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The Elastic Scattering of Particles by Atomic Nuclei~
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Department of Physhos, Inrhhana Unhoershty, Btoomhngton, Indhana

(Received June 1, 1953)

The description of the elastic scattering of particles by atomic nuclei in terms of the optical model is
studied. It is shown that the optical model does not represent only an approximation to the many-body
problem, although the optical model potential must in general be considered to contain spin-orbit couplings.
An explicit expression is obtained for the optical model potential in terms of the amplitudes for scattering
of the incident particle by the individual neutrons and protons of the nucleus. The potential also depends
upon correlations in the positions of the nuclear particles. A calculation of the parameters of the optical
model seems to be in good agreement with some meson scattering experiments.

I. INTRODUCTION

' 'N a previous publication' a general theory of the
~ - multiple scattering of particles by complex systems
was developed. The multiple scattering was described
by the solution to a set of coupled integral equations,
the number of equations being equal to the number of
scattering centers in the scattering medium. %hen the
number of scatterers is large a direct solution of the
coupled integral equations is not feasible; however, in
this case it was shown that the integral equations can
be considerably simplified when the coherent (elastic)
scattering is separated from the inelastic scattering.
From this form of the equations it was possible to show
that the inelastic scattering could be (approximately)
described by a transport equation. The elastic scattering
could be approximately described by the conventional
"optical models'" when the energy of the incident
particle was high.

In the present paper we consider the elastic scattering
in more detail. The theory is applied speci6cally to the
scattering of particles by atomic nuclei, but the formal
arguments are quite general. In particular, we shall see
that the "optical model" has in principle a wide range
of validity and thus does not necessarily represent
only an approximation to the many-body problem.

By the term "optical model, " we mean that the
elastic scattering can be obtained from the solution to
a Schrodinger equation with an interaction potential
which depends only upon the coordinate of the incident
particle relative to (let us say) the center of mass of the
nucleus. If the incident particle and the nucleus have
spins, the potential may also depend upon these —but
it does not depend upon individual coordinates of the
neutrons and protons of the nucleus. In other words,
the many-body problem is reduced to a two-body
problem. This reduction is somewhat formal, since an
analysis of the many-body, problem is in principle
required to 6nd the equivalent two-body interaction.
The advantage gained by such an approach is that in-

*Supported in part by a grant from the National Science
Foundation.

$ Now at the University of Wisconsin, Madison, Wisconsin.
'K. M. Watson, Phys. Rev. 89, 575 (1953). This paper will

hereafter be referred to as I.
s Fernbach, Serber, and Taylor, Phys. Rev. 75, 1352 (1949).

some cases the problem of finding the two-body po-
tential is much simpler than is that of tackling directly
the many-body Schrodinger equation. Also, for many
problems it appears possible to make reasonable guesses
concerning the form of the two-body interaction.

The use of such an "equivalent two-body potential"
has been frequently made. Such an approach was-

employed by Ostrofsky, Breit, and Johnson' in calcu-
lating Coulomb barrier penetration. Bethe' has given a
theory of nuclear reactions at low energies in terms of
such an' interaction. The model was also used by
Feshbach, Peaslee, and Keisskopf5 in the discussion of
nuclear reactions. Fernbach, Serber, and Taylor' based
their theory of nuclear reactions at high energies on an
effective two-body potential. The latter model has
been applied in particular to -meson interactions. e ~

The purpose of the present paper is to study the
relation of these models to the many-body problem. A
special case of our results is an exact expression for the
index of refraction for an extended scattering medium
given in terms of the solution to an integral equation.

11. DEFINITIONS AND GENIIRAL PROPERTIES
OF THE ELASTIC SCATTERING

Several useful characteristics of the elastic scattering
of particles by atomic nuclei can be obtained quite
generally without use of the more explicit multiple
scattering theory of reference j.. In particular, we shall
see that the elastic scattering can be obtained as the
solution to a Schrodinger equation for a particle moving
in the "potential" of a single heavy scatterer. That is,
the potential involves only the coordinates and spin of
the scattered particle, as well as the nuclear spin, but
does not involve explicitly the coordinates of the
neutrons and protons in the nucleus. Therefore, only
the solution of a two-body (rather than a many-body)'
problem is required to determine the elastic scattering,
once the "potential" is known.

To begin, we formulate the many-body problem
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s Feshbach, Peaslee, and Weisskopf, Phys. Rev. 71, 145 (1947).
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which describes the interaction of the incident particle
with an atomic nucleus. I et the nuclear hamiltonian
be II)v and suppose that gr($) represent a complete set
of nuclear wave functions, where $ is some appropriate
set of many-body coordinates and y represents a
specific nuclear state of energy 8'~. Then

We may formally write 4 and %',(-' as

+.= P (g„X„(v'),e.)g,X„(v');
PePt V

Q (g,X„(v'), +. )g,X,(v').
+1St V

v

(7)

Ir~g~ = 8'~g~.

We suppose that before bombardment the nucleus is in
the initial state y&&= (A, M), where M is the azimuthal
quantum number. associated with the nuclear spin J. It
is further assumed that the only degeneracy of this
state is that due to different spin orientations (i.e.,
different values of M).

I et the incident particle have a spin s and a wave
function l&q(v) when it is in a plane wave state with
momentum q and has an azimuthal spin component u.
(We shall frequently omit the symbol "v" from Xq.) It
will be convenient to consider the nucleus to be very
heavy, so that q can be interpreted as the momentum
of the incident particle relative to the nucleus. If we
designate the kinetic energy operator and kinetic energy
by h and e„respectively, the Schrodinger equation for
the incident particle is

(2)

as long as it is far from the nucleus.
We de6ne

+0=If iV+ h,

and V to be the many-body interaction between the
incident particle and the nucleus. Then the Schrodinger
equation which describes the interaction of the incident
particle with the nucleus is

(Hq+ V)+.=E.@.. (4)

The solution 4, has the boundary condition that,
for large distances of the incident particle from the
nucleus,

We are interested in the elastic scattering by the
nucleus. This is scattering which does rot excite the
nucleus. It is given by those terms in Eqs. .(7) for which
the energy 8"~ of the nuclear state 7 is equal to 9"~,
the energy of the initial state (A, M). The "elastic
part" of%', and%' & & is then obtained from Eqs. (7) as

(g&~, sq )l&v(v )~ +.)g&~, ~ )l&v(v') ~

(8)
(g w, sr )l&v(v') ~

+q' ')g&~, sr ))&v(v').

