and Spectroscopy, " lecture notes,
Princeton University, 1951 (unpublished).

~ U. Fano, Natl. Bur. Standards Rep. No. 1214 (unpublished)
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of II to obtain
'SI.J

Q (—1)"(2k+1)W(J'kpk2, Jki)X S'L,'J'

,kgk2k ,
= (—1) &

' "'Q W(LJ"Ski, S'J)
JII

W(J'J"pJ; k2ki)W(LJ"L'J'; S'k2). (45)

By using the following identity given by Biedenharn 9
P (2K+ 1)W(a'Xnc; ac') W (bhPc'; b'c) W(a'Xyb; ab')

= W(anbP; cy) W(a'nb'P; c'7),

relation (45) can be reduced to the following form:

'SL1
g (—1)"(2k+1)W(J'kpk2, Jki)X S'L'J'

,kgk2k ,

SI.J f'SIJi

W(L1L1; LO)X SLJ +5W(L1L1;L2)X SLJ

of the integral nature of any argument in the X func-
tion). For instance, to simplify the X function needed
in Sec. D we use

SJJ
Q (—1)~'(2k2+1) W(Lkgpk; L'ki)X S'L'J'

,kgk2k &

= (—1)~' ~ 8 '"W(SS'LP; kiJ)

W(kPJ'S' L'J) (48)

In the case where ki=k=1 and (S'L'J') = (SLJ), the
X-function in the sum of (48) with (kik2k)=(111)
vanishes as indicated in the last sentence of Sec. 1 of
this Appendix. Hence, taking P=L, relation (48)
becomes,

= (—1) &
' ' 'W(S'SJ'P; kiL') 101 ,121

~ W (k2pLS; JL'). (47) =W(SLSL; J1)W(LJLJ; S1). (49)

By making use of the symmetry properties of the NotingthatW(L1L1;LO) = —[3(2L+1))-&and thatthe
X function, summation can be carried out over any X-function containing zero reduces to a 8' function,
other argument (to permit this, no use has been made this finally becomes

,

'SLJ'

X SIJ
,121

3(2L+1)W(LSLS.J1)W(LJLJ.Sl) ( )~s—zW(SJSJ
~ L1)

15(2L+1)W(L1L1; L2)
(50)

In general it would require the evaluation of nine
8' functions for each J value to calculate the X func-
tion in (50) directly from the sum in (44); the relation
(50) simplifies this so that only three W functions need
be evaluated for each J value.

In the calculation of X functions for which (SLJ)
W(S'L'J'), simplification may result from the vanish-
ing of certain X functions in the sum in (48) because of
failure of the triangular conditions.

APPENDIX II
In the Grst-order approximation, the spin-orbit inter-

action displaces a level by the amount f'(o.SL)I', '4 where
I' is defined by (4) and where

(~SL(IZ;(1 i)'s'&'II~SL)
1 (~L)= (51)

[S(S+1)(2S+1)L(L+1)(2L+1))'*
23 L. C. Biedenharn, I. Math. Phys. 31, 287 (1953).
~4E. U. Condon and G. H. Short1ey, The Theory of Atomic

SPectra (Cambridge University Press, London, 1951), pp. 194
and 123.

i= Jf(NSL-) = (E+2)fi.

The doublet separation is sometimes denoted by b.
In configurations of equivalent electrons

i (l"nSL) = [l(l+1)(21+1))&

(53)

(l"nSLji V&"
& i

(1"oSL)
(54)

[S(S+1)(2S+1)L (L+1)(2L+1))'
Values of the tensor V&"& are tabulated in III for p and
d electrons.

If nonequivalent electrons are coupled together rela-
tions (44) of II are used to calculate f'(aSL).

In this expression, fi is the radial parameter given in
(12) according to the evaluation with a Coulomb field. '4

For one-electron configurations we have:

(liisliil) = [-,'l(l+1) (2l+1))&. (52)

In this case i (l) =i i and the doublet separation is