That is, the sum over nuclear states is a sum over spin
orientations only, since it has been assumed that there
is no further degeneracy of the state (AM). In analogy
to Eq. (6) we have

We wish now to see if the "elastic wave functions" C,
as given by Eq. (8), represent solutions to a Schrodinger
equation. For this purpose it is convenient to introduce
the Mgller wave matrix 0, and employ the operator
algebra of Chew and Goldberger. "That is, the relations
(7), when restated in formal matrix notation, read

4,=0,g&g, sq)Xq(v), 4'~ =0, g&~sr)Xq(v). , (10)

The matrices 0, and 0, ( ) satisfy the Lippmann and
Schwinger" integral form of the Schrodinger equation
[see Eq. (4)g:

0 =1+a 'VQ 0 & '=1j(at) 'VQ & ' (11)

where we have de6ned

We then have
NN~g&g, M)Xq(v) ~

a=&.pig Ho. — —

p% & '=Et( ). (6)

Here the state (—a) is the state (A, —M, —
q,

—v), and
&a, is a complex number of modulus one (i.e., a phase
factor). '

' E. P. W'igner, Gott. Nachr. Bl, 546 (1932).' See, for instance, K. M. Watson, Phys. Rev. 88, 1163 (1952).
The reason for introducing Eqs. (6) and (9) is that these give
simple relations between the solutions 0' and +( ), etc. , making it
unnecessary to solve the Schrodinger equation for these separately.

Eo=W,+e„
where e, is the energy of the incident particle LEq. (2)j.
A further boundary condition on 0', is that it have only
outgoing scattered waves. Associated with 4' is a solu-
tion 4 & & to Eq. (4) which has incoming scattered
waves, These solutions are related by the time reversal
operator' E:

C
Here r& is a small positive parameter which is set equal

to zero after the implied integrations in Eqs. (11) are
done. ]

The Eqs. (11) are more general than are required for
the wave functions (10), since we may suppose Eqs.
(11) to also define 0, and 0, & ' for initial states whose
energy is not equal to E,. This generalization is useful
for the description of "virtual scatterings" oG the
energy shell (a problem which one encounters in study-
ing multiple scattering and also in field theory). "

If we write T= VQ„ then

0,=1+a 'T,
' G. F. Chew and M. L. Goldberger, Phys. Rev. 87, 778 (1952)."B.Lippmann and J. Schwinger, Phys. Rev. 79, 469 (1950).

If the incident particle has a charge, it is convenient to assume
that the Coulomb potential is screened at large distances."K.Brneckner and K. Watson Phys. Rev. 90, 699 (1953).
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which satisfies the first of Eqs. (11) if T satisfies.

T=V+Va 'T. (14)

The solution of this equation may be put into the form

T=V+Vn, a 'V

=V+Ta 'V.

This is easily verified by direct substitution into Eq.
(14), making use of Eqs. (11) for 0,.

Forming the adjoint of the second of Eqs. (11), we
have

(11')0,(-»=1+0,(-»Va-',

which is satisfied by

0, (—)&=1+Ta '.

This is verified upon substitution into Eq. (11 ), making
use of Eq. (15).

In analogy to Eqs. (10) we may write the "elastic
wave functions" C as

C'a=ncg(A. , M)Xq(v)q C'e =0~ g(A, M)Ag(v)1 (16)

where
n =1+a-iT n (-))=1+Ta-i (17)

The quantities 0, and T, are obtained from 0, and T
[Eq. (13)) by keeping only those matrix elements of
the latter which connect nuclear states vf the same
energy. That is, 0, and T, are contained in 0, and T
and are dined as follows:

0,=(y', k', v'In, ly, k, v), W„=W„
=0, 8'~ /8'~. (18)

Here (k', v') and (k, v) represent any two plane wave
states for the incident particle. T, is obtained from T
and 0,& ) from 0,& & in the same manner.

The primary problem of our investigation is to find
a potential 'u„such that [see Eq. (14))

T,='u, +'u, a 'T.. (19)

If 'U, exists, then T, is the scattering amplitude which
results from the potential 'U, . We may, however, con-
sider Eq. (19) to be an integral equation to determine
'U, in terms of T,. If this equation has a solution then
'U, exists. " In the next section we shall turn to the
problem of actually calculating 'U, .

When the incident particle is a neutron or proton
some. modihcation of the above analysis is needed in
order that the Pauli principle not be violated. If we
employ the isotopic spin formalism, so that we may
call. either a neutron or proton a "nucleon, " then the
wave functions (10) must be made antisymmetric with
respect to a permutation of any two "nucleon" coordi-
nates. This may be easily done since 4 for 0', ( &), as
given by Eqs. (10) is still a solution to Eq. (4) if we

'3 The formal Chew-Goldberger (reference 10) solution to Eq.
(19) is 'U. =T,—T,(c+T,) 'T„so 'U, exists at least formally.

interchange the coordinates fz+i of the incident nucleon
with the coordinates $ of any other nucleon (o=1, 2,

~ A, where 2 is the mass number of the nucleus). To
obtain an antisymmetrized wave function, we then
operate on 0, [or 4', ( &) with the projection operator

A=--
(A+ 1)l

I Q —I'
0.=1

(20)

Here I is the identity permutation and I' interchanges
$g+i and $ .

If the "exchange scattering" terms in. Eqs. (10) are
unimportant, then our previous analysis needs no
modification. (The exchange scattering refers to pro-
cesses in which the incident nucleon changes places
with one of the nucleons which was originally in the
nucleus. ) More generally, we must replace the T, in
Eq. (17) by the direct minus the exchange scattered
amplitudes. If there still exists a potential 'U, such that
Eq. (19) is satisfied (with T; in this equation including
the exchange terms), then we can again describe the
scattering by means of the "optical model, " as devel-
oped in the next few paragraphs. However, the multiple
scattering analysis of the next section is greatly compli-
cated by the exchange scattering. For this reason we
shall in the subsequent sections assume either that the
incident particle is not a nucleon or that the exchange
scattering is negligibly small.

The potential 'u„which appears in Eq. (19), is the
"optical model potential" which we have set out to
find. We note that 'U, is rot a many-body interaction.
It is obtained from T, [Eq. (19)), which has the
matrix elements

0,=1+a 'u, n„

0,( ) t= 1+0,( ) t'u, a '.

(23)

These are recognized as being the generalized
Schrodinger equations for the elastic scattering [see
Eqs. (11), for instance).

The nuclear wave functions can be eliminated from
the Schrodinger equation for C by writing this as

@a ~M' 'Pq g(&, M') ~

M'

Then the Schrodinger equation for the column matrix-—(~ M) is
[h+'u, (J, S))(v,= e,y .

(21)

when operating on any nuclear state (A, M) which
follows from Eq. (18). Consequently, 'u, has the form

'u. =(~ k v I'u IM k, v)='u, (J, s, k', k), (22)

if we drop the symbol A. The last expression results
from writirig the (M'p', DEIL) dependence in terms of
the spin operators J and S.

From Eqs. (17) and (19) it follows that
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This follows directly from Eq, (23), when it is noted
that a=—E,+iq —Hp [see Eq. (12)) when operating
on the state g&z, ~~ is equal to e,+ig —h. The rela, ted
wave function pp, & &, obtained as in Eq. (25) from C, & &,

satisfies the Schrodinger equation

by Eq. (17). If we write Q.tT, =Q, t'U, Q, and (Q, t'U, Q,)p
= (pp„'U, pp, ), etc., Eq. (29) follows. "In terms of cross
sections, Eq. (29) may be written [see reference (14)):

&t =&el+ o sbp
where

[h+g t)pp (—)= e pp (—) (27)
(2s)4

o,t= (T,t8(E. Hp)—T,)p

We emphasize once again that 'U, depends only upon
the coordinates of the incident particle and the spin of
of the nucleus, so Eqs. (26) and (27) are not many-body
equations. These equations represent the rigorous
formulation of what may be called the "optical models"
of nuclear interactions. They' do not involve a high-

energy approximation, nor do they represent approxi-
mations to the many-body problem.

The potential 'U, is not in general hermitean, so there
is no conservation of particle and current density
associated with p, . This is, of course, necessary in order
that there be conservation of probability for the
original wave function 4,. The state C, describes the
scattering in only one of the possible nuclear "channels"
into which the reaction can go. As C is "feeding" the
other channels, its normalization must become less than
unity as one traces the wave through the scattering
event.

It is just this feature, on the other hand, which
permits us to use q, to calculate the cross section for
inelastic scattering. From the general conservation
theorem" which relates the imaginary part of the
transition operator for forward scattering to the total
transition rates for all scattering, we have

—2 Im(T&, =—2 Im(T, )p ——&, (28)

as the total rate at which the particle is scattered from
its initial state. " The symbol "(~ ~ )p

' means the
"diagonal matrix element of '( ~ )' with respect to
both nuclear states and the momentum and spin states
of the incident particle. " By means of a little algebra
and the relation

we can easily express Eq. (28) as
I

P,=2~(T, t8(E. Ho)T, )o 21m(p „u,—p,). (29)—

To derive this, we note that

= T,tQ, —Q, tT,+T,—T,t

'4We normalize our wave functions in momentum space, so
the total cross section is o&= (2m)'P&/e, where v is the velocity
of the incident particle. For convenience we have supposed the
nucleus to be in6nitely heavy —otherwise it would be necessary
to factor a 8 function expressing momentum. conservation from
Eq. (28).

2(2s-)'
im(p p 'U. p.).

'U

(30)

or
[k'/2p, +'U.g =g'/2p,

P/q'=—n'= 1—(2p/g')'U. . (31)

We may interpret n to be the index of refraction of
the nuclear medium. When Eq. (26) can be expressed
in this form, the resulting analysis is usually referred to
as "the optical model. "To obtain the optical model in
this form, we have neglected the dependence of 'U, upon
the spin of the nucleus and the incident particle (if it

"This result, in a somewhat more restrictive context, has been
obtained by M. Lax, Phys. Rev. 78, 306 (1950l.

Here (T,~ is the total cross section for elastic scattering,
and O,b is that for inelastic scattering by the nucleus.
The relations (30) are equal to the cross sections which
one would obtain from a solution to the macy-body
Schrodinger Eq. (4), but are obtained in terms of the
solution to Eq. (26) only. ,In other words, the solution
to Eq. (26) gives not only the detailed features of the
elastic scattering but also the total cross section for
inelastic scattering.

For incident particle energies above the resonance
region it is quite plausible that the dependence of 'U,

(and of T,) upon the nuclear spin may be weak. This
is qualitatively understandable since the interaction at
higher energies represents the eGect of many inter-
actions with individual nucleons, whose spins tend to
take all orientations. If at such energies we approximate
'U, by dropping J, then the only possible dependence
upon S, the-spin of the incident particle (if it has spin
one-half), is a spin-orbit interaction of the form

S (qXq').

If this dependence is weak (or the energy high enough
that the scattering tends to be in the forward direction),
we may take '0, independent of spin interactions.

If furthermore the nuclear diameter is large compared
to the wavelength of the incident particle, it seems
quite plausible that 'U, will be approximately constant
inside the nucleus and vanish outside (in a coordinate
representation). In this case 'U, depends upon only two
parameters at a given energy (its real and its imaginary
parts), and Eq. (26) is quite simple. If we write p, = q'/2p

(p is the mass of the incident particle), and q, = e'~ *

within the nucleus, Eq. (26) becomes
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has a spin) and assumed that 'U, is constant within the
nucleus. These approximations seem quite reasonable
except for low energies and the smaller nuclei. %e
emphasize, however, that Eq. (26) represents a very
general formulation of the "optical model, " and that
Eq. (31) is only an approximation to this.

In the next section we shall calculate 'U, directly in
terms of the many-body interactions. As mentioned in
the Introduction, however, it is possible for many
applications to treat '0, just as a phenomenological
parameter. "

A

V=+V, (32)

where the summation runs over the A neutrons and
protons of the nucleus. V is the interaction of the
incident particle with the ath nucleon in the nucleus.
)If we were to suppose that many-body forces were of
importance, so that the incident particle interacts
directly with clusters of nucleons, we could extend the
summation in Eq. (32) to include these more general
interactions. This would not modify the formal multiple
scattering theory, since it would be only necessary to
let the sum "over nucleons" have this more general
interpretation in the multiple scattering Eqs. {33).)
Then it was shown in I that the solution to Eqs. (11)
for 0, is

1 A

0,=1+-g t Q, (n), Q, (n) =1+—Q tpQ, (P). (33)

The energy denominator a was dined by Eq. (12).
The quantity t is the effective scattering matrix for the
nth nucleon when it is holed, as described in I.

,%hen true absorption of the incident particle can
occur (as is the case with mesons), it was shown in I
that u is to be replaced by

(34)
where

6= (—iv /2X, )e(s).

is the velocity of the incident particle, X, is the meae
free path for true absorption, and e(s) is the nucleon

' In a forthcoming publication the authors will present a theory
of the deuteron-stripping reaction which makes use of the concepts
of the present section. In this analysis 'U, arises in a natural
~anncr and can be treated as a phenomenological quantity.

III. CALCULATION OF THE POTENTIAL

In the present section we consider the calculation of
the potential in terms of the interaction of the incident
particle with the nucleus. To do this we employ the
multiple scattering theory of reference 1. %'e suppose
the potential V of Eq. (4), which describes the inter-
action of the incident particle with the nucleus, to be

density in the nucleus normalized to

s(s)d's= Vg,

t,=AC.

Then it was shown in I that

Q, =Ft1+e 'Q,
where

e=b —t,=u —6—t„
and P is de6ned by the integral equations

(36)

(37)

{38)

A

F=1+-Q I F, F =1+-Q IpFp.
e a=1 e pea

(39)

~en true absorption of the particles is possible,
we must replace 0, in Eq. (37) by

0=L1+a-'R7FP1+e-'(t +~)j (40)

Lsee Eq. (34)j as was shown in I. The "absorption
operator" R was described in reference 1.Equation (37)
represents an approximation to Eq. (33) (which is
rigorous), the relative error being of order (1/A).

To calculate the elastic scattering t i.e., Eq. (16)),
we need

(~)=(fl.)-=~.-(F)L1+e-'(t.+~)3. (41)

This follows since the operator R, which absorbs the
particle, can obviously not lead to elastic scattering
(see reference 1 for a further discussion). The last step
in Eq. (41) results from the fact that (t,+6) is by
de6nition diagonal in nuclear states, except for spin
orientation. To obtain Q, we must calculate (F), which
in I was approximated by

(F)=1. (42)

This is reasonable for high-energy scatterings.
Indeed, the corrections to Eq. (42) result from several

"In reference 1, only high-energy scatterings were considered,
so C was dered to be diagonal in nuclear states. Here we wish
also to consider the possibility of nuclear spin interactions and so
gjy|," g, ~ggc general de6nition of C.

the nuclear volume
Again following I, we decompose t into its matrix

elements I which refer to inelastic scatterings (corre-
sponding to a change in nuclear excitation energy) and
those matrix elements C which correspond to elastic
scattering. '~ That is

c=(t.).
The symbol ( ~ ~ ) means a matrix element between
nuclear states having the same binding energy. In this
notation, for instance,

n, =(n,)
[see Eq. (18)). If we use the isotopic spin formalism,
so that the nuclear wave function is antisymmetric in
all nucleon variables, it is clear that C is independent
of the index n, and so is
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1
'F-&=-Z 'Ip&F.+-Z 'Ip'Fp)

To solve this integral equation we write 'F
&

as

'F-&= (G-—1))F.,
which when substituted into Eq. (47), leads to

inelastic scatterings, the net result of which is to leave Eq. (45) can be written as
the nucleus in its initial state. When the scatterings
are very energetic, corresponding to high nuclear exci-
tation, the probability that the l'ast inelastic scattering
should happen to leave the nucleus in its ground state
would appear to be negligibly small, so Eq; (42) appears
quite reasonable. However, for lower energies and
especially for lighter particles such as mesons we may
expect that Eq. (42) will require modi6cation.

To calculate (F), we refer to Eq. (39) and write

(47)

where
(F)=1+e 'L (43) G —1——Q 'IpGp F,=O.

i. e P&ce
(49)

L= Q (I.F.). (44) This is satis6ed when G is the solution to the set of
equations

e now introduce a new notation which will prove
useful in the subsequent discussion. If F is a matrix
involving nuclear states, we introduce

1
G =1+—Q 'IpGp.

P~a
(50)

If we substitute Eq. (48) into Eq. (44'), we obtain

to mean the matrix obtained from F by removing all
nuclear matrix elements of the form

(A, M(1 (&),

A

I.= Q(t, G&—t, F,

=—'UgF, . (51)

for all 3f, where A refers to the initial state of the Here the symbol &i, has been introduced for brevity as
nucleus and y is any nuclear state."For example, in
this notation we can write A

L= P (t. 'F.),

'Ui —= Q (t.G.) t.. —
a=1

(44')
From Eqs. (46) and (39) we have

(52)

since the prime notation tells us that there are to be no
states (A, M')—for all M'—in the sum over states in
the matrix product P~(t,

~ y) (y ~

'F ). U we let

'F.)=—P„(&('F.(A, M)Z„

for some value of M, etc. , we have from Eq. (39)

A

P (F.)=AF, =A+- g P (IpFp)
e a=l pea

1
=A+ (A —1)—L,

e
(53)

'F-&='1&+- 2 'IpF p)
e pea

1 1=- Z 'Ip&(Fp&+-Z 'Ip'Fp&,

since '1) vanishes identically because of the definition
of the prime notation. The second step is just the
explicit decomposition of IpFp) into intermediate states
(A, M') and those not equal to (A, M').

Now the quantity
F =—(Fp&

if we use Eq. (39) and the de6ning Eq. (44) for L.
From Eq. (43), we have to relative order 1/A (the
accuracy to which we are restricting ourselves)

F,=1+e 'L=(F).

The 6rst Eq. (54) can be written as

F.=1+e 'UiF„

(54)

(55)

F,=1+ 'Ui.
e—Uy

(56)

since L='UiF, by Eq. (51). The Chew-Goldberger"
solution to Eq. (55) is

which occurs in Eq (45), is in. dependent of the index p If,b~t t t th, 1 f (F) t F (41)
obtain after some al ebra

' Expressed somewhat differently, the "prime" represents a
projection operator standing to the left of F, which vanishes
when operating on a ground state eigenfunction of the nucleus
but which has the eigenvalue unity for all other numb;a, z states.

0,=1+ [t,+6+'Ui].
e—'Ug

(57)
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From the definition of e $Eq. (38)]
e—'Ui= a—[t,+'Ui+6],

so
n.=1+a- Pt,+~,+age„ (58)

where B is a numerical function of k. This conclusion
follows from a study of the individual terms in a series
expansion of Eq. (50) in powers of 'Ie. A somewhat
improved form of Eq. (63) is

(63')*U,(s) =Bv(s),
as in Eq. (23). Therefore, the optical model potential
Uc ls where v(s) was defined in connection with Eq. (34) and

x is the coordinate of the meson. In I, Eqs. (63) and
(63') were referred to as approximations I and II,
respectively.

We can obtain the approximate value of 'U, which
was obtained in I by setting

"U,= t,+Ui+ 6

= Q (t.G.)+a (59)

)by Eq. (52)j. Comparison with Eq. (26) shows that
y, satisfies that equation with U, as given by Eq. (59).
When there is no true absorption, 6=0, so

0-(s)= li~(s),
so

The calculation of '0, is seen to involve the solution
to the set of integral Eqs. (50).

(k ~v ~k) =(k ~t ~k)y(k ~a~k) . (64)

(59') As in I, we write (k'~ 6~k) = —(in /2)i, )8(k' —k). LSee
Eq. (34).] Also, as in I,

(k'~t, ~1 ) =P.((k'~t.
~
k))

=a,s(k' —k)

IV. FURTHER DISCUSSION OF THE POTENTIAL 'U,

To obtain the potential 'U, it is necessary to solve
the integral Eqs. (50) for the quantities G . The
possibility of doing this quantitatively evidently de-
pends upon the complexity of the scattering medium.
In the case of an atomic nucleus we are limited to semi-
phenomenological calculations if it is necessary to
improve the simpler version of the optical model which
was given in I.

For purposes of making a de6nite calculation we
shall. suppose that the incident particle is a high-energy
m meson and assume that 'U, does not depend upon the
nuclear spin (although some of our results, such as
Eq. (80), are more general). We shall also suppose that
the nuclear radius is large compared to the wavelength
of the incident particle.

We define a "wave function" P as

P =GJg,
where Xi,

——(27r)~e'" *. In terms of f, Eq. (50) is

4-(s) =~~(s)+- Z '~eA(s).

If we have solved Eq. (61), which is just Kq. (50)
in an explicit representation, we can immediately
obtain 'U, .

The erst observation concerning Eq. (61) is that
there is no attenuation or coherent modification of the
"incident wave" X~. This results from

(~-)=7., (62)

which follows from the przrite condition on 'Ie.
The next observation is that for- a large homogeneous

scattering medium

(I '(~, ~k) =as(k' —k), (63)

)see Eqs. (35) and (37)j, where 8, is given in terms of
t If we r.efer to Eq. (63), we see Kq. (64) implies the
approximation

8 Bo=8, (iv /2X, )—. — (65)

If we assume the impulse approximation, " t is
related to the meson scattering amplitude a, from a
free nucleon by

a,/(2s. )'e',

where e' is the meson energy (rest plus kinetic) evalu-
ated in the nuclear medium. Then

A 2x—
, (a.(0)l,

VA 6
(66)

as was shown in I. Here a.(0) is the value of a, for
scattering in the forward direction and should be taken
as the average scattering amplitude for the neutrons
and protons in the nucleus. If we use the relationship
between the imaginary part of the forward scattering
amplitude and the total cross section, Eq. (66) can' be
rewritten as

2 2m- 'Mg

a, = —ReLa, (0)l—
VA e' 2X,

(66 )

Re(a, (0)] is the real part of a, (0), and 'A. = (Ao,/ V~) '
is the mean free path for a single scattering from an
individual nucleon in the nuclear medium, assuming
that the cross section 0-, is the same as for an unbound
nucleon (this follows from the impulse approximation).
The velocity v is that which the meson has in the
nuclear medium.

These results were obtained in I and provide a first
approximation to 'U, . In order to test the validity of
this approximation we can calculate 8, by means of
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Eq. (66') from the experimental phase shifts of Ander-
.son et al." These are available for the scattering of
pions on protons at an energy of 78 Mev. The calcu-
lated value of 8, can be compared with the value of 8
[Eq. (63)$ deduced by Lederman et at." for the scat-
tering of 65-Mev mesons by carbon.

From the Fermi phase shifts and Eq. (66'), we obtain

Here again we have to use the impulse approximation
for the Re[a, (0)j so the real part of 8, is unchanged.

To obtain further corrections to Kq. (67'), we return
to the integral Kqs. (50). A 6rst "Born approximation"
to these is

G =1+-Q 'Ip.
e P&a

It, = —[24+11ijMev.

The value of 8 obtained by I ederman et c/. is

8= —[18+9i) Mev.

(67)

(68)

When this is substituted into Kq. (59) for 'U„we obtain

1
u, =6+t,+ Q Iai Ia2-

a1+a2, a2

In view of the experimental uncertainties these values
seem to be quite compatible with each other. As is seen
from Eq. (65), however, we must subtract iv /2X, from
8, to obtain 80. ), is known only roughly, but is
expected to be at least no larger than X, at 65 Mev. ~

It thus seems that the imaginary parts of Eqs. (67)
and (68) are in definite disagreement with each other.

The most apparent source of this error is associated
with our use of the free nucleon scattering amplitude a,
in Eq. (66). As mentioned above this is the so-called
"impulse approximation" as discussed by Chew and
Goldberger" and others. However, the validity of the
impulse approximation seems, perhaps, least certain for
the calculation of the imaginary part of the forward
scattering amplitude, since this is related to the total
cross section.

To obtain a correction to the impulse approximation,
wq note that

—Im(t.),=~(t.tc(E.—II,)t.),. (69)

[This is easily derived in the same manner as was Eq.
(29).j Here t is the effective scattering operator for
the nth nucleon when it is bound, as discussed in I
[see also Eq. (33)$. According to the impulse approxi-
mation, the t 's are to be replaced by the corresponding
quantities for free nucleons, which also implies setting
E, II,=e,—h in —the 8 function in Eq. (69)." For a
first correction to the impulse approximation, it seems
reasonable to replace the t 's on the right hand side of
Eq. (69) by the corresponding free nucleon t 's, but
to keep the energy of excitation of the nucleus in
8(E,—IIO). This then corrects the total scattering cross
section from the bound nucleon for binding eGects in
the final state.

Making a simplified evaluation of the right hand side
of Eq. (69), using a degenerate Fermi gas model of the
nucleus, we obtain a modified 5'„which seems to be in
agreement with experiment:"

8, [24+Si) Mev.— (67')
' Anderson, Fermi, Martin, and Nagle, Phys. Rev. 91, 155

(1953).
20 Byheld, Kessler, and Lederman, Phys. Rev. 86, 1'7 (1952).
2'The energy 6q should be replaced by the effective energy of

the meson in the nuclear medium, according to the Appendix A
of I.

follows directly from the definition of I . If we neglect
the energy of excitation of the nucleus in e, then

~eq+zF/ po BQy

when operating on a meson wave having momentum p.
Here Po ——[P2+ti'1&, where ti is the rest mass of the
meson, and P, is defined by Eq. (65). For simplicity we
neglect the spin and isotopic spin dependence of t and.
write

t =(pIt'Ik) exp[—i(p —k). x j (72)

in a momentum representation. Then (also in a mo-
mentum representation),

1
Iui Ia2 = Q ~t-PsagPza2d P

al/a2 a1ga20

X[P(zai& za2) P(zai)P(za2)j

(k'It'I p)(pl t'Ik)
X

eQ+ i'g —po —BQ

Xexp[—i(k' —p) z.ij
Xexp[—i(p —k) s 2j. (73)

P(x i, z &) is the joint probability of finding nucleon

n~, at the point z ~, and nucleon 0.2 at the point z 2.

P(z i) is the probability of finding nucleon ni, at the
point x i, etc. The combination of the P's in Eq. (73)
follows directly from Eq. (71).

If the nucleus is large we can write

[P(z i, x 2) —P(z i)P(z 2))
=(1/~ )' (x-)L(l - —. *- I) (74)

where e(s) is defined. in connection with Eq (34). .
C(I z i—x 2I) is a function describing the correlation

6+4+ Q (Iai (g t~ 6) Ia2), (70)
al+a2 s a2

The second equation follows from the expression (38)
for e.

Now
(I~ie—'I~&) =(t ie-'t &)

—(t i)e '(t~2) . (71)
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1 tAy'I., I.,-=(2~)PI
I
s(k' —1)

alWap e (Vg)
b IF-i-p I v) =(F)=F. (79)

in Eq. (78). Since by Eq. (56)

between nucleon positions. Then, if the nucleus is large has lost its preferred role here, so this distinction is
probably not of great importance. Therefore, we set

r
(k'I t'I p) (p I

t'Ik)
X d'rd'p

p,+irt Pp—Bp-

XexpLi(p —k) r)C(r), (75)

F,=1+(1/e—'U, )V, ,

we have, on doing a little algebra,

where we have written r= z j—x 2.

Equation (75) represents a correction to t,+6 due to
correlation in nucleon positions (or, in other words, to
the mutual interaction of two nucleons). It corresponds
to two inelastic scatterings, the second of which returns
the nucleus to its original state. To calculate this
effect more carefully, we note that by Eq. (59),

(76)

where the quantity I'
& 2 results from expanding the

solution to Eq. (50) in a series in the 'I 's; that is,

1 j.
F, p ——1++ —I p+ —I p Ia4+—

(a)le e e
(77)

The sum over (n) is such that no two indices on adjacent
'I 's are the same when I & 2 is substituted into Eq.
(76). We have neglected in Eq. (76) those terms for
which n1 =o.2.

Now if we neglect all correlations except those
between pairs of nucleons —that is, except those of the
form given by Eq. (75)—then the nuclear states of the
'I 's must be so paired. Since the nuclear ground state
occurs in the matrix elements of only the first and last
I in Eq. (76), these two must be paired and we can
write 'U, as

If we substitute this into Eq. (78), we obtain

I
I., I., I.

al/a2 a2 ( a Ua )
(80)

This is an integral equation for 'U, and has a simple
interpretation. It differs from Eq. (70) only in that the
approximate propagation function 1/e is replaced by
the "correct function" (a—"U,) '. If we write

(k'I v, l k) =Bc(k'—1 ),
it is evident that Eq. (75) is modified in that Bp is
replaced by 8 in the energy denominator. When the
integrals in Eq. (75) are evaluated, Eq. (80) becomes
an algebraic .equation to be solved for B (if we can
neglect the dependence of 8 on the energy when
evaluating the integral).

For a qualitative evaluation of 8 we shall assume that

C(r) =w1, r(rp,.

=0, r& rp.

If, for instance, we choose the negative sign, we can
interpret C(r) as describing the net effect of the Pauli
principle and a possible short range repulsion in the
nuclear interaction. A choice of the positive sign would

imply a net "bunching together" of nucleons as short
distances. We interpret rp to be a parameter measuring
the strength of this correlation.

To obtain a rough estimate of 'U, from Eq. (80), we
assume that and that the nucleons are point scatterers.
Then the integral (75) is easily evaluated and we obtain

(
Xl y —'Iap A3E I, (78)

e i
Bp&iB,'pprp/q

1aiBPp, 'rp/q'
(81)

where the "y" represent a complete set of nuclear states.
(If there is spin dependent scattering, we should
interpret (ylF i ply) to be oG diagonal in the nuclear
spin orientation, as before. ) Now a comparison of the
quantity (&IF i pl&)=(F & p) with the (F) of Eq. (41)
shows that these have the same structure. There are
only two differences: (1) the indices ni and np are
suppressed for the first and last scatterings, respec-
tively, in I' ». This should not be important if the
mass number A is large. (2) (F) contains I 's while
(I' i p) contains 'I 's. Since we have started the system
in an excited state p in (ylF i ply), the ground state

the sign depending upon that of C(r).
Equation (81) provides us with an additional cor-

rection to Eq. (67'). For rp+ (It/pc) the correction to
Bp is no more than 10—20 percent and is thus negligible
compared to the experimental uncertainties. It is re-
assuring to find this correction small, since it implies
that Eq. (65) is a useful approximation for the optical
model. On the other hand, one may hope eventually to
have suKciently precise measurements so that it is
necessary to use Eq. (80). In this case the results might
be used to obtain a measure of nucleon correlations in
nuclear structure.
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We finally observe that by keeping more terms in the Eq. (84) and on rearranging, we obtain
expansion of Eq. (50) it is possible to obtain the effect
of three-particle and four-particle correlations, etc.,

' ae
on U, . a—'U, J

and

T,=RFe 'H', (82)

T-+T.= L&+(& +~)~ 'lL&+Z- I-F-& '3&' (83)

The quantity H', as defined in I, is the sum of the
matrix elements for photomeson production from the
individual nucleons in the nucleus. R is the absorption
operator introduced in Eq. (40). Thus T, is the transi-

tion operator for photomeson production followed by
reabsorption. T +T, describes photoproduction with

possible scattering of the meson before it leaves the
nucleus. T„ is now explicitly defined as the transition
amplitude for producing mesons which are mot subse-

quently scattered ieelastica/ly or absorbed by the
nucleus. That is,

T.=a+«.+~) —Xf+~.(I.F.) -»
The quantity

Q.(I.P.)=I.= vi+ vi (e—'Ui) —'vi,

as was shown in Sec. III. On introducing this into

V. APPLICATIONS TO MESON INTERACTIONS

By way of further application of the theory which

has been developed, we shall briefly discuss the scat-
tering and photoproduction of m mesons from complex
nuclei. We shall employ the same simple model of the
photoproduction which was used in I (i.e., that the
matrix elements for the photoproduction from a bound
nucleon are the same as for a free nucleon). From the
point of view of the formal theory this means that
there is a uniformly distributed source density in a
median which can both scatter and reabsorb.

We shall arrive at essentially the same conclusions
which were obtained in I. However, we are now able
to ascribe a much more general validity to our results.
Indeed, we shall obtain some specific predictions which

may provide a test of the model for photoproduction
(that the mechanism is the same for a bound as for an
unbound nucleon, as discussed in more detail in I).

The scattering of mesons by nuclei is described by
the theory already developed. The meson wave function

q, =Q,X, satisfies Eq. (26). 'U, does not of course now

depend upon the spin S since the meson has no spin and

we may also suppose it to not depend upon the nuclear

spin J.
As was shown in I, the transition operator T for

photomeson production is

T=T +T.+T.,
where

(yq j
T

~
A, M) = (X„Q,~

—
& t(y (

H'
t A, M))

= (y, &
—

&, (piP'(2, M)). (86)

The symbol (7~ XI't A, M) means the matrix element of
II' with respect to the eldeur states (A, M) and y.
Equation (86) differs from a simple lowest order
perturbation calculation of T only in that the "dis-
torted wave" y, & ~=Q, & ~),, Lsee Eq. (27)g is used for
the 6nal state rather than the plane wave X,.

When the photoproduction from a given nucleon is
localized at the point of production, the photoproduc-
tion cross section, as obtained from Eq. (86), can be
written approximately as" "

do. do I (2')'
=A g "d'x) p, &

—
&(x) ('.

dQ dQ V~"
(87)

da&/dQ is the cross section for photomeson production
from a free nucleon (actually, a suitably weighted
average for the neutrons and protons in the nucleus,
taking into account the charge of the meson). q is a
parameter introduced to account for' the sects of
nuclear binding on the photoproduction and is expected
to be independent of A to a fair approximation. "

We consider do. /dQ to correspond to the experi-
mentally observed photomeson cross section when the
very low energy (i.e., inelastically scattered mesons)
are not observed. This conclusion is further justified
since true absorption seems to predominate over the
inelastic scattering for meson energies below 1.00 Mev.

From Eq. (30) we obtain the cross section for
inelastic scattering or absorption of mesons by a nucleus
to be

(2m)'
I t( „~. ,)1 (88)

If 'U, is considered to be a constant within the nucleus
and to vanish outside, the integrals of Eqs. (87) and
(88) are the same and can be eliminated from these
two equations to give

do dog
O.,b,

dQ dQ V~

"This was discussed in reference 1 and in more detail in
reference 23.

23 N. Francis and K. Watson, Phys. Rev. 89, 328 (1953).

=n, (-»11'

Lsee Eq. (24)j. This represents the rigorous form of
the T which was given in the approximation of Eq.
(64) in I. The matrix element of T for photoproduction
of a meson of momentum q when the nucleus is excited
to a state y is then
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a result discussed in more detail in reference 23. To
obtain Eq. (89), Im'U, was set equal to —n /2'A, where
) is the mean free path for scattering or absorption.

Since we have defined T, T, is also defined. This
corresponds to photomeson production followed by
inelastic scattering in the nucleus in which it was
produced. We now wish to calculate the cross section
0-,&„, which corresponds to the photoproduction of a
meson which is either reabsorbed or scattered inelasti-
cally. 0-,&„ is expected to lead to considerable nuclear
excitation. We first calculate the cross section o.

& for
the production of a meson, irrespective of its subsequent
behavior.

0.
& can most easily be evaluated by calculating the

transition amplitude for the elastic, forward scattering
of a high energy p ray by the nucleus:

o,t., A——~gq(q' p—o,b/V&) 7, (97)

on using Eq. (96). Equations (89) and (97) represent
two relations between the four cross sections 0f 0 b 0
and o-,t„,each of which has been studied experimentally.

An approximate evaluation of g', if we use Eq. (93),
and assume that the nucleus is large, gives

where )t' is the factor correcting Eq. (95). p' can be
calculated from the optical model. Integrating the
differential cross section (89) gives

0.=A o rri(Xo, b/V~),

so Eq. (94) becomes

(Fp&o = (EPFe 'H'&o— (90)

so

1
(F)-=

e .," 'a —'U,

(92)

The cross section 0& is then"

(93)

For the same reasons which led to Eq. (91) it seems
reasonable that the coherent interference of T and T,
can be neglected, so

a star=&t Or . (94)

As argued in.I, the quantity 'U, is not expected to
be of much importance in Eq. (93), so

0't~~ 0fg)

where 0-f is the total weighted cross section for the
protons and neutrons of the nucleons if they were free.
We can take into account the effect of 'U, in Eq. (93)
by rewriting Eq. (95) as

(Tg= Agygg )

'4 S. Kikuchi, Phys. Rev. 86, 41 (1952).

(96)

as shown in I
l
the notation is that of Eq. (28)7. Now

photomeson production seems to involve considerable
nuclear excitation (recoil nucleons seem to have been
observed)" and may reasonably be thou'ght not to
interfere coherently with the subsequent scattering of
the meson. In this case, we can write Eq. (90) as

(T.&o=Z (A, ~III'lv)hlFI~)his 'II'IA, ~), (»)
where the "y" represent a complete set of nuclear
states. LEquation (91) is similar to Eq. (78).7 Now

(y lF ly) =(F&, as given by Eq. (56). But

q'= 1+4.4/A,

O,t.,——Aoggl 1+4.4/A —1.86/A'7. (99)

This is in qualitative agreement with the magnitude
of the observed high energy photostar cross section. '4

These phenomena are complicated, however, and it
appears that the meson reabsorption may be just one
of several contributing causes. The relation (89) seems
to be well satisfied experimentally. "

VI. FINAL COMMENTS

Our discussion indicates that the optical models have
a wide range of validity. For applications one may
ignore the problem of actually calculating the potential
'U, and attempt to describe it by means of parameters
which are determined by experiment. On the other
hand, the arguments of Sec. IV suggest that it is not
unfeasible to try calculating 'U, directly in terms of free
nucleon scattering amplitudes and certain gross pa-
rameters describing nuclear structure. In this case it is
reasonable to hope that the theory can be useful in
deducing such nuclear properties as density and
strength of correlations.

The role played by spin-orbit interactions is of
interest, although we have made no attempt to ex-
plicitly calculate such effects. If the spin dependence of
the t 's is known, then the methods of Sec. IV can be
applied to calculate the spin dependence of '0, . For the
elastic scattering of slow nucleons by nuclei it is
tempting to relate 'U, to the "one-body potential" used
in the l'shell model. In this case one may very well

expect appreciable spin-orbit interactions.

where ao is related to the nuclear radius R by

ap ——E/A &.

BJt is the real part of the part of F LEq. (65)7, the
well depth. Taking O.,b

——xR' and the values of Bg and
X obtained by Lederman et al." for 65-Mev mesons,
we obtain
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In the Appendix we give an alternate derivation of
the potential 'U, . This alternate derivation has the
advantage that it does not involve an approximation
which assumes that the number of scatterers is large,
as was done in Sec. III. The corrections for a finite
number of scatterers appear in a somewhat curious
and surprisingly simple manner —and permit us to
deine the optical model even for the somewhat singular
(and trivial) case of a single bound scatterer.

We are indebted to Professor K. A. Brueckner for
several helpful discussions.

where %L. is de6ned as

'tt.—= Z (t-8-). (A-9)

From the second of Eqs. (A-1), we.obtain

T A

«.())=1+-Z «~.Q)) (A-10)

Since P,—= (Q, (n)), and is independent of n, we obtain
on summing Eq. (A-10) over n,

A F,=A+ (A —1)a—'Z. (A-11)APPENDIX

An Alternate Derivation of the Potential Q, If we divide by A (we do not here drop the 1/A term
as was done in Sec. III) and use Eq. (A-8), we obtain
an integral equation for 5, :We shall give @n alternate development of the

optical model potential 'U, which has an advantage over
that of Sec. III in that it is both simpler and of greater
rigor. (It does not make the approximation that the
number of scatterers is large. ) For simplicity we shall
assume that there is no

The present deriva
(rigorous) multiple scat

r, =1+a-'8%,5:, (A-12)

where we have deined

1 A

n, =1y- P t.n, (n),

If we use the notation of Sec. III,
Then Eq. (A-12) can be written as

P,=1+a '%,gF,.
A

n.—=(a,)=1+-P (t.n, (n)). (A-12')(A-2)

true absorption, so 6=0. (A-13)
tion begins with the original
tering Eqs. (33): The approximation used in Sec. III was to neglect

terms of relative order 1/A. If we did that there we
A could set 6= I and obtain the optical model directly.

flu(&) = 1+ 2 tsar. (P) (A 1) More generally, let us define a "pseudopotential" ttq asCP«
&g= ~&e (A-14)

Berne

and

~=—Z (t-fl. (~))

In a formal sense, Kq. (A-12') defines a scattering
problem with the pseudopotential 'll, g. The coeKcient

(A 3) of 1/a is the "transition operator" Tq for this scattering:

Tg=%,gF,. (A-15)

s,=(n, (n)). (A-4)

A,

'0.(~)&='1)+-Z 'tt f~. (&))

Compare with the notation of Eqs. (44) and (46).
Then using the "prime" notation and that of Kq. (45),
the second set of Eqs. (A-1) lead to

We return now to the actual problem, Eq. (A-2) is

0,=1+a '2
=1+a "1L,F„ (A-16)

by Eq (A-8). T. he actual transition operator 2', is the
coefficient of 1/a in Eq. (A-16), or

Setting

A=-2 Lts)5+ tt ft.Q))5

'a, (n) = (8.—1))e..

(A-5)

(A-6)

b-= 1+ Z'tnBu. -
8P«

(A-7)

Then, from Eqs. (A-3) and (A-6), we find that

X=M,F„

Equation (A-5) is satisfied if the g, satisfy the set of
integral equations

(A-17)

The last step follows upon comparison with Eqs.
(A-14) and (A-15). When the number of scatterers A is
large enough that one can set 8=1, then 0,= P, [see
Eqs. (A-12) and (A-16)5 and T,=Tq. (We may also
verify that 2', ='tl, P, holds even when A =1!)

In general, however, the actual transition operator
diGers from that obtained with the pseudopotential
only by the factor 8

—'. The scattering cross sections
are then related by 8

—'. This implies that in comparing
an observed cross section with the predictions from the
model with 'll ~t„ for instance (as was done in Sec.
IV), one should multiply the observed cross section by
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b2. The potential deduced from the experimental cross
section is then 'h&, which should be divided by b to
obtain 4,

It appears that the 1/A corrections occur in a rather
simple manner and indeed tend to cancel each other
somewhat.

Equations (A-7) seem to be more difficult to tackle
than Eqs. (50). That is, Eqs. (A-7) includes elastic
scatterings in excited nuclear states. These are already
taken into account in Eqs. (50) by the appearance in
that equation of 1/e rather than 1/a.

Another (related) difference between Eqs. (50) and
(A-7) is that the scattering operators t are different in
these two equations. The incident energy in the t of
Eqs. (50) is corrected to be the energy of the particle
im the medium. LThis point was discussed in Appendix
(A) of reference 1.] As was also shown in I, the fact
that this energy has a small imaginary part does not

lead to significant corrections —at least, where the
imaginary part is no larger than it seems to be for
mesons. It thus appears that certain complicated
properties of Eqs. (A-7) appear in a more natural and
simple manner in Eqs. (50).

As a final remark, we note that our rather free use of
operators such as (a—'U) ' is justified if there exists
the M )lier wave matrix,

~o=1+a 'Uto,

since (a—'U) ' can be defined to be

a)a '.
Therefore, all the results of this paper and of reference 1
depend upon the existence of such quantities ~. In
particular, the entire derivation may be carried out in
terms of the solution to integral equations and without
the use of the more formal algebraic treatment which
was actually employed.
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The Nuclear Moments of Technetium-99
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The hyperfine structure in the optical spectrum of technetium has been investigated in the region 3600-
7000A with a Fabry-Perot interferometer crossed with a quartz prism spectrograph. ' The light source was
a liquid-nitrogen-cooled hollow cathode discharge tube. The nuclear-spin, magnetic moments previously
reported by one of us are coniirmed (7=9/2h and t4=5.5+03 nm) and are in agreement with a more
recent nuclear induction measurement. The quadrupole moment of Tc" is found to be: Q= (+0.34&0.17)
&(10 24 cm~.

I. INTRODUCTION

LEMENT 43 was first prepared in 1937 in the
& Berkeley cyclotron by neutron bombardment of

molybdenum, and. was named technetium (Tc) by
Perrier and Segre."In 1948, milligram amounts of Tc"
were separated from uranium fission products by
Parker, Reed, and Ruch. ' A 3-mg sample of Tc was
received by the spectroscopy laboratory of the National
Bureau of Standards in January, 1949, for a preliminary
investigation of the arc and spark spectra of the
element. 's In July, 1950, an additional amount of 3 mg
was received from the Atomic Energy Commission for
further work on the spectra of Tc. %avelength meas-
urements on 2121 lines in Tc r and Tc rr were published

' C. Perrier and E. Segre, J. Chem. Phys. 5, 712 (1937); 7, 1

(1939).' C. Perrier and E. Segre, Nature 159, 24 (1947).
3 Parker, Reed, and Ruch, Clinton National Laboratory Report

CNL-1, 1949 (unpublished).
4W. F. Meggers and B. F. Scribner, Y-476, Oak Ridge Spec-

troscopy Symposium, Abstracts of Papers, March 24 to 25, 1949
(unpublished).

s W. F. Meggers and B. F. Scribner, J. Opt. Soc. Am. 39, 1059
(1949).

by Meggers and Scribner, ' and a preliminary analysis
identifying 20 terms of Tcz and 4 terms of Tcn was
published by Meggers. '

Of the second sample received, 2 mg were saved for
an investigation of the hyperfine structure (hfs) of Tc.
The nuclear spin (9/2) was determined by Kessler and
Meggers' and a preliminary value (5.2&0.5 nm) of the
magnetic moment of the Tc nucleus was .reported. '
More recently a 7-mg sample of Tc".has been received
from the Oak Ridge National Laboratory. Four mg
have been used to improve the descriptions of the arc
and spark spectra, and the remainder was devoted to
the investigation of the hfs of Tc reported below.

A nuclear induction experiment on 156 mg of Tc"by
Walchli, Livingston, and Martin" yielded for the mag-
netic moment a value of 5.6805&0.0004 nm, consistent
with our preliminary value.

'W. F. Meggers and S. F. Scribner, J. Research Natl. Bur.
Standards 45, 476 (19SO).

7 W. F.' Meggers, J.Research Natl. Bur. Standards 47, 7 (1951).
K. G. Kessler and W. F. Meggers, Phys. Rev. 80, 905 (1950).

9 K. G. Kessler and W. F. Meggers, Phys. Rev. 82, 341 (19S1).
"Walchli, Livingston, and Martin, Phys. Rev. 85, 479 (1952).


